Esercizi d'esame Geo Sup II 2010/2011. Foglio 4

- (1) Scrivere un atlante differenziabile per S^3 .
- (2) Sia M il grafico della funzione $f(x,y) = x^2 + y^2$. Caratterizzare le geodetiche di M.
- (3) Sia (S, g) una superficie Riemanniana completa tale che la curvatura della metrica sia 1 in ogni punto. Dimostrare che S è isometrica a \mathbb{S}^2 con la metrica sferica standard.
- (4) Sia M una varietà differenziabile e sia h una sezione del fibrato delle forme bilineari simmetriche non degeneri su TM. Dimostrare che esiste una unica connessione ∇ a torsione nulla tale che $\nabla h = 0$.
- (5) Sia $\phi: M \to N$ un'isometria tra due varietà Riemanniane. Dimostrare che $\nabla^N_{\phi^*X}\phi^*Y = \phi^*(\nabla^M_XY)$.
- (6) Sia g una metrica sul toro T^2 con singolarità coniche, ognuna di angolo totale minore di 2π , in un numero finito di punti e curvatura nulla sul complementare. Dimostrare che g in realtà non è singolare in nessun punto.
- (7) Sia $\mathbb{S}^2 = \{x \in \mathbb{R}^3 : |x|+1\}$ con la metrica sferica standard indotta dalla metrica Euclidea di \mathbb{R}^3 . Sia $f: \mathbb{S}^2 \to \mathbb{R}$ definita da $f(x,y,z) = x^2$. Calcolare il gradiente di f.
- (8) Sia \hat{S} la superficie ottenuta per rotazione della funzione e^x . Calcolare la curvatura di S.
- (9) Sia g la metrica su $S^1 \times \mathbb{R}$ data da $ds^2 = d\theta^2 + (2 + \sin\theta)^2 dt^2$. Scrivere il Ricci di g.
- (10) Calcolare le curvature sezionali di $\mathbb{S}^3 \times S^1$ (ove $S^3 = \{x \in \mathbb{C}^2 : |x| = 1\}$ ed $S^1 = \{x \in \mathbb{C} : |x| = 1\}$ con le metriche indotte da quelle Euclidee.)
- (11) Sia $x \in \mathbb{H}^3$ un punto nello spazio iperbolico e sia $S_p = \{p \in \mathbb{H}^3 : d(x,p) = 1\}$. Determinare la metrica indotta su S_p dalla metrica iperbolica di \mathbb{H}^3 . Dimostrare che S_p è isometrica a S_q per ogni altro $q \in \mathbb{H}^3$. Dimostrare che per ogni coppia di punti p,q esiste una isometria di \mathbb{H}^3 che manda p in q. Dimostrare che il gruppo delle isometrie di \mathbb{H}^3 che fissano p è isomorfo a $O(3,\mathbb{R})$.