Ing. aerospaziale e r	neccanica. Geometria e algebra T	. Prova del 04/12/20	17 cod. 937240
Nome	Cognome	Matricola	
a ellisse; b ipe 2. Le coordinate di a (1,-2,1); b d	a dall'equazione $4x^2 + 4xy + y^2 + 2xy + 3y + $	oppia di rette. $(1,-1)^2;$ d nessuna	
3. Quale insieme geometric $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	enera $\mathcal{M}_{2\times 2}(\mathbb{Z}_2)$? a $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$; d	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}; \boxed{\mathbf{b}}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$	$\begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \\ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
zero; b è chiuso 5. Quali delle segue a $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$; b 6. Quali delle seque a $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; b 7. Sia $b \in \text{bil}(\mathbb{R}^3)$ (n_0, n_+, n) di b è:	non vuoto di uno spazio vettoria per somma e prodotto; \boxed{c} non ti matrici rappresenta un endomo $\binom{1}{0}$ $\binom{1}{0}$; \boxed{c} $\binom{1}{1}$ $\binom{1}{1}$; \boxed{c} $\binom{1}{1}$ $\binom{1}{1}$; \boxed{c} $\binom{0}{1}$ $\binom{1}{0}$; \boxed{c} $\binom{0}{1}$ $\binom{1}{0}$; \boxed{d} la forma simmetrica con forma quality $(1,2,0)$; \boxed{b} $(2,1,0)$; a tra $(1,-2,1)$ ed il piano $y-2x-1$ \boxed{c} $\boxed{0}$; \boxed{d} $\boxed{5}$	on contiene lo zero; orfismo diagonalizzabile $\frac{d}{d} \begin{pmatrix} 6 & -4 \\ -4 & 6 \end{pmatrix}$. 2? $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. uadratica $x^2 + 2xy + y$ $\boxed{c} (1, 0, 2); \boxed{d} (1, 0, 2)$	d nessuna delle altre. e su \mathbb{R} ?
9. Per quali dei seg	guenti valori di x l'applicazione li	neare associata alla ma	atrice $\begin{pmatrix} 0 & 4 \\ r & 2r \end{pmatrix}$ risulta
autoaggiunta rispetta 1; b 2;	o al prodotto scalare standard di c 3; d 4.	\mathbb{R}^3 ?	
10. Sia $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$. Quante soluzioni ha in \mathbb{Z}_2^3 il	sistema $AX = 0$?	
a 0; b 1;	$\boxed{\text{c}} 2; \qquad \boxed{\text{d}} \infty.$		
$\boxed{\mathbf{a}} f(x,y) = x_1 y_2 - 3$	(x_2, x_3) e $y = (y_1, y_2, y_3)$, quale tra quadrature $(x_1, y_1; b)$ $f(x, y) = x_2y_2 + 1; c$ $f(x_1, y_2, y_3)$ lineare da $\mathcal{M}_{7\times 5}(\mathbb{K}) \to \mathbb{K}_{\leq 42}[x]$ n	$f(x,y) = 2x_1y_2 - 2y_1y_2;$	neare? $\boxed{\mathbf{d}} f(x,y) = x_1 y_2 - y_1^2.$
a esistere; b e	ssere iniettiva; \boxed{c} essere surie	ettiva; d nessuna d	lelle altre.

13. In \mathbb{R}^3 col prodotto scalare standard sia v=(1,1,1) e sia $f\in \operatorname{End}(\mathbb{R}^3)$ la proiezione ortogonale

su v^{\perp} . La matrice di f in base canonica è: $\begin{bmatrix} \frac{1}{3} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}; \quad \begin{bmatrix} \frac{1}{3} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}; \quad \begin{bmatrix} \frac{1}{3} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}; \quad \begin{bmatrix} \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$

14. Se λ è autovalore di $f \in \text{End}(V)$ allora: a $f - \lambda I = 0$; b $f(v) = \lambda v$;

 $\begin{bmatrix} c \end{bmatrix} f$ ha una base di autovettori; $\begin{bmatrix} d \end{bmatrix} f$ ha almeno un autovettore.

