LEZIONE SULLE EQUAZIONI DIFFERENZIALI LINEARI

Prof. F. Ferrari

Corso di Laurea Specialistica in Ingegneria per l'Ambiente e delle Risorse Corso di Laurea Magistrale in Ingegneria Chimica e di processo

1. Equazioni differenziali lineari di ordine uno

Definizione. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a, f \in C(I)$ due funzioni. Risolvere l'equazione differenziale lineare scritta in forma normale del primo ordine

$$y' = ay + f,$$

significa determinare una funzione $\phi \in C^1(I)$ tale che per ogni $t \in I$

$$\phi'(t) = a(t)\phi(t) + f(t).$$

Se f=0 l'equazione differenziale lineare scritta in forma normale del primo ordine

$$y' = ay$$

è detta equazione differenziale omogenea associata a y' = ay + f.

Definizione. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a, f \in C(I)$ due funzioni. L'insieme di tutte le soluzioni dell'equazione differenziale lineare omogenea del primo ordine

$$y' = ay + f$$

è detto integrale generale dell'equazione differenziale lineare. Indicheremo l'integrale generale con il simbolo LV_1 , cioè

$$LV_1 = \{ \phi \in C^1(I) : \text{ per ogni } t \in I, \ \phi'(t) = a(t)\phi(t) + f(t) \}.$$

Se f=0 indicheremo l'integrale generale dell'equazione differenziale lineare omogenea con V_1 , cioè:

$$V_1 = \{ \phi \in C^1(I) : \text{ per ogni } t \in I, \ \phi'(t) = a(t)\phi(t) \}.$$

Teorema. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a \in C(I)$ una funzione. L'integrale generale dell'equazione omogenea y' = ay' è uno spazio vettoriale di dimensione uno. Cioè, se $\phi \neq 0$ è una soluzione dell'equazione differenziale, allora

$$V_1 = \{ \psi \in C^2(I) : \psi = c\phi, \ c \in \mathbb{R} \}.$$

Quindi $\{\phi\}$ è una base per V_1 . Scriveremo anche brevemente $V_1 = \text{span}\{\phi\}$.

Teorema. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a, f \in C(I)$ due funzioni. Consideriamo l'equazione differenziale lineare del primo ordine y' = ay + f.

(i) Per ogni $\psi_1, \psi_2 \in LV_1$ (integrale generale dell'equazione differenziale lineare non omogenea di y' = ay + f):

$$\psi_1 - \psi_2 \in V_2$$
,

(dove V_2 è l'integrale generale dell'equazione differenziale lineare omogenea associata y'=ay). Cioè la differenza di due soluzioni dell'equazione differenziale lineare è soluzione dell'equazione differenziale lineare omogenea associata.

Date: 12/12/2008.

(ii) Per ogni $\psi \in LV_1$,

$$LV_1 = V_1 + \psi$$
,

cioè data una soluzione dell'equazione differenziale lineare (non omogenea) l'integrale generale dell'equazione differenziale si ottiene sommando l'integrale generale dell'equazione differenziale omogenea ad una soluzione dell'equazione differenziale lineare. Quindi se $\{\phi\}$ è una base per V_1 , allora:

$$LV_1 = \{ \eta \in C^1(I) : \eta = c\phi_1 + \psi, \ c \in \mathbb{R} \}.$$

Teorema.

Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a, f_1 + f_2 \in C(I)$ tre funzioni. Consideriamo l'equazione differenziale lineare del primo ordine $y' = ay + f_1 + f_2$. Se ψ_1 è soluzione di $y' = ay + f_1$ e ψ_2 è soluzione di $y' = ay + f_2$, allora $\psi_1 + \psi_2$ è soluzione di $y' = ay' + f_1 + f_2$.

2. EQUAZIONI DIFFERENZIALI LINEARI DI ORDINE DUE

Definizione Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a,b \in C(I)$ due funzioni. Una base per l'integrale generale V_2 dell'equazione differenziale lineare omogenea y'' = ay' + by è detto un sistema fondamentale di soluzioni per l'equazione differenziale.

Definizione. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a,b,f \in C(I)$ tre funzioni. Risolvere l'equazione differenziale lineare scritta in forma normale del secondo ordine

$$y'' = ay' + by + f,$$

significa determinare una funzione $\phi \in C^2(I)$ tale che per ogni $t \in I$

$$\phi''(t) = a(t)\phi'(t) + b(t)\phi(t) + f(t).$$

Se f=0 l'equazione differenziale lineare scritta in forma normale del secondo ordine

$$y'' = ay' + by$$

è detta equazione differenziale omogenea associata a y'' = ay' + by.

Teorema. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a \in C(I)$ una funzione. L'integrale generale dell'equazione omogenea y' = ay è uno spazio vettoriale di dimensione uno.

