Esercizi d'esame Geo Sup II 2010/2011. Foglio 1

- (1) Scrivere un atlante differenziabile per \mathbb{RP}^2 .
- (2) Caratterizzare le geodetiche di \mathbb{H}^2 con la metrica iperboica stantard.
- (3) Sia M una varietà Riemanniana completa con curvatura < k < 0. Sia ϕ_t un flusso di isometrie. Dimostrare che le geodetiche chiuse sono invarianti.
- (4) Sia b(x, x) una forma bilineare simmetrica non degenere su \mathbb{R}^n . Sia $M = \{x : b(x, x) = 1\}$ e sia ∇ la proiezione b-ortogonale della connessione usuale di \mathbb{R}^n sul tangente TM. Dimostrare che ∇ è una connessione su M a torsione nulla tale che b risulti parallela per ∇ .
- (5) Sia M una varietà differenziabile. Dimostrare che per ogni campo X e forma ω sia ha $L_X d\omega = dL_X \omega$.
- (6) Sia S una superficie e sia $p \in S$. Sia g una metrica riemanniana a curvatura costante -1 su $S \setminus \{p\}$ tale che il completamento metrico sia S con una singolarità conica in p di angolo α . Enunciuare un teorema di Gauss-Bonnet che tenga conto della singolarità conica. Pug S essere un toro? E una sfera?
- (7) Sia $\mathbb{H}^2 = \{(x,t) \in \mathbb{R}^2 : t > 0\}$ con la metrica iperbolica standard $ds^2 = (dx^2 + dt^2)/t^2$. Sia $f : \mathbb{H}^2 \to \mathbb{R}$ definita da $f(x,t) = x^2 t^2$. Calcolare il gradiente di f.
- (8) Sia S il grafico della funzione da \mathbb{R}^2 in \mathbb{R} data da $f(x,y) = x^2 y^3$. Calcolare la curvatura di S.
- (9) Sia g la metrica su $S^1 \times \mathbb{R}$ data da $ds^2 = t^4 d\theta^2 + dt^2$. Scrivere il Riemann di g.
- (10) Calcolare le curvature sezionali di $\mathbb{T}^2 \times S^2$ (ove $\mathbb{T}^2 = \{(x,y) \in \mathbb{C}^2 : |x| = |y| = 1\}$ e $S^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$ con le metriche indotte da quelle Euclidee.)
- (11) Sia M una varietà Riemanniana completa tale che in ogni punto esistano coordinate locali x^1, \ldots, x^n tali che $\nabla \frac{\partial}{\partial x_i} = 0$ dimostrare che il rivestimento universale di M con la metrica indotta è isometrico a \mathbb{R}^n .