Esercizi d'esame Geo Sup II 2009-2010

nota: tutte le metriche, anche se non esplicitamente richiesto, sono da consideraresi complete.

Esercizio 1. Sia $\mathbb{S}^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$. Scrivere un atlante differenziabile per \mathbb{S}^2 .

Esercizio 2. Dimostrare che la superficie di genere due Σ_2 non ammette metriche di curvatura strettamente positiva.

Esercizio 3. Scrivere esplicitamente due metriche sul toro T^2 a curvatura zero e non isometriche tra loro.

Esercizio 4. Sia g una metrica su \mathbb{R}^3 con tensore di Ricci positivo. Dimostrare che $\inf_{\mathbb{R}^3} || \operatorname{Ric} || = 0.$

Esercizio 5. Scrivere una superficie S di \mathbb{R}^3 Euclideo tale che la curvatura intrinseca sia nulla ma tale che S non sia una superficie minima.

Esercizio 6. Scrivere l'evoluzione per curvatura del cerchio di centro 0 e raggio 2 in \mathbb{R}^2 .

Esercizio 7. Calcolare la curvatura geodetica di una retta orizzontale nel modello del semipiano di \mathbb{H}^2 .

Esercizio 8. Calcolare le curvature del grafico della funzione $\varphi: \mathbb{R}^2 \to \mathbb{R}$

$$\varphi(x,y) = x^2 + y^2$$

Esercizio 9. Calcolare le curvature della superficie ottenuta per rotazione del grafico della funzione $f(x) = 2 + \sin x$.

Esercizio 10. Calcolare le curvature di $\mathbb{S}^2 \times \mathbb{H}^2$.

Esercizio 11. Sia $N \subset M$ una sottovarietà di una varietà Riemanniana, (M,g), dotata della metrica indotta. Sia ν_i, \ldots, ν_k una base ortonormale del fibrato normale a N in M. Sia $\Pi_i(X,Y)$ la componente lungo ν_i della seconda forma fondamentale di N (ovvero $\Pi(X,Y) = \sum_i g(\Pi(X,Y),\nu_i)\nu_i$.) Dimostrare che vale

$$R^{M}(X, Y, Z, T) = R^{N}(X, Y, Z, T) + \sum_{i} \Pi_{i}(X, Z) \Pi(Y, T) - \Pi_{i}(Y, Z)(X, T).$$

Ove R^M indica il Riemann di M e R^N quello di N.