Mathematical Methods - 20 December 2022 - Graph Theory
UniBo matriculation number:
(no name, please)
Let G be the graph drawn here:

1) (1 pt.) Adjacency matrix:

		\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}						
\mathbf{A}	$\mathbf{0}$	1	1	1	0	0
\mathbf{B}	1	0	1	0	1	0
\mathbf{C}	1	1	0	0	0	1
\mathbf{D}	1	0	0	0	1	1
\mathbf{E}	0	1	0	1	0	1
\mathbf{F}	0	0	1	1	1	0

2) (1 pt.) Incidence matrix:

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}
\mathbf{A}	1	0	1	0	0	0	1	0	0
\mathbf{B}	1	1	0	0	0	0	0	1	0
\mathbf{C}	0	1	1	0	0	0	0	0	1
\mathbf{D}	0	0	0	1	0	1	1	0	0
\mathbf{E}	0	0	0	1	1	0	0	1	0
\mathbf{F}	0	0	0	0	1	1	0	0	1

3) (1 pt.) Minimum degree $\delta=\mathbf{3}$ Maximum degree $\Delta=\mathbf{3}$
4) (1 pt.) Connectivity $\kappa=\mathbf{3}$ Edge-connectivity $\kappa^{\prime}=\mathbf{3}$
5) (1 pt.) Is G bipartite? Why? (If answer is "yes", list the two vertex sets of the bipartition)

No: It has odd cycles.
6) (1 pt.) Does G have an Euler tour? Why? (If answer is "yes", write the edge sequence of one)

No: It has vertices with odd degree.
7) (l pt.) Does G have an Euler trail with distinct origin and terminus? Why? (If answer is "yes", write the edge sequence of one)
No: It has more than two vertices with odd degree.
8) (1 pt.) Does G have a Hamilton path? (If answer is "yes", write the vertex sequence of one) Yes: ABCFDE.
9) (1 pt.) List the edge set of a maximum matching. Is it a perfect matching? ghi. Yes.

Now the vertices represent towns and the edge weights represent distances. 10) (2 pts.) Use Dijkstra's algorithm to find minimal routes from A to all other vertices.

11) (2 pts.) Use Kruskal's algorithm to find a spanning tree with minimum total weight (an optimal connector of the towns).

12) (3 pts.) Use the recursive formula to compute τ (\# of spanning trees) of this graph (passages not shown here, but in test you are supposed to show them): 9

13) (4 pts.) Use logic operations to find all minimal coverings and all maximal independent sets of this graph.

$$
\begin{aligned}
& (\mathrm{A}+\mathrm{BCD})(\mathrm{B}+\mathrm{ACE})(\mathrm{C}+\mathrm{ABF})(\mathrm{D}+\mathrm{A})(\mathrm{E}+\mathrm{B})(\mathrm{F}+\mathrm{C})= \\
& =(\mathrm{AB}+\mathrm{AACE}+\mathrm{BCDB}+\mathrm{BCDACE})()=(\mathrm{AB}+\mathrm{ACE}+\mathrm{BCD})(\mathrm{C}+\mathrm{ABF})()= \\
& =(\mathrm{ABC}+\mathrm{ABABF}+\mathrm{ACEC}+\mathrm{ACEABF}+\mathrm{BCDC}+\mathrm{BCDABF})()= \\
& =(\mathrm{ABC}+\mathrm{ABF}+\mathrm{ACE}+\mathrm{BCD})(\mathrm{D}+\mathrm{A})()= \\
& =(\mathrm{ABCD}+\mathrm{ABCA}+\mathrm{ABFD}+\mathrm{ABFA}+\mathrm{ACED}+\mathrm{ACEA}+\mathrm{BCDD}+\mathrm{BCDA})()= \\
& =(\mathrm{ABC}+\mathrm{ABF}+\mathrm{ACE}+\mathrm{BCD})(\mathrm{E}+\mathrm{B})()= \\
& =(\mathrm{ABCE}+\mathrm{ABCB}+\mathrm{ABFE}+\mathrm{ABFB}+\mathrm{ACEE}+\mathrm{ACEB}+\mathrm{BCDE}+\mathrm{BCDB})()= \\
& =(\mathrm{ABC}+\mathrm{ABF}+\mathrm{ACE}+\mathrm{BCD})(\mathrm{F}+\mathrm{C})=\mathrm{ABCF}+\mathrm{ABCC}+\mathrm{ABFF}+\mathrm{ABFC}+\mathrm{ACEF}+\mathrm{ACEC}+\mathrm{BCDE}+\mathrm{BCDC}= \\
& =\mathrm{ABC}+\mathrm{ABF}+\mathrm{ACE}+\mathrm{BCD}
\end{aligned}
$$

Minimal coverings : $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\},\{\mathrm{A}, \mathrm{B}, \mathrm{F}\},\{\mathrm{A}, \mathrm{C}, \mathrm{E}\},\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$
Maximal independent sets : $\{\mathrm{D}, \mathrm{E}, \mathrm{F}\},\{\mathrm{C}, \mathrm{D}, \mathrm{E}\},\{\mathrm{B}, \mathrm{D}, \mathrm{F}\},\{\mathrm{A}, \mathrm{E}, \mathrm{F}\}$
14) (4 pts.) Compute the chromatic polynomial of this graph (passages not shown here, but in test you are supposed to show them).
$k^{6}-7 k^{5}+19 k^{4}-25 k^{3}+16 k^{2}-4 k$

