Ing. dell'energia	elettrica e dell'automazione. Geo	ometria e algebra T. Prova del 21/05/2014 — I
Nome	Cognome	Matricola
$\boxed{\mathbf{a}} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}; \qquad $	$ \begin{array}{ccc} \hline{\mathbf{b}} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}; & \mathbf{c} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}; \end{array} $	
a $x(x-1)(1-x)$	caratteristico di $f(x, y, z) = (x + x);$ b $x^2 - 1;$ c $(x - 1)$ eguenti è una base ortonormale p	
4. La conica de	finita dall'equazione $x^2 + xy = 1$	
5. La matrice a	iperbole; c parabola; ssociata a $f(x,y) = (2x, x + y)$ ri	spetto alla base $(1,1),(1,0)$ è:
$\boxed{\mathbf{a}} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}; \qquad $	$ \overline{\mathbf{b}}\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}; \qquad \overline{\mathbf{c}}\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}; \qquad [$	d nessuna delle precedenti.
6. La segnatura	(n_0, n_+, n) della forma bilinear	e associata alla matrice $\begin{pmatrix} 4 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$ è:
a $(1,2,3);$ 7. In \mathbb{R}^3 , la dist	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0,3,0).
		(x,x) è: a 0; b 1; c 2; d 3.
9. Le coordinat	e di $(1+x)$ rispetto alla base 1, 1	$1+x, x^2 \text{ di } \mathbb{R}_{\leq 2}[x] \text{ sono:}$
10. Il rango di	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$] 2;
11. Sia $f(x, y, z)$	(x + 2y, y - z, x + y + z). Qu	uali dei seguenti è autovettore di f ? d nessuno dei precedenti.
\ / \ \ ' /	(-)	$ \overline{\mathbf{c}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0.3 \end{pmatrix}; \overline{\mathbf{d}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} $
13. Sia $A = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 1 \\ 2 & -1 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix}$ e $b = (3, 2, 1)$. Qua	ante soluzioni ha in \mathbb{R}^4 il sistema $AX = b$?
a 0; b 1; 14. La forma di	\boxed{c} 2; \boxed{d} ∞ . I Jordan di $f(x,y) = (6x - 4y, -4y)$	4x + 6y) è:
	$\boxed{\mathbf{b} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}; \qquad \boxed{\mathbf{c} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}};$	
15. Quali delle	seguenti matrici rappresenta un e	endomorfismo diagonalizzabile su \mathbb{R} ?
$\begin{bmatrix} a & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \begin{bmatrix} a & 1 \\ 0 & 0 \end{bmatrix}; \end{bmatrix}$	$ \overline{\mathbf{b}}\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad \overline{\mathbf{c}}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}; $	$\boxed{\mathbf{d}} \begin{pmatrix} 0 & -4 \\ -4 & 6 \end{pmatrix}.$

Il foglio deve essere intestato immediatamente con nome, cognome e matricola. Deve essere esibito il libretto o un documento. Non è concesso alzarsi prima del termine né chiedere chiarimenti. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e una penna. Prima di consegnare bisogna annotare le risposte date sul foglio fornito. Ogni risposta esatta vale 3 punti, ogni risposta errata errata vale -1. Le risposte omesse valgono 0. Va consegnato SOLO questo foglio.

5. **•** 11. **•**

- **1.** b
- **2.** d
- **3.** b
- **4.** b
- **5.** a
- **6.** d
- **7.** c
- **8.** b
- **9.** c
- **10.** b
- **11.** d
- **12.** a
- **13.** a
- **14.** a
- **15.** d

- **1.** a b c d
- **2.** a b c d
- **3.** a b c d
- **4.** a b c d
- **5.** a b c d
- **6.** a b c d
- **7.** a b c d
- **8.** a b c d
- **9.** a b c d
- **10.** a b c d
- **11.** a b c d
- **12.** a b c d
- **13.** a b c d
- **14.** a b c d
- **15.** a b c d

Nome _ ____ Cognome _____ Matricola _ _ _ _ _ _ _ _ _ Il rango di $\begin{pmatrix} 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 4 \end{pmatrix}$ è: a 1; b 2; Quali delle seguenti è una base di $(\mathbb{Z}_2)^3$? $\boxed{\mathbf{c}} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix};$ d Nessuna delle altre. In \mathbb{R}^3 , la distanza tra P=(-1,0,0) ed il piano π di equazione x-y-z=1 è: $\boxed{b} 2/\sqrt{3}; \qquad \boxed{c} -2/\sqrt{3}; \qquad \boxed{d} \sqrt{2}.$ Sia $A=\begin{pmatrix}1&0&1&1\\1&2&-1&0\\2&2&0&1\end{pmatrix}$ e b=(0,1,1). Quante soluzioni ha in \mathbb{R}^4 il sistema AX=b? $\boxed{\text{c}}$ 2; $\boxed{\text{d}}$ 0. b 1: $|\mathbf{a}| \infty$: 5. Sia f(x, y, z) = (2x, y, x + y + z). Quali dei seguenti è autovettore di f? a (2,-1,-1); b (1,0,1); c (1,2,3); d Nessuno dei precedenti. **6.** Il polinomio caratteristico di f(x,y,z)=(x,2z,y-x) è a $(1-x)x^2$; b x^2-1 ; c $(1-x)(x^2-2)$; d $(x+1)^3$. 7. La conica definita dall'equazione $x^2+4xy+3y^2=0$ è: b parabola; c coppia di rette parallele; d coppia di rette incidenti. 8. Quali delle seguenti matrici rappresenta un endomorfismo diagonalizzabile su \mathbb{R} ? $\begin{bmatrix} b \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}; \quad \begin{bmatrix} c \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}; \quad \begin{bmatrix} d \begin{pmatrix} 6 & -4 \\ 9 & -6 \end{bmatrix}. \end{bmatrix}$ a Nessuno degli altri; 9. La segnatura (n_0, n_+, n_-) della forma bilineare associata alla matrice $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ è: b (0,1,2); c (0,2,1); d (1,0,2). **10.** La forma di Jordan di f(x,y) = (2x, 3x - 6y) è: $\begin{bmatrix} b & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; & \begin{bmatrix} c & \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; & \end{bmatrix} \end{bmatrix}$ d nessuna delle precedenti. 11. Quali delle seguenti è una base ortogonale per il prodotto scalare standard di \mathbb{R}^2 ? a $e_1, e_1 + e_2;$ b $e_2 + e_1, e_2;$ c $e_1 + e_2, e_2 - e_1;$ d nessuna delle precedenti. 12. La matrice associata a f(x, y) = (x, x - y) rispetto alla base (1, 2), (1, 0) è: $\boxed{\mathbf{b} \begin{pmatrix} -1/2 & 1/2 \\ 3/2 & 1/2 \end{pmatrix}}; \qquad \boxed{\mathbf{c} \begin{pmatrix} -1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}}; \qquad \boxed{\mathbf{d}} \text{ nessuna delle precedenti.}$ 13. La matrice associata al prodotto scalare standard rispetto alla base (1,2),(3,4) è: $\boxed{b} \begin{pmatrix} 1 & 4 \\ 9 & 16 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}; \qquad \boxed{d} \begin{pmatrix} 5 & 11 \\ 11 & 25 \end{pmatrix}.$ **14.** La dimensione del ker di f(x, y, z) = (x, 0, x) è: a 0; b 1; **15.** Le coordinate di $(1-x)^2$ rispetto alla base $1, 1+x, x^2$ di $\mathbb{R}_{\leq 2}[x]$ sono: $\boxed{b} (3,-2,1); \qquad \boxed{c} (1,-1,0)^2; \qquad \boxed{d} (1,-2,1).$ a | (1, 1, 1);Il foglio deve essere intestato immediatamente con nome, cognome e matricola. Deve essere esibito il libretto o un documento. Non è

Il foglio deve essere intestato immediatamente con nome, cognome e matricola. Deve essere esibito il libretto o un documento. Non è concesso alzarsi prima del termine né chiedere chiarimenti. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e una penna. Prima di consegnare bisogna annotare le risposte date sul foglio fornito.

Ogni risposta esatta vale 3 punti, ogni risposta errata errata vale -1. Le risposte omesse valgono 0. Va consegnato SOLO questo foglio.