Definizione. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a,b,f \in C(I)$ tre funzioni. L'insieme di tutte le soluzioni dell'equazione differenziale lineare omogenea del secondo ordine

$$y'' = ay' + by + f.$$

è detto integrale generale dell'equazione differenziale lineare. Indicheremo l'integrale generale con il simbolo LV_2 , cioè

$$LV_2 = \{ \phi \in C^2(I) : \text{ per ogni } t \in I, \ \phi''(t) = a(t)\phi'(t) + b(t)\phi(t) + f(t) \}.$$

Se f=0 indicheremo l'integrale generale dell'equazione differenziale lineare omogenea con V_2 , cioè:

$$V_2 = \{ \phi \in C^2(I) : \text{ per ogni } t \in I, \ \phi''(t) = a(t)\phi'(t) + b(t)\phi(t) \}.$$

Teorema. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a, b \in C(I)$ due funzioni. L'integrale generale dell'equazione omogenea y'' = ay' + by è uno spazio vettoriale di dimensione due. Cioè, se ϕ_1 e ϕ_2 sono soluzioni linearmente indipendenti dell'equazione differenziale, allora

$$V_2 = \{ \psi \in C^2(I) : \psi = c_1 \phi_1 + c_2 \phi_2, c_1, c_2 \in \mathbb{R} \}.$$

Quindi $\{\phi_1, \phi_2\}$ è una base per V_2 . Scriveremo anche brevemente $V_2 = \text{span}\{\phi_1, \phi_2\}$.

Definizione Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a, b \in C(I)$ due funzioni. Una base per l'integrale generale V_2 dell'equazione differenziale lineare omogenea y'' = ay' + by è detto un sistema fondamentale di soluzioni per l'equazione differenziale.

Teorema. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a,b,f \in C(I)$ tre funzioni. Consideriamo l'equazione differenziale lineare del secondo ordine y'' = ay' + by + f.

(i) Per ogni $\psi_1, \psi_2 \in LV_2$ (integrale generale dell'equazione differenziale lineare non omogenea di y'' = ay' + by + f):

$$\psi_1 - \psi_2 \in V_2,$$

(dove V_2 è l'integrale generale dell'equazione differenziale lineare omogenea associata). Cioè la differenza di due soluzioni dell'equazione differenziale lineare è soluzione dell'equazione differenziale lineare omogenea associata.

(ii) Per ogni $\psi \in LV_2$,

$$LV_2 = V_2 + \psi,$$

cioè data una soluzione dell'equazione differenziale lineare (non omogenea) l'integrale generale dell'equazione differenziale si ottiene sommando l'integrale generale dell'equazione differenziale omogenea ad una soluzione dell'equazione differenziale lineare. Quindi se $\{\phi_1, \phi_2\}$ è una base per V_2 , allora:

$$LV_2 = \{ \eta \in C^2(I) : \eta = c_1 \phi_1 + c_2 \phi_2 + \psi, c_1, c_2 \in \mathbb{R} \}.$$

Teorema. Siano $I \subseteq \mathbb{R}$ un intervallo di \mathbb{R} , e $a,b,f_1+f_2 \in C(I)$ quattro funzioni. Consideriamo l'equazione differenziale lineare del secondo ordine $y'' = ay' + by + f_1 + f_2$. Se ψ_1 è soluzione di $y'' = ay' + by + f_1$ e ψ_2 è soluzione di $y'' = ay' + by + f_2$, allora $\psi_1 + \psi_2$ è soluzione di $y'' = ay' + by + f_1 + f_2$.

3. Equazioni differenziali lineari omogenee a cofficienti costanti

La costruzione dell'integrale generale di un'equazione differenziale lineare del secondo ordine non è affatto semplice. Tuttavia nel particolarissimo caso in cui i coefficienti siano costanti, ovvero $a, b \in \mathbb{R}$, e l'equazione sia omogenea, allora la costruzione dell'integrale generale V_2 è elementare.

Sia ay'' + by' + cy = 0 un'equazione differenziale lineare omogenea a coefficienti costanti, cioè $a, b, c \in \mathbb{R}$. In questo caso $I = \mathbb{R}$ e a, b, c sono costanti. Notiamo che si tratta di una equazione differenziale scritta non in forma normale, ma questo non altera la procedure di risoluzione seguente. Si cerca una soluzione nella forma $e^{\lambda t}$ con λ esponente da determinare. In questo modo è banale verificare che $e^{\lambda t}$ sarà soluzione se e solo se λ soddisfa la seguente equazione algebrica $a\lambda^2 + b\lambda + c = 0$. Tale equazione ha sempre soluzione in \mathbb{C} . In particolare, avendo posto $\Delta = b^2 - 4ac$, distinguiamo i seguenti casi :

- (i) $\Delta > 0$;
- (ii) $\Delta = 0$;
- (iii) $\Delta < 0$.

