
Mathematical Methods 2017/07/11

Solve the following exercises in a fully detailed way, explaining and justifying any step.

(1) (10 points) For y ∈ (1,∞) let f(y) =

∫

2π

0

1

sin(x) + y
dx.

(a) Compute f(y).
(b) Say if f is summable in (1,∞).
(c) Say if f is summable in (2,∞).
(d) Say if f is summable in (1, 2).
(e) Say if f is summable in (2, 3).
(f) Say if f 2 is summable in (2,∞).
(g) Say if f 2 is summable in (1, 2).

(2) (6 points) Let V be an Hilbert space. Let v1, v2 ∈ V and let W be the space
generated by v1, v2. Prove, or disprove with a counterexample, that V = W ⊕W⊥.
Is is true that for any subspace U < V we have V = U ⊕U⊥? (prove it or disprove
with a counterexample.)

SOLUZIONI
(1) By setting sin x = (eix − e−ix)/2i and by changing variable z = eix, dz = ieixdx =

izdx, the integral becomes an integral over the unit circle γ.
∫

2π

0

1

sin(x) + y
dx =

∫

2π

0

1
eix−eix

2i
+ y

dx =

∫

γ

1
z−z−1

2i
+ y

1

iz
dz =

∫

γ

1
z2−1

2iz
+ y

1

iz
dz

=

∫

γ

2

z2 − 1 + 2izy
dz

The function 2

z2−1+2izy
has two simple poles at

z± = −iy ±
√

−y2 + 1

which, since y > 1, equals

z± = i(−y ±
√

y2 − 1)

Again because y > 1, only z+ = i(−y +
√

y2 − 1) sits in the interior of the unit disk. The
residue of 2

z2−1+2izy
at z+ is

2

z+ − z−
=

2

i(−y +
√

y2 − 1− (−y −
√

y2 − 1))
=

1

i
√

y2 − 1

The index of γ around z+ is 1. By Residue Theorem it follows that

f(y) = 2πi
1

i
√

y2 − 1
=

2π
√

y2 − 1
=

2π
√

(y − 1)(y + 1)
1



2

and

f 2(y) =
4π2

y2 − 1
=

4π2

(y − 1)(y + 1)

In particular, f(y) behaves like 1/y for y → ∞, hence it is not summable in (1,∞) nor in
(2,∞). On the other hand, near 1, f(y) behaves like 1/

√
y − 1 and since 1/

√
x is summable

near zero, f is summable on (1, 2). On [2, 3] the function f is continuous hence summable
because (2, 3) is a bounded interval.
As for the summability of f 2 we have: f 2 behaves like 1/y2 at infinity, so it is summable

on (2,∞). On the other hand, f behaves like 1/(y − 1) near 1 so it is not summable in
(1, 2). �

(2) If both v1 and v2 are zero then there is nothing to prove. W.l.o.g. we can suppose

v1 6= 0. We apply the Gram-Schmidt process: Let w1 = v1 and w2 = v2 − 〈v1,v2〉
〈v1,v1〉

v1. Then

w2 is orthogonal to w1 and, if w2 is not zero, then w1, w2 is a basis of W . For any v ∈ V
we have

v = v − 〈v, w1〉
〈w1, w1〉

w1 −
〈v, w2〉
〈w2, w2〉

w2 + (
〈v, w1〉
〈w1, w1〉

w1 +
〈v, w2〉
〈w2, w2〉

w2)

where we agree that if w2 = 0, the we just omit it. Clearly

w =
〈v, w1〉
〈w1, w1〉

w1 +
〈v, w2〉
〈w2, w2〉

w2

belongs to W . We claim that

u = v − 〈v, w1〉
〈w1, w1〉

w1 −
〈v, w2〉
〈w2, w2〉

w2

is orthogonal to both w1 and w2, hence to W . For i = 1, 2 we have

〈u, wi〉 = 〈v − 〈v, w1〉
〈w1, w1〉

w1 −
〈v, w2〉
〈w2, w2〉

w2, wi〉 = 〈v, wi〉 − 〈 〈v, wi〉
〈wi, wi〉

wi, wi〉 = 0.

It follows that V = W +W⊥. If u ∈ W ∩W⊥ then we have u = a1w1 + a2w2 because
u ∈ W and for i = 1, 2

0 = 〈u, wi〉 = 〈a1w1 + a2w2, wi〉 = ai〈wi, wi〉.
Thus u = 0. So W ∩W⊥ = 0 and V = W ⊕W⊥.
For the second claim consider the space U of simple functions [0, 1] as a subspace of

L2([0, 1]). It’s orthogonal is the zero space because if f 6= 0 in L2 then, up to changing f
with −f , we may suppose that f+ 6= 0, hence there is a set A ⊂ [0, 1] of positive measure
where f > 0, and letting χA be the characteristic function of A, we have 〈χA, f〉 =

∫

A
f > 0.

But U 6= L2, hence L2 6= U ⊕ U⊥. �


