Nome	Cognome	Matricola
a 1; b 2;	ha la forma di jordan di $f(x)$ c 3; d 4.	
	$_{k}$ vettori linearmente indipend	
3. La matrice ass		\overline{x}) nella base di \mathbb{R}^2 formata da $v_1 = e_2, v_2 = e_1$ è:
$\boxed{\mathbf{a}} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix};$	$\boxed{b} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$	$\left(\frac{1}{2}\right); \qquad \boxed{d} \left(\frac{1}{1} - \frac{1}{2}\right).$
		$(x_1, x_2), (y_1, y_2) = x_1x_2 + y_1y_2$ in base canonica è:
$\boxed{\mathbf{a}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{\mathbf{k}}$	$ \bigcirc \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad \boxed{\mathbf{c}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}; $	$\boxed{\mathrm{d}}\ b$ non è una forma bilineare.
		ra $(1, -2, 1)$ ed il piano $y - 2x + 2z = 2$ è:
a 4/3; b 2/3	c; $c 0;$ $d 5/3.$	
	nita da $x^2 + y^2 - xy = 0$ è:	
	perbole; c parbola;	
		a $1 + ix - x^2, 1 + (1 - i)x^2, 2i - x + x^2;$
	$+i;$ $\boxed{c} x, x^2;$ $\boxed{d} 1+i$	
8. Sia $A = \begin{pmatrix} 1 & k \\ k & k \end{pmatrix}$	$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Per quali k il	sistema $AX = b$ ha soluzione?
$\begin{bmatrix} a \end{bmatrix} k = \pm 1; \begin{bmatrix} b \end{bmatrix}$	k = 2; $c k = 0, k = 2;$	d nessuna delle precedenti.
		orma quadratica $x^2 + 2xy + y^2 + 2z^2$. La segnatura
$(n_0, n_+, n) \text{ di } b \text{ è:}$	a (1,2,0); b (2,1,1); b (2,1,1)	0); $\boxed{\mathbf{c}} (1,0,2); \boxed{\mathbf{d}} (1,1,1).$
		o di $\mathcal{M}_{2\times 2}(\mathbb{R})$ definito da $f(X) = X + X^T$?
	$\begin{bmatrix} c \end{bmatrix} 0, 2;$ $\begin{bmatrix} d \end{bmatrix} 1, -1, 0, 2.$	podotto scalare $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$ è:
a 1/ V 50, D	$1/\sqrt{6}$; \boxed{c} $1/\sqrt{5}$; \boxed{d} , l'inversa di $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ è:	1/30.
12. In $\mathcal{M}_{2\times 2}(\mathbb{Z}_2)$, l'inversa di $A = \begin{pmatrix} 1 & 1 \end{pmatrix}$ è:	
$\begin{bmatrix} a \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\bigcirc \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad \boxed{\bigcirc \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}};$	$\boxed{\mathrm{d}}\ A$ non è invertibile.
	eguenti matrici è ortogonale?	
$ \begin{bmatrix} a & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; d Lo sono tutte le precedenti.
14. Due piani affi	ni in \mathbb{R}^4 : a si intersecan	b se si intersecano le loro giaciture noi
generano \mathbb{R}^4 ;	$\overline{\mathbf{c}}$ generano \mathbb{R}^4 ; $\overline{\mathbf{d}}$ se le gi	aciture generano \mathbb{R}^4 allora i due piani si intersecano.
15. In \mathbb{R}^3 le rette	r(t) = (t, t - 1, t + 1) ed s:	$\begin{cases} x - y = 0 \\ z = 1 \end{cases}$ sono tra loro
	b incidenti; c parallele;	
		e matricola. Deve essere esibito il libretto o un documento. Non è mi devono essere mantenuti spenti. Sul tavolo è consentito avere

 $2. \diamondsuit$

- **1.** c
- **2.** c
- **3.** d
- **4.** d
- **5.** a
- **6.** d
- **7.** b
- **8.** b
- **9.** a
- **10.** c
- **11.** a
- **12.** d
- **13.** c
- **14.** d
- **15.** a