Caso (i). Le soluzioni dell'equazione caratteristica $a\lambda^2 + b\lambda + c = 0$ sono reali e distinte rispettivamente: $\gamma_1 = \frac{-b + \sqrt{\Delta}}{2a}$ e $\gamma_2 = \frac{-b - \sqrt{\Delta}}{2a}$. Quindi

$$V_2 = \operatorname{span}\{e^{\gamma_1 t}, e^{\gamma_2 t}\}.$$

Infratti $\{e^{\gamma_1 t}, e^{\gamma_2 t}\}$ è una base. Lo si può verificare direttamente: se $c_1 e^{\gamma_1 t} + c_2 e^{\gamma_2 t} = 0$ per ogni $x \in \mathbb{R}$, allora derivando anche $c_1 \gamma_1 e^{\gamma_1 t} + c_2 \gamma_2 e^{\gamma_2 t} = 0$ per ogni $t \in \mathbb{R}$. Quindi il sistema

(1)
$$\begin{cases} c_1 e^{\gamma_1 t} + c_2 e^{\gamma_2 t} = 0\\ c_1 \gamma_1 e^{\gamma_1 x} + c_2 \gamma_2 e^{\gamma_2 t} = 0. \end{cases}$$

ha sempre soluzione perché la matrice associata (detta matrice Wronskiana) ha sempre determinante non nullo (è una semplice verica algebrica).

Caso (ii). Esiste una sola soluzione di molteplicità 2, $\lambda=-\frac{b}{2a}$ dell'equazione caratteristica. Allora

$$V_2 = \operatorname{span}\{te^{\gamma t}, e^{\gamma t}\}.$$

Anche in questo caso la verifica è diretta.

Caso (iii). Esistono due soluzioni complesse coniugate dell'equazione caratteristica rispettivamente $\gamma_1 = \frac{-b+i\sqrt{|\Delta|}}{2a}$ e $\gamma_2 = \frac{-b-i\sqrt{|\Delta|}}{2a}$. In tal caso si verifica che

$$V_2 = \operatorname{span}\left\{e^{-\frac{b}{2a}t}\cos(\frac{\sqrt{|\Delta|}}{2a}t), e^{-\frac{b}{2a}t}\sin(\frac{\sqrt{|\Delta|}}{2a}t)\right\}.$$

4. Equazioni differenziali lineari non omogenee a cofficienti costanti, metodo per simpatia

Sia ay'' + by' + cy = f un'equazione differenziale lineare non omogenea a coefficienti costanti, cioè $a, b, c \in \mathbb{R}$. La ricerca di una soluzione di tale equazione può essere fatta in alcuni casi banalmente effettuando una sostituzione diretta. Ecco alcuni esempi:

Se $f = e^{\alpha t} p_m(t)$, con p_m polinomio di grado m. Si ricerca una soluzione dell'equazione non omogenea distinguendo due casi.

Caso (A). L'esponente α non è soluzione dell'equazione caratterisitica $a\lambda^2 + b\lambda + c = 0$. In tal caso si cerca una soluzione particolare $\psi(t) = e^{\alpha t}q_m(t)$ con q_m polinomio di grado m da determinare.

Caso (B)

L'esponente α è soluzione dell'equazione caratterisitica $a\lambda^2 + b\lambda + c = 0$ di molteplicità γ . In tal caso si cerca una soluzione particolare $\psi(t) = t^{\gamma}e^{\alpha t}q_m(t)$ con q_m polinomio di grado m da determinare.

Se $f = e^{\alpha t} p_m(t) \sin(\beta t)$, con p_m polinomio di grado m. Nuovamente si distinguono due casi. Caso (i).

Il $\alpha \pm i\beta$ non è soluzione di $a\lambda^2 + b\lambda + c = 0$. Allora si cerca una soluzione ψ nella forma:

$$\psi(t) = e^{\alpha t} (A_m(t)\cos(\beta t) + B_m(t)\sin(\beta t)),$$

con A_m e B_m polinomi da determinare entrambi di grado m.

Caso(ii).

I numeri $\alpha \pm i\beta$ sono soluzione di $a\lambda^2 + b\lambda + c = 0$ di molteplicità γ . Allora si cerca una soluzione ψ nella forma:

$$\psi(t) = t^{\gamma} e^{\alpha t} (A_m(t) \cos(\beta t) + B_m(t) \sin(\beta t)),$$

con A_m e B_m polinomi da determinare entrambi di grado m.

Se $f = e^{\alpha t} p_m(t) \cos(\beta t)$, con p_k polinomio di grado k. Nuovamente si distinguono due casi. Caso (I).

Il $\alpha \pm i\beta$ non è soluzione di $a\lambda^2 + b\lambda + c = 0$. Allora si cerca una soluzione ψ nella forma:

$$\psi(t) = e^{\alpha t} (A_k(t) \cos(\beta t) + B_k(t) \sin(\beta t)),$$

con A_k e B_k polinomi da determinare entrambi di grado k.

Caso(II).

I numeri $\alpha \pm i\beta$ sono soluzione di $a\lambda^2 + b\lambda + c = 0$ di molteplicità γ . Allora si cerca una soluzione ψ nella forma:

$$\psi(t) = t^{\gamma} e^{\alpha t} (A_k(t) \cos(\beta t) + B_k(t) \sin(\beta t)),$$

con A_k e B_k polinomi da determinare entrambi di grado k.