5. **♣** 11. **♣**

- **1.** a
- **2.** d
- **3.** b
- **4.** a
- **5.** b
- **6.** c
- **7.** d
- **8.** b
- **9.** c
- **10.** d
- **11.** c
- **12.** b
- **13.** d
- **14.** c
- **15.** b

- **1.** a b c d
- **2.** a b c d
- **3.** a b c d
- **4.** a b c d
- **5.** a b c d
- **6.** a b c d
- **7.** a b c d
- **8.** a b c d
- **9.** a b c d
- **10.** a b c d
- **11.** a b c d
- **12.** a b c d
- **13.** a b c d
- **14.** a b c d
- **15.** a b c d

_____ Cognome _____ Nome _ Matricola _ _ _ _ _ _ _ _ _ b 1; d 3. Quali delle seguenti è una base di $(\mathbb{Z}_2)^3$? In \mathbb{R}^3 , la distanza tra P=(0,-1,1) ed il piano π di equazione x-y-z=1 è b 1; c -1; d $1/\sqrt{3}$. Sia $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 2 & 1 \end{pmatrix}$ e b = (1, 2, 3). Quante soluzioni ha in \mathbb{R}^3 il sistema AX = b? $\boxed{\mathrm{c}}\ 2; \qquad \boxed{\mathrm{d}}\ \infty.$ 5. Sia f(x,y,z) = (x+2y+z,y-z,x+y+z). Quali dei seguenti è autovettore di f? [a] (0,-1,-1); [b] (0,1,0); [c] (1,1,0); [d] nessuno dei precedenti. **6.** Il polinomio caratteristico di f(x,y,z) = (0,x-y-2z,z-x) è a (x+1)(x-1)(1-x); b x^2-1 ; c $(x-1)^3$; d nessuno dei precedenti. 7. La conica definita dall'equazione $4x^2+4xy+y^2+y=1$ è: | b | iperbole; | c | parabola; | d | coppia di rette. Quali delle seguenti matrici rappresenta un endomorfismo diagonalizzabile su \mathbb{R} ? $\boxed{b} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}; \qquad \boxed{d} \begin{pmatrix} 6 & -4 \\ 9 & -6 \end{pmatrix}.$ **9.** La segnatura (n_0, n_+, n_-) della forma bilineare associata alla matrice $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ è: [b] (0,1,2); [c] (0,2,1); [d] (1,0,2).**10.** La forma di Jordan di f(x,y) = (4x - 4y, 4x - 4y) è: $\boxed{b} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix};$ d nessuna delle precedenti. 11. Quali delle seguenti è una base ortogonale per il prodotto scalare standard di \mathbb{R}^2 ? $\boxed{\mathbf{a}}\ e_1, e_1 + e_2;$ $\boxed{\mathbf{b}}\ 2e_2 + e_1, -2e_1 + e_2;$ $\boxed{\mathbf{c}}\ e_1 + 2e_2, e_1 - 2e_2;$ $\boxed{\mathbf{d}}\ \text{nessuna delle precedenti.}$ **12.** La matrice associata a f(x,y) = (x,x-y) rispetto alla base (1,1),(0,1) è: b $\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$; c $\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$; d nessuna delle precedenti. 13. La matrice associata al prodotto scalare standard rispetto alla base (1,-1), (1,0) è: $\boxed{b} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \boxed{d} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$ **14.** La dimensione del ker di f(x, y, z) = (0, 0, 0) è: $\begin{bmatrix} a \\ 0 \end{bmatrix}$; $\begin{bmatrix} b \\ 1 \end{bmatrix}$; **15.** Le coordinate di $1-x+x^2$ rispetto alla base $1, 1+x, x^2$ di $\mathbb{R}_{\leq 2}[x]$ sono: [b] (2,-1,1); $[c] (0,1,0)^2;$ [d] (-1,2,1).a | (1, -1, 1);

5. **4** 11. \heartsuit

- **1.** d
- **2.** a
- **3.** d
- **4.** b
- **5.** d
- **6.** d
- **7.** c
- **8.** a
- **9.** a
- **10.** b
- **11.** b
- **12.** b
- **13.** c
- **14.** d
- **15.** b

- **1.** a b c d
- **2.** a b c d
- **3.** a b c d
- **4.** a b c d
- **5.** a b c d
- **6.** a b c d
- **7.** a b c d
- **8.** a b c d
- **9.** a b c d
- **10.** a b c d
- **11.** a b c d
- **12.** a b c d
- **13.** a b c d
- **14.** a b c d
- **15.** a b c d

Nor	me	Cognome	Ma	tricola		
1.	Il rango di $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & -1 \end{pmatrix}$ è: a 1;	b 2; c 3;	d 4.		
2.	Quali delle segu	enti è una base di $(\mathbb{Z}_2)^3$?				
a	$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$); \qquad \boxed{\mathbf{b}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix};$	$ \begin{array}{c} $	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$; $\boxed{\mathbf{d}}$	$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	$, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
3.	In \mathbb{R}^3 , la distant	za tra $P = (1, -1, 1)$ ed il j				
[a] (); <u>b</u> 1;	$\boxed{\text{c}}$ -1; $\boxed{\text{d}}$ $\sqrt{2}$.				
4.	$Sia A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} e b = (1, 2, 3). Q$	uante soluzioni ha	a in \mathbb{R}^4 il sistema	AX = b?	
[a] (); <u>b</u> 1;	$\boxed{c} \ 2; \qquad \boxed{d} \ \infty.$	0 1 1 1			
		(x+2y, y-z, x+y+z). b $(1,1,1)$; c $(1,2,3)$		i é autovettore d	11 <i>f</i> ?	
6.	Il polinomio car	atteristico di $f(x, y, z) = 0$	x + y + z, x - y - y	(2z, z - x)è		
[a] ((x+1)(x-1)(1	$(-x)$; b $x^2 - 1$; ta dall'equazione $x^2 + xy + 1$	$(x-1)^3;$ d	$(x+1)^3$.		
7.	La conica defini	ta dall'equazione $x^2 + xy + y$	$-3y^2 = 1$ è:			
[a] € 8.	ellisse;b_ ip Quali delle segu	erbole; c parabola; enti matrici rappresenta u	d coppia di re n endomorfismo d	tte. iagonalizzabile s	su R?	
		$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$				
9.	La segnatura (n	$(0, n_+, n)$ della forma bilin	eare associata alla	a matrice $\begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{pmatrix}$	$\begin{pmatrix} 2\\1\\1 \end{pmatrix}$ è:	
a (10.	(1,2,3); b (La forma di Jo	(0, 1, 2); $(0, 2, 1);$ ordan di $f(x, y) = (6x - 4y)$	(1,0,2). , $9x - 6y)$ è:	· ·	,	
$\begin{bmatrix} \mathbf{a} \end{bmatrix}$	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; b	$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \qquad \boxed{\mathbf{c}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix};$	d nessuna de	elle precedenti.		
	\ /	uenti è una base ortonorm			rd di \mathbb{R}^2 ?	
12.	La matrice ass	$e_2 + e_1, e_1 - e_2;$ c e ociata a $f(x, y) = (2x, x - e_2)$	y) rispetto alla ba	ase $(1,1), (1,0)$	ile precedei è:	nti.
$\begin{bmatrix} \mathbf{a} \end{bmatrix}$	$\begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}; \qquad \boxed{\mathbf{b}}$	$\left]\begin{pmatrix}1&1\\1&0\end{pmatrix};\qquad \boxed{c}\begin{pmatrix}0&1\\2&1\end{pmatrix};\right.$	d nessuna d	lelle precedenti.		
	\ /	ociata al prodotto scalare			(1,-1) è:	
	` /	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{\mathbf{c}} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$	/ _			
		del ker di $f(x, y, z) = (x, z)$			c 2;	d 3
		di $(1+x)^2$ rispetto alla ba 1,2,1);		$\mathbb{1}_{\leq 2}[x]$ sono:		
<u>a</u> ((±, ±, ±), [D] (1, 2, 1), (U, 1, U) ,	u (1, 2, 1).			

5. ♥ 11. ♥

- **1.** c
- **2.** c
- **3.** a
- **4.** d
- **5.** a
- **6.** a
- **7.** a
- **8.** a
- **9.** c
- **10.** b
- **11.** d
- **12.** c
- **13.** a
- **14.** a
- **15.** d

- **1.** a b c d
- **2.** a b c d
- **3.** a b c d
- **4.** a b c d
- **5.** a b c d
- **6.** a b c d
- **7.** a b c d
- **8.** a b c d
- **9.** a b c d
- **10.** a b c d
- **11.** a b c d
- **12.** a b c d
- **13.** a b c d
- **14.** a b c d
- **15.** a b c d

Nome	Cognome	Matricola	
1. Il rango di $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ -1 & -1 \\ -1 & 2 \end{pmatrix}$ è: a 1; b 2;	c 3; d 4.	
	nenti gruppi di vettori sono affir		
		$\boxed{c} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \end{pmatrix}; \qquad $	nessuno dei precedenti
3. In \mathbb{R}^3 , la dista	anza tra $P = (1, -1, 0)$ ed l'asse	e Y è:	
(a) 0; (b) 1; /1	$\begin{bmatrix} \mathbf{c} \end{bmatrix} - \mathbf{l}; \qquad \begin{bmatrix} \mathbf{d} \end{bmatrix} \sqrt{2}.$		
4. Sia $A = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	$\begin{bmatrix} c \\ -1 \end{bmatrix}$ -1; $\begin{bmatrix} d \\ \sqrt{2} \end{bmatrix}$. Quante soluzioni ha in $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 1.	\mathbb{Z}_2^3 il sistema $AX = 0$?	
a 0; b 1; 5. Quali dei segu	$\fbox{c}\ 2; \qquad \fbox{d}\ \infty.$ nenti insiemi genera $\Bbb{R}_{\leq 3}[x]$?		
[a] $0, 1, x, x^2$; [6. Il polinomio c	b $1+x^2, x, x^3;$ c $1+x, 1+$ aratteristico di $f(x, y, z) = (0, 0)$	$-x^2, x^3;$ $dx(1+x), 1+x, (x-6), 0)$ è	$1)(x+1), x^2, x^3.$
a $(x+1)(x-1)$ 7. La conica defi	$(1-x);$ $\boxed{b} x^2 - 1;$ \boxed{c} (nita dall'equazione $x^2 + 2y + 1$	$(1-x)(x^2-2);$ d x^3 . = 0 è:	
a ellisse; b	iperbole; c parabola; [
	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \qquad \begin{bmatrix} c & \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix};$		
9. Quanti bolcch	i ha la forma di Jordan della m	natrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$?	
a 1; b 2; 10. La dimension	c 3; d La matrice non ne di $V = \{f : \mathbb{R}^3 \to \mathbb{R}^2 : \operatorname{Im}(f)\}$	ammette forma di Jordan. $) \subset \text{span } (1,1) \in f(1,0,1) = 0 $ è:	
	c 3; d 4 eguenti è una matrice ortogona		
\ /	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \qquad \begin{bmatrix} c & \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix};$		
		rispetto alla base $(1,-1),(1,0)$ è:	
$a \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix};$	$\boxed{b} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} -2 & -1 \\ 3 & 2 \end{pmatrix}$	$\binom{1}{2}$; $\binom{-2}{2}$ $\binom{1}{2}$	
		(x,y),(x',y') = (x+y)(x'+y') in	n base canonica è
$\boxed{\mathbf{a}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{\mathbf{b}}$	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}; \qquad \begin{bmatrix} c & \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}; $	$\boxed{\mathbf{d}} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}.$	
	ensione dello span di $\{(x, y, z)\}$	z = 1 è:	
		DA . $A = A - N^{-1}$	1 D M.
	A, B commutano se: $AB = NAN = B$; $AB = AB$	BA ; $\boxed{\mathbf{b}}$ esiste N t.c. $A = N^{-}$	D^{IV} ,
	·		
concesso alzarsi prima de solo i fogli forniti e una p	el termine né chiedere chiarimenti. I telefon penna. Prima di consegnare bisogna annota	e matricola. Deve essere esibito il libretto o un ni devono essere mantenuti spenti. Sul tavolo è are le risposte date sul foglio fornito. Le risposte omesse valgono 0. Va consegnato	consentito avere

5. **♦** 11. **♦**

- **1.** c
- **2.** d
- **3.** b
- **4.** b
- **5.** d
- **6.** d
- **7.** c
- **8.** b
- **9.** c
- **10.** b
- **11.** d
- **12.** b
- **13.** b
- **14.** d
- **15.** a

- **1.** a b c d
- **2.** a b c d
- **3.** a b c d
- **4.** a b c d
- **5.** a b c d
- **6.** a b c d
- **7.** a b c d
- **8.** a b c d
- **9.** a b c d
- **10.** a b c d
- **11.** a b c d
- **12.** a b c d
- **13.** a b c d
- **14.** a b c d
- **15.** a b c d

Nome	Cognome	Matricola
1. Il rango di $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ -1 & 2 \end{pmatrix}$ è: a 1; b 2;	c 3; d 4.
2. Quali delle se	guenti vettori sono affinemente	
3. In \mathbb{R}^3 , la dista a 0; b 1; 4. Sia $A = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	anza tra $P = (1, -1, 1)$ ed l'ass $\begin{bmatrix} c \\ -1 \end{bmatrix}$; $\begin{bmatrix} d \\ \sqrt{2} \end{bmatrix}$. Quante soluzioni ha in $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.	e Y è: $\mathbb{Z}_2^3 \text{ il sistema } AX = 0?$
a 0; b 1; 5. Quali dei segu	c 2; d ∞ . nenti insiemi genera $\mathbb{R}_{\leq 2}[x]$?	x^2 ; $dx(1+x), 1+x, (x-1)(x+1)$.
6. Il polinomio de la $(x+1)(x-1)$ 7. La conica defia ellisse; b	raratteristico di $f(x, y, z) = (x (1-x);$ b $x^2 - 1;$ c nita dall'equazione $x^2 + 4y^2 +$ iperbole; c parabola;	+y+z, x-y-2z, z) è $(1-x)(x^2-2);$ d $(x+1)^3.$ 4xy-2x-4y+1=0 è:
\ /	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} c & \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix};$ if ha la forma di Jordan della 1	\ /
a 1; b 2; 10. La dimensional 6; b 5;	in ha ha horma di Jordan dena ha coma di Zana dena ha di $V=\{f:\mathbb{R}^3\to\mathbb{R}^2:f(1,1)\}$ c d; d 3 eguenti è una matrice ortogona	a ammette forma di Jordan. $(1,0) \in \text{span } (1,1)$ } è:
$\begin{bmatrix} a & 1 \\ 1 & 1 \end{bmatrix}; \begin{bmatrix} b \end{bmatrix}$	$0 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix};$	
	b $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$; c $\begin{pmatrix} -2 & -1 \\ 3 & 2 \end{pmatrix}$ associata alla forma bilineare b	$ \begin{array}{ll} \begin{pmatrix} -1\\2 \end{pmatrix}; & \boxed{\mathbf{d}} \begin{pmatrix} -2 & 1\\2 & -1 \end{pmatrix} \\ ((x,y),(x',y')) = (x+y)(x'-y') \text{ in base canonic} \end{array} $
14. In \mathbb{R}^3 la dim	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}; \begin{bmatrix} c & \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix};$ ensione dello span di $\{(x, y, z)\}$	
15. Due matrici		$B = BA;$ b esiste N t.c. $A = N^{-1}BN;$ mbe diagonali.
Il foglio deve essere intes concesso alzarsi prima de	tato immediatamente con nome, cognome el termine né chiedere chiarimenti. I telefo	e e matricola. Deve essere esibito il libretto o un documento. Non è oni devono essere mantenuti spenti. Sul tavolo è consentito avere

5. ♥ 11. ♥

- **1.** b
- **2.** c
- **3.** d
- **4.** c
- **5.** a
- **6.** c
- **7.** d
- **8.** b
- **9.** b
- **10.** b
- **11.** d
- **12.** c
- **13.** d
- **14.** c
- **15.** b

- **1.** a b c d
- **2.** a b c d
- **3.** a b c d
- **4.** a b c d
- **5.** a b c d
- **6.** a b c d
- **7.** a b c d
- **8.** a b c d
- **9.** a b c d
- **10.** a b c d
- **11.** a b c d
- **12.** a b c d
- **13.** a b c d
- **14.** a b c d
- **15.** a b c d