Nome	Cognome	Matricola
a 1; b 2;	ensione massima dei blocchi de $\boxed{\text{c}}\ 3; \qquad \boxed{\text{d}}\ 4.$ v_n dei generatori di \mathbb{R}^k , allora:	ella forma di jordan di $f(x, y, z) = (x + y, x + 2y, z)$?
$\boxed{\mathbf{a}} \begin{pmatrix} 0 & -3 \\ 1 & 3 \end{pmatrix};$	$\boxed{b} \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$	
		$\boxed{\mathrm{d}}\ b$ non è una forma bilineare.
$\boxed{a} 2/3; \qquad \boxed{b} $	d. scal. standard, la distanza ta $\overline{2/3}$;	ra $(1,2)$ ed la retta $r(t) = (t,t+1)$ è:
a ellisse; b 7. Quale delle se	iperbole; c parbola; [a $1 + ix + x^2, 1 + (1 - i)x^2, 2i - x + x^2;$
8. Sia $A = \begin{pmatrix} 1 \\ k \end{pmatrix}$	$\begin{pmatrix} 1 \\ k^2 \end{pmatrix}$ e $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Per quali k il	sistema $AX = b$ ha soluzione?
a $k \neq \pm 1$; b 9. Sia $b \in \text{bil}(\mathbb{R}^3)$ b è: a $(0, 2, -1)$	$k \neq 0;$ $k \neq 0, 1;$ $k \neq 0, $	Il sistema ha sempre soluzione. na quadratica $2xy + z^2$. La segnatura (n_0, n_+, n) di
11. In $\mathbb{R}_{\leq 5}[x]$ dis	etanza tra x e 1 rispetto al pro $1/\sqrt{4}$; $\frac{1}{\sqrt{3}}$; $\frac{1}{\sqrt{3}}$; $\frac{1}{\sqrt{3}}$; $\frac{1}{\sqrt{3}}$	dotto scalare $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$ è:
12. L'inversa di	$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} $ è: a $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$;	$\begin{array}{ccc} \begin{array}{cccc} & & & & \\ & & \\ & & \\ & & \end{array} \begin{array}{cccc} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}; & & \\ & & \\ \end{array} \begin{array}{cccc} \left(\begin{array}{cccc} 1 & 0 \\ 1 & -1 \end{array} \right); & \\ \end{array} \begin{array}{ccccc} & & \\ \end{array} \begin{array}{cccccc} & & \\ \end{array} \begin{array}{ccccccccccccccccccccccccccccccccccc$
13. Quale delle s $\begin{bmatrix} $	seguenti matrici è ortogonale? $ \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}; $	$ \begin{bmatrix} c & \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad \boxed{d} \text{ tutte le precedenti.} $
,	ette affini in \mathbb{R}^3 , quale afferm	` ' _
sghembe generand 15 . In \mathbb{R}^3 una ba		
Il foglio deve essere intes concesso alzarsi prima de solo i fogli forniti e una	tato immediatamente con nome, cognome el termine né chiedere chiarimenti. I telefo penna. Prima di consegnare bisogna annot	e matricola. Deve essere esibito il libretto o un documento. Non è ni devono essere mantenuti spenti. Sul tavolo è consentito avere

2. \heartsuit

- **1.** a
- **2.** d
- **3.** a
- **4.** b
- **5.** c
- **6.** b
- **7.** a
- **8.** b
- **9.** a
- **10.** a
- **11.** c
- **12.** d
- **13.** d
- **14.** b
- **15.** c

