Mathematical Methods 2017/07/11

Solve the following exercises in a fully detailed way, explaining and justifying any step.

- (1) (10 points) For $y \in (1, \infty)$ let $f(y) = \int_0^{2\pi} \frac{1}{\sin(x) + y} dx$.
 - (a) Compute f(y).
 - (b) Say if f is summable in $(1, \infty)$.
 - (c) Say if f is summable in $(2, \infty)$.
 - (d) Say if f is summable in (1, 2).
 - (e) Say if f is summable in (2, 3).
 - (f) Say if f^2 is summable in $(2, \infty)$.
 - (g) Say if f^2 is summable in (1, 2).
- (2) (6 points) Let V be an Hilbert space. Let $v_1, v_2 \in V$ and let W be the space generated by v_1, v_2 . Prove, or disprove with a counterexample, that $V = W \oplus W^{\perp}$. Is is true that for any subspace U < V we have $V = U \oplus U^{\perp}$? (prove it or disprove with a counterexample.)

SOLUZIONI

(1) By setting $\sin x = (e^{ix} - e^{-ix})/2i$ and by changing variable $z = e^{ix}$, $dz = ie^{ix}dx = izdx$, the integral becomes an integral over the unit circle γ .

$$\int_{0}^{2\pi} \frac{1}{\sin(x) + y} dx = \int_{0}^{2\pi} \frac{1}{\frac{e^{ix} - e^{ix}}{2i} + y} dx = \int_{\gamma} \frac{1}{\frac{z - z^{-1}}{2i} + y} \frac{1}{iz} dz = \int_{\gamma} \frac{1}{\frac{z^{2} - 1}{2iz} + y} \frac{1}{iz} dz$$
$$= \int_{\gamma} \frac{2}{z^{2} - 1 + 2izy} dz$$

The function $\frac{2}{z^2-1+2izy}$ has two simple poles at

$$z_{\pm} = -iy \pm \sqrt{-y^2 + 1}$$

which, since y > 1, equals

$$z_{\pm} = i(-y \pm \sqrt{y^2 - 1})$$

Again because y > 1, only $z_+ = i(-y + \sqrt{y^2 - 1})$ sits in the interior of the unit disk. The residue of $\frac{2}{z^2 - 1 + 2izy}$ at z_+ is

$$\frac{2}{z_+ - z_-} = \frac{2}{i(-y + \sqrt{y^2 - 1} - (-y - \sqrt{y^2 - 1}))} = \frac{1}{i\sqrt{y^2 - 1}}$$

The index of γ around z_+ is 1. By Residue Theorem it follows that

$$f(y) = 2\pi i \frac{1}{i\sqrt{y^2 - 1}} = \frac{2\pi}{\sqrt{y^2 - 1}} = \frac{2\pi}{\sqrt{(y - 1)(y + 1)}}$$

$$f^{2}(y) = \frac{4\pi^{2}}{y^{2} - 1} = \frac{4\pi^{2}}{(y - 1)(y + 1)}$$

In particular, f(y) behaves like 1/y for $y \to \infty$, hence it is not summable in $(1, \infty)$ nor in $(2, \infty)$. On the other hand, near 1, f(y) behaves like $1/\sqrt{y-1}$ and since $1/\sqrt{x}$ is summable near zero, f is summable on (1, 2). On [2, 3] the function f is continuous hence summable because (2, 3) is a bounded interval.

As for the summability of f^2 we have: f^2 behaves like $1/y^2$ at infinity, so it is summable on $(2, \infty)$. On the other hand, f behaves like 1/(y-1) near 1 so it is not summable in (1, 2).

(2) If both v_1 and v_2 are zero then there is nothing to prove. W.l.o.g. we can suppose $v_1 \neq 0$. We apply the Gram-Schmidt process: Let $w_1 = v_1$ and $w_2 = v_2 - \frac{\langle v_1, v_2 \rangle}{\langle v_1, v_1 \rangle} v_1$. Then w_2 is orthogonal to w_1 and, if w_2 is not zero, then w_1, w_2 is a basis of W. For any $v \in V$ we have

$$v = v - \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 + \left(\frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2\right)$$

where we agree that if $w_2 = 0$, the we just omit it. Clearly

$$w = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2$$

belongs to W. We claim that

$$u = v - \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2$$

is orthogonal to both w_1 and w_2 , hence to W. For i = 1, 2 we have

$$\langle u, w_i \rangle = \langle v - \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2, w_i \rangle = \langle v, w_i \rangle - \langle \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} w_i, w_i \rangle = 0.$$

It follows that $V = W + W^{\perp}$. If $u \in W \cap W^{\perp}$ then we have $u = a_1w_1 + a_2w_2$ because $u \in W$ and for i = 1, 2

$$0 = \langle u, w_i \rangle = \langle a_1 w_1 + a_2 w_2, w_i \rangle = a_i \langle w_i, w_i \rangle.$$

Thus u = 0. So $W \cap W^{\perp} = 0$ and $V = W \oplus W^{\perp}$.

For the second claim consider the space U of simple functions [0, 1] as a subspace of $L^2([0, 1])$. It's orthogonal is the zero space because if $f \neq 0$ in L^2 then, up to changing f with -f, we may suppose that $f_+ \neq 0$, hence there is a set $A \subset [0, 1]$ of positive measure where f > 0, and letting χ_A be the characteristic function of A, we have $\langle \chi_A, f \rangle = \int_A f > 0$. But $U \neq L^2$, hence $L^2 \neq U