15. Il rango di $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & -1 & 2 \end{pmatrix}$ è: a 1; b 2; c 3; d 4.

Non è concesso alzarsi prima del termine né chiedere chiarimenti. Telefoni, tablet, smartwatch, etc... devono essere spenti. Sul tavolo si possono tenere solo i fogli forniti, una penna, libretto e/o documenti. Non si può usare la calcolatrice. Ricordarsi di annotare le risposte date sull'apposito foglio. Risposta esatta 2 punti, errata -1, non data 0. Si è ammessi all'orale con 18. Va consegnato SOLO questo foglio.

Cod. 937240

- **1.** c
- **2.** b
- **3.** c
- **4.** b
- **5.** d
- **6.** a
- **7.** a
- **8.** a
- **9.** d
- **10.** b
- **11.** a
- **12.** c
- **13.** d
- **14.** d
- **15.** c

1	0000011
COC	9325241
COU.	フリムリムチェ

Ing. aerospaziale e meccanica. Geometria e algebra T. Prova del 04/12/2017 _ Cognome _ _____ Matricola __ __ ___ 1. La conica di equazione $x^2 + 2x = 1$ è: a un'ellisse; b una parabola; c due rette parellele; d nessuno dei precedenti. **2.** In \mathbb{R}^4 , le coordinate di (1,0,1,0) nella base $v_1=(1,1,1,1),\ v_2=(0,1,1,1),\ v_3=(0,0,1,1),$ $v_4 = (0, 0, 0, 1)$ sono: a (1, 2, 3, 4); b (1, 1, 1, 1); c (1, -1, 1, -1); d Nessuna delle altre. **3.** Quale di questi è un insieme di vettori linearmente indipendenti in $\mathbb{R}[x]$? $|\mathbf{a}| x^2, (x+1)^2, 2x, 1$; b $(1+x)^{78}$, $(x-x^2+3)^{15}$; c (x+1)(x-1), x+1, x-1, 1, x^2 ; **4.** In \mathbb{R}^3 la dimensione di span $\{(x, y, z)|x = y, z = 1\}$ è: b 1; 5. Sia $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$ diagonalizzabile. L'endomorfismo di $\mathcal{M}_{2\times 2}(\mathbb{R})$ definito da f(M) = AM è: a suriettivo; b diagonalizzabile; c iniettivo; d nessuna delle precedenti. **6.** Qual è la dimensione massima dei blocchi della forma di jordan di f(x, y, z) = (x + y, x + 2y, z)? c 3; 7. Sia $b \in \text{bil}(\mathbb{R}^2)$ la forma simmetrica con forma quadratica $x^2 - y^2 + 2xy$. La matrice di b rispetto alla base (1,1),(1,0) è: $\begin{bmatrix} a & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$; $\begin{bmatrix} b & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$; $\begin{bmatrix} c & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$; $\begin{bmatrix} d & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. **8.** Quali sono equazioni parametriche per $V = \{x = z, 4y - x + z = 0\} \subseteq \mathbb{R}^3$? a x = z = s, y = 0; b x = s, y = s + t, z = t; c x = s, y = z = t; d nessuna delle precedenti. 9. Quali delle seguenti matrici rappresenta una forma bilineare definita positiva? $\begin{array}{ccc} \text{Example 1 and 1 an$ **10.** Quante soluzioni ha in $(\mathbb{Z}_2)^3$ il sistema $\begin{cases} x+z=0 \\ x+y+z=0 \end{cases}$? a 2; b 1; 11. Quali delle seguenti espressioni per b((x,y),(x',y')) definisce un'applicazione bilineare? a $(x+y)^2 + (x'+y')^2$; b xx' + 2xy' + yy'; c $x^2 + 2xy + y^2$; d x - y'. 12. Quali vettori sono ortogonali per il prodotto scalare standard di \mathbb{R}^3 ? |a|(1,0,1),(0,-2,1): |c|(3,0,1),(0,-2,0); | d | nessuna delle precedenti. $|\mathbf{b}|(1,1,1),(-1,-1,1);$

13. Sia $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$ con un autovalore reale λ . Allora sicuramente:

a A è diagonalizzabile; b A è triangolabile; c $m_a(\lambda) = 1$; d $m_q(\lambda) = m_a(\lambda)$.

14. In \mathbb{R}^3 siano $v_1 = (1, 2, \overline{3}), v_2 = (4, 5, 6), v_3 = (7, \overline{8}, 9)$ e $w_1 = (0, 1, 1), w_2 = (1, 0, 1), w_3 = (1, 1, 0)$. Una $f \in \text{End}(\mathbb{R}^3)$ tale che $f(v_i) = w_i$ per ogni i:

c esiste ma non è unica; d nessuna delle altre. a non esiste; b esiste ed è unica;

15. Sia $A = \begin{pmatrix} 1 & 2 & 1 & 4 & 0 \\ i & i & 1+i & 1 & 3 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & -i & 0 & i \end{pmatrix}$. Qual è il rango di A? a 1; b 2;

Non è concesso alzarsi prima del termine né chiedere chiarimenti. Telefoni, tablet, smartwatch, etc... devono essere spenti. Sul tavolo si possono tenere solo i fogli forniti, una penna, libretto e/o documenti. Non si può usare la calcolatrice. Ricordarsi di annotare le risposte date sull'apposito foglio. Risposta esatta 2 punti, errata -1, non data 0. Si è ammessi all'orale con 18. Va consegnato SOLO questo foglio.

$\mathrm{Cod.}\ 9325241$

- **1.** c
- **2.** c
- **3.** b
- **4.** c
- **5.** b
- **6.** a
- **7.** b
- **8.** a
- **9.** b
- **10.** a
- **11.** b
- **12.** c
- **13.** b
- **14.** a
- **15.** d

Ing. aerospaziale e meccanica. Geometria e algebra T. Prova del 04/12/2017 cod. 932	Nomo	Cognomo	Matrico	da
	Ing. aerospaziale	e meccanica. Geometria e a	algebra T. Prova del 04/1	12/2017 cod. 9325

222

1. La conica di equazione $x^2 - y^2 = 0$ è una:

a ellisse; b coppia di rette incidenti; c iperbole; d coppia di rette parallele.

2. Le coordinate di $(x+1)^2$ rispetto alla base $\{1, x+1, x^2+1\}$ di $\mathbb{Z}_{2<2}[x]$ sono:

a (1,0,1); b (1,1,0); c (0,0,0); d (0,0,1).

3. Quali dei seguenti insiemi genera $\mathbb{R}_{\leq 2}[x]$?

a $0, 1, x, x^2$; b $1 + x^2, x$; c $1 + x, 1 + x^2$; d x(1+x), 1 + x, (x-1)(x+1).

4. Quale di questi è un sottospazio vettoriale di di \mathbb{R}^2 ?

a $\{x + y = 1\};$ b $\{x + y^2 = 1\};$ c $\{x^2 + y^2 = 1\};$ d nessuno.

5. Gli autovalori di f(x, y, z) = (x, -2y + z, z) sono: a 1, -2; b -1, 0; c 1, -1, 0; d 1, 0, 2.

6. Sia $f \in \text{End}(\mathbb{C}^4)$ data da f(x, y, z, t) = (y, -x, iz, z + it). La molteplicità geometrica di i è: $\boxed{\mathbf{a}} \ 1; \qquad \boxed{\mathbf{b}} \ 2; \qquad \boxed{\mathbf{c}} \ 3; \qquad \boxed{\mathbf{d}} \ 4.$

7. Sia $b \in \text{bil}(\mathbb{R}^2)$ la forma simmetrica con forma quadratica $x^2 - y^2 + 2xy$. La matrice di b rispetto alla base (1,0),(1,1) è: $\begin{bmatrix} a & 1 & -1 \\ -1 & 2 \end{bmatrix}$; $\begin{bmatrix} b & 1 & 0 \\ 0 & 2 \end{bmatrix}$; $\begin{bmatrix} c & 1 & 1 \\ 1 & 2 \end{bmatrix}$; $\begin{bmatrix} d & 1 & 2 \\ 2 & 2 \end{bmatrix}$.

8. In \mathbb{R}^3 la distanza di (4,0,-1) dalla retta $r=\{4x-y+1=0,z+1=0\}$ è:

[a] $3\sqrt{7}$; [b] $7\sqrt{3}$; [c] $\sqrt{17}$; [d] $3\sqrt{7}/7$.