Nome	Cognome	_ Matricola	
a 1; b 2; c 3;	d 4.	li jordan di $f(x, y, z) = (x, 2x+y, 3x+2$	
indipendenti; $\boxed{b} \dim(V$ 3. La matrice associata a j	(x,y) = n; $(x,y) = (2x - y, y - x)$ nella k	toriale V , allora: a sono linear ne finita; d nessuna delle precede base di \mathbb{R}^2 formata da $v_1 = e_1 + e_2, v_2 = e_1 + e_2$	nti.
$\boxed{\mathbf{a}} \begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix}; \qquad \boxed{\mathbf{b}} \begin{pmatrix} 1 \\ 0 & -1 \end{pmatrix}$	$\begin{bmatrix} 2 \\ -1 \end{bmatrix}$; $\begin{bmatrix} c \\ -1 \end{bmatrix}$; $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$; $\begin{bmatrix} c \\ \end{bmatrix}$	$ \underline{\mathbf{d}} \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}. $	
4. La matrice associata all	a forma bilineare $b((x_1, y_1), (x_1, y_2))$	$(x_2, y_2) = x_1(y_2 - x_2) + x_2y_1$ in base can	nonica
	$\begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix};$ $\boxed{\mathbf{c}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix};$	$\boxed{\mathrm{d}}\ b$ non è una forma bilineare.	
5. In \mathbb{R}^2 col prod. scal. sta	andard, la distanza tra $(1,1)$ e	ed la retta $r: \left\{ x + y = 3 \right\}$ è:	
a 2; b $\sqrt{3/2}$; c 6. La conica definita da x^2	0; $\boxed{d} \sqrt{1/2}$.		
a una coppia di rette;7. Quale delle seguenti è u	b un'iperbole; c una pana base di $\mathbb{C}_{\leq 3}[x]$? a 1 -	$+ix + x^2, \overline{1 + (1-i)x^2}, 2i - x + x^2;$	
$\begin{bmatrix} b \end{bmatrix} x^2 + 1, x + i, x^3; \qquad \begin{bmatrix} c \end{bmatrix}$	$1, x, x^2;$ d nessuna delle je $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Per quali k il siste	precedenti.	
8. Sia $A = \begin{pmatrix} k+2 & -1 \\ k & k^2 \end{pmatrix} \epsilon$	$b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Per quali k il siste	ma $AX = b$ ha soluzione?	
9. Sia $b \in \text{bil}(\mathbb{R}^4)$ la forma b è: a $(1,2,1)$; b	$(0,2,2);$ $\boxed{c}(2,1,1);$	ratica $2xy + zt$. La segnatura $(n_0, n_+, \frac{1}{2})$ $(1, 1, 2)$.	
10. Sia $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ e sia	$f \in \operatorname{End}(\mathcal{M}_{2\times 2}(\mathbb{R}))$ definito d	la $f(X) = XA$. Gli autovalori di f sor	10:
11. In $\mathbb{R}_{\leq 5}[x]$ distanza tra	$\frac{1}{\sqrt{3}}$: $\frac{1}{\sqrt{2/15}}$.	ealare $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$ è:	
12. L'inversa di $A = \begin{pmatrix} 1 \\ i \end{pmatrix}$	$\begin{bmatrix} -i \\ 1 \end{bmatrix}$ è: $\begin{bmatrix} a \end{bmatrix}$ A non è invertibile	e; $\boxed{\mathbf{b}} \frac{A+A^T}{2}$; $\boxed{\mathbf{c}} A^2$; $\boxed{\mathbf{d}} \frac{1}{2} A^2$	A^T .
13. Quale delle seguenti m	natrici è ortogonale?		
		$\begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}; \qquad \boxed{\mathbf{d}} \text{ tutte le precede:}$	
14. Il piano affine di \mathbb{R}^3 ort	ogonale a $(1,2,3)$ e passante (1	(1,2,3) è: $a(x-1)+2(y-2)+3(z)$	-3) =
0; $[b](x-1) + (y-2) = 15$. In \mathbb{R}^3 le rette $r(t) = (2)$	$(z-3) = 0; \qquad \underline{c} x + 2y + 1$ $1 - t, t - 1, 2) \text{ ed } s : \begin{cases} x + y + 1 \\ z = 1 \end{cases}$	(1,2,3) è: (x-1)+2(y-2)+3(z+3z=6) d un tale piano non esiste $z=1$ sono:	ste.
	c sghembe; d incid		
concesso alzarsi prima del termine né solo i fogli forniti e una penna. Prima	chiedere chiarimenti. I telefoni devono esi di consegnare bisogna annotare le risposi	Deve essere esibito il libretto o un documento. Non sere mantenuti spenti. Sul tavolo è consentito avere te date sul foglio fornito. se omesse valgono 0. Va consegnato SOLO questo fo	

 $1. \bigcirc 2. \spadesuit \quad 3. \clubsuit \quad 4. \spadesuit \quad 5. \bigcirc \quad 6. \bigcirc \quad 7. \bigcirc \quad 8. \clubsuit \quad 9. \spadesuit \quad 10. \bigcirc \quad 11. \bigcirc \quad 12. \bigcirc \quad 13. \clubsuit \quad 14. \spadesuit \quad 15. \bigcirc$

2.

- **1.** c
- **2.** c
- **3.** a
- **4.** b
- **5.** d
- **6.** a
- **7.** d
- **8.** c
- **9.** b
- **10.** c
- **11.** d
- **12.** a
- **13.** b
- **14.** a
- **15.** b

Nome	Cognome	Matricola			
1. Quanti blocchi ha la fo a 1; b 2; c 3;	orma di Jordan di $f(x, y, z)$ d 4.	$ = (x, 2x + y, 3x + 2y + z)^{\frac{\alpha}{2}} $	·		
b se $n = k$ allora generano	o \mathbb{R}^k ; c generano ser	pendenti di \mathbb{R}^k , allora: npre \mathbb{R}^k ; d nessuna del ella base di \mathbb{R}^2 formata da v	le precedenti.		
$\boxed{\mathbf{a} \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}}; \qquad \boxed{\mathbf{b} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}}$	$); \qquad \boxed{\mathbf{c}} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \boxed{\mathbf{d}}$	$\left] \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} .$			
		d di \mathbb{R}^2 nella base $(1,2),(1,4)$	−1) è:		
$\begin{bmatrix} a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \qquad \begin{bmatrix} b \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \end{bmatrix}$	$\binom{1}{1};$ $\binom{1}{-1}, \binom{1}{1};$	$\begin{bmatrix} \mathbf{d} \\ -1 & 2 \end{bmatrix}.$			
5. In \mathbb{R}^2 col prod. scal. st	andard, la distanza tra (2	$(x,-1)$ ed la retta $r: \left\{ x + 2y \right\}$	y=2 è:		
a $2/\sqrt{5}$; b $\sqrt{5}$; c 6. La conica definita da x	$0;$ $d \sqrt{2/5}.$ $x^2 + y^2 - xy = 1 e:$				
7. Quale delle seguenti è	una base di $\mathbb{C}_{\leq 3}[x]$?	na parbola; d un'ellisse a $1 + ix + x^2, 1 + (1 - i)x^2$,	$,2i-x+x^{2},x^{3};$		
b $x^2 + 1, x + i, x^3;$ c	$1, x, x^2;$ d nessuna d	elle precedenti.			
8. Sia $A = \begin{pmatrix} k+2 & -1 \\ k & k^2 \end{pmatrix}$	e $b = \begin{pmatrix} 1 \\ k \end{pmatrix}$. Per quali k il	elle precedenti. sistema $AX = b$ ha soluzion	ne?		
` '	` '	sistema ha sempre soluzione			
9. Sia $b \in \text{bil}(\mathbb{R}^4)$ la form b è: a $(1,2,1);$ b	a simmetrica con forma q $(0,2,2);$ $\boxed{c}(2,1,1);$	uadratica $2xy + z^2$. La segn $\boxed{\mathbf{d}} (1, 1, 2)$.	atura (n_0, n_+, n) di		
10. Sia $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$	e sia $f \in \operatorname{End}(\mathcal{M}_{2\times 2}(\mathbb{R}))$	d $(1,1,2)$. definito da $f(X) = XA$.	Quale dei seguenti è		
autovettore di f ?	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}; \boxed{\mathbf{b}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix};$		$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.		
		prodotto scalare $\langle p, q \rangle = \int_0^1$	p(x)q(x)dx è:		
$\boxed{a} 1; \qquad \boxed{b} \sqrt{2} ; \qquad \boxed{c} 2$	d; d 4.				
a 1; b $\sqrt{2}$; c 2 12. L'inversa di $A = \begin{pmatrix} 1 \\ i \end{pmatrix}$	$\begin{pmatrix} i \\ 1 \end{pmatrix}$ è: $\boxed{\mathbf{a}} A; \qquad \boxed{\mathbf{b}} \frac{1}{2} \overline{A};$	$\boxed{\mathrm{c}} A^2; \qquad \boxed{\mathrm{d}} \frac{1}{2} A^T.$			
13. Quale delle seguenti matrici è diagonalizzabile?;					
$ \begin{bmatrix} a & \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}; \qquad \boxed{b} \begin{pmatrix} \end{pmatrix} $	$\begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix};$	$ \begin{array}{cccc} \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad \boxed{d} \ n $	essuna.		
14. Il sottospazio vettoria	le di \mathbb{R}^3 ortogonale a $(1,2)$	(3) e passante $(1,2,3)$ è:	a $(x-1) + 2(y-1)$		
2) + 3(z - 3) = 0;	(z-1) + (y-2) + (z-3) = (1-t, t-1, 2) ed $s(t) = (1-t, t-1, 2)$	z = 0; $c = x + 2y + 3z = 6;$ $z = 1, 1 - t, 1)$ sono:	d non esiste.		
	c sghembe; d				
concesso alzarsi prima del termine né solo i fogli forniti e una penna. Prima	chiedere chiarimenti. I telefoni dev a di consegnare bisogna annotare le	ricola. Deve essere esibito il libretto o ono essere mantenuti spenti. Sul tavolo risposte date sul foglio fornito. risposte omesse valgono 0. Va consegna	o è consentito avere		

2.

- **1.** a
- **2.** b
- **3.** c
- **4.** d
- **5.** a
- **6.** d
- **7.** a
- **8.** d
- **9.** a
- **10.** c
- **11.** c
- **12.** b
- **13.** d
- **14.** d
- **15.** b