Esercizi d'esame Geo Sup II 2010/2011. Foglio 2

- (1) Scrivere un atlante differenziabile per \mathbb{RP}^3 .
- (2) Sia M il grafico della funzione $f(x,y) = x^2 y^2$. Caratterizzare le geodetiche di M.
- (3) Sia γ una geodetica di una varietà Riemanniana. Dimostrare che se esiste un campo di Jacobi parallelo lungo γ allora almeno una delle sezionali lungo γ è nulla.
- (4) Sia M una varietà differenziabile. Dimostrare che se esiste una connessione ∇ su M tale che l'operatore ∇^1 definito da $\nabla^1 X_Y = \nabla Y_X$ sia una connessione, allora la dimesione di M è zero.
- (5) Sia (M, g) una varietà Riemanniana. Un campo di vettori X si dice di Killing se il flusso associato è un flusso di isometrie. Dimostrare che X è di killing se e solo se $L_x g = 0$ (ove L indica la derivata di Lie).
- (6) Sia S una superficie e sia $p \in S$. Sia g una metrica riemanniana a curvatura costante 1 su $S \setminus \{p\}$ tale che il completamento metrico sia S con una singolarità conica in p di angolo α . Enunciuare un teorema di Gauss-Bonnet che tenga conto della singolarità conica. Pug S essere una superficie qualsiasi?
- (7) Sia $\mathbb{H}^2 = \{(x,t) \in \mathbb{R}^2 : t > 0\}$ con la metrica iperbolica standard $ds^2 = (dx^2 + dt^2)/t^2$. Sia $f : \mathbb{H}^2 \to \mathbb{R}$ definita da $f(x,t) = x^2 t^2$. Calcolare il laplaciano di f.
- (8) Sia S il grafico della funzione da \mathbb{R}^2 in \mathbb{R} data da $f(x,y) = x^2 + y^2$. Calcolare la curvatura di S.
- (9) Sia g la metrica su $S^1 \times \mathbb{R}$ data da $ds^2 = t^4 d\theta^2 + dt^2$. Scrivere il Ricci di g.
- (10) Calcolare le curvature sezionali di $\mathbb{T}^2 \times \mathbb{H}^2$ (ove $T^2 = \{(x,y) \in \mathbb{C}^2 : |x| = |y| = 1\}$ con la metrica indotta da quelle Euclidea e H^2 è il piano iperbolico con la metrica iperbolica standard).
- (11) Sia S una superficie Riemanniana compatta. Siano x, y due punti tali che la distanza tra x e y sia il diametro di S. Dimostrare che esitono almeno 3 geodetiche tra x e y che realizzano la distanza.