9. Sia $b \in \text{bil}(\mathbb{R}^4)$ la forma simmetrica con forma quadratica $7x^2 + 14y^2 + 7z^2 + 14t^2 + 2xz + 4yt$. La segnatura (n_0, n_+, n_-) di b è: a (0, 4, 0); b (0, 2, 2); c (4, 0, 0); d (0, 3, 1).

10. Sia $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & -1 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix}$ e $b = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Quante soluzioni ha in \mathbb{R}^4 il sistema AX = b?

 $\boxed{\mathbf{a}} \infty; \qquad \boxed{\mathbf{b}} \ 1; \qquad \boxed{\mathbf{c}} \ 2; \qquad \boxed{\mathbf{d}} \ 0.$

11. La funzione da \mathbb{R}^3 in sé definita da f(x,y,z)=(z,y,x) è:

a una rotazione; b una riflessione; c una traslazione; d nessuna delle precedenti.

12. Quali delle seguenti è una matrice ortogonale?

 $\boxed{a} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \boxed{b} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad \boxed{c} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}; \qquad \boxed{d} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

13. La forma di Jordan della rotazione di \mathbb{R}^3 di angolo $\alpha = \pi/3$ intorno all'asse Z è:

 $\begin{bmatrix}
\mathbf{a} & \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1
\end{pmatrix}; \qquad \begin{bmatrix}
\mathbf{b} & \begin{pmatrix} \cos \alpha & 0 & 0 \\ 0 & \sin \alpha & 0 \\ 0 & 0 & 1
\end{pmatrix}; \qquad \begin{bmatrix}
\mathbf{c} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1
\end{pmatrix}; \qquad \begin{bmatrix}
\mathbf{d} & \text{non esiste} \\
\mathbf{d} & \text{non esiste}
\end{bmatrix}$

14. Sia $f \in \text{End}(\mathcal{M}_{2\times 2}(\mathbb{R}))$ dato da $f(X) = X(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})$. Qual è la dimensione massima dei blocchi della forma di Jordan di f? a 4; b 3; c 2; d 1.

15. Il rango della matrice $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 2 & 1 & 1 & 3 \end{pmatrix}$ è: a 1; b 2; c 3; d 4

$\mathrm{Cod.}\ 9325222$

- **1.** b
- **2.** d
- **3.** a
- **4.** d
- **5.** a
- **6.** b
- **7.** d
- **8.** c
- **9.** a
- **10.** a
- **11.** b
- **12.** d
- **13.** d
- **14.** c
- **15.** c

Ing. aerospaziale e	e meccanica. Geometria e algebra T	. Prova del 04/12/2017	cod. 8326233
	Cognome		
a retta doppia;	quazione $x^2 + 2xy + y^2 = 0$ è: b rette incidenti; c rette p di $(1, 1, 1)$ rispetto alla base $\{(1, 1, 0)\}$		
$[a] (1,0,1); \qquad [b]$	$(1,1,0);$ $\boxed{c}(0,0,0);$ $\boxed{d}(0,0,0);$	1).	
$\begin{bmatrix} \mathbf{a} & \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ i \end{pmatrix}$	enti vettori di \mathbb{C}^3 sono linearmente in $\binom{1}{i}$; $\boxed{\mathbf{b}} \begin{pmatrix} 1\\i\\1 \end{pmatrix}, \begin{pmatrix} i\\-1\\i \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}; \boxed{\mathbf{c}}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{pmatrix} i \\ i \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix}; \boxed{\mathbf{d}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	/ / / / /
4. Siano dati in \mathbb{C}^3	B i sottospazi $V = \text{span}\{ie_1, e_1 + ie_2\}$ o $V + W$ è: a 3; b 2; c	$e W = \underbrace{\{(x,y,z) \in \mathbb{C}^3 \mid x - 2y\}}_{}$	$=0,3x+iz=0\}.$
La dimensione di	V + W è: a 3 ; b 2 ; c	1; d 0.	
	di $f(x, y, z) = (x + z, y + z, x + z)$ so $[c]$ 0, -1; $[d]$ 0, 1, -		
	di $f(x, y, z) = (x + z, -y, y + 2z)$ son		[a] 1, -1; [d] 1, 0.
7. La matrice asso	ociata a $f(x,y) = (x, x - y)$ rispetto $\begin{bmatrix} -1/2 & 1/2 \\ 3/2 & 1/2 \end{bmatrix}$; $\begin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$	alla base $(1,2), \overline{(1,0)}$ è:	
$\boxed{\mathbf{b}} \ x = s, y = is, z$	nazioni parametriche per $V = \{x - i \}$ x = s + t; c $x = s - it, y = s, z$	$= s + t;$ $\boxed{d} x = is - t, y$	=s,z=t.
9. In \mathbb{R}^2 munito of	del prodotto scalare di matrice in ba	use canonica $\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$, la d	listanza tra $(1,2)$
	1; $\boxed{b}\sqrt{2}$; \boxed{c} 2; \boxed{d} $2\sqrt{2}$		
10. Sia $A = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 2 & -1 \\ 2 & 1 \end{pmatrix}$ e $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Quante soluzio	oni ha in \mathbb{R}^3 il sistema $AX =$	<i>b</i> ?
a 0; b 1;	\boxed{c} 2; \boxed{d} ∞ .		
11. Quale di ques	te applicazioni è lineare?		
$\boxed{\mathbf{a}} f(x,y) = (x + $	$(2, y - 1);$ (b) $A \mapsto A^{-1};$ (c) $A \mapsto A^{-1};$	$A \mapsto det(A) ; \qquad \boxed{d} f(x, y, z)$)=x.
	sono ortogonali per il prodotto scala	re standard di \mathbb{R}^3 ?	
$[a] e_1, e_1 + e_2;$	$b e_1 + e_2, e_1 - e_2;$ $c e_3, 2e_3;$	d nessuna delle altre.	

13. Sia $A = \begin{pmatrix} 0 & b \\ c & d \end{pmatrix}$. Allora sicuramente: a Se b = 0 allora d è autovalore di A; b se $b \neq 0$ allora d non è autovalore di A; c Se $b \neq 0$ allora c è autovalore di A; d b è autovalore di A.

14. Due rette affini di \mathbb{R}^3 che non siano complanari, sono sicuramente:

a incidenti;
b parallele;
c sghembe;
d Nessuna delle precedenti. **15.** Sia $A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 1 & 3 & -1 & 1 \end{pmatrix}$. Qual è il rango di $A^T A$?
a 1;
b 2;
c 3;
d 4.

Non è concesso alzarsi prima del termine né chiedere chiarimenti. Telefoni, tablet, smartwatch, etc... devono essere spenti. Sul tavolo si possono tenere solo i fogli forniti, una penna, libretto e/o documenti. Non si può usare la calcolatrice. Ricordarsi di annotare le risposte date sull'apposito foglio. Risposta esatta 2 punti, errata -1, non data 0. Si è ammessi all'orale con 18. Va consegnato SOLO questo foglio.

Cod. 8326233

- **1.** a
- **2.** a
- **3.** a
- **4.** a
- **5.** a
- **6.** a
- **7.** b
- **8.** d
- **9.** b
- **10.** b
- **11.** d
- **12.** b
- **13.** a
- **14.** c
- **15.** b

14. Sia $f \in \text{End}(\mathbb{R}_{\leq 2}[x])$ la derivata. La matrice di f nelle base $x^2, 1+x, x$ è:

$$\begin{bmatrix} \mathbf{a} & \begin{pmatrix} -1 & -1 & 2 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \quad \begin{bmatrix} \mathbf{b} & \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & -1 & -1 \end{pmatrix}; \quad \begin{bmatrix} \mathbf{c} & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}; \quad \begin{bmatrix} \mathbf{d} & \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

15. Sia $A = \begin{pmatrix} 1 & 2 & 1 & i \\ i & 1 & 1+i & 1-i \end{pmatrix}$. Il rango di $A^T A$ è: a 1; b 2;

$\mathrm{Cod.}\ 7126254$

- **1.** b
- **2.** d
- **3.** a
- **4.** b
- **5.** c
- **6.** b
- **7.** d
- **8.** d
- **9.** d
- **10.** b
- **11.** c
- **12.** b
- **13.** a
- **14.** b
- **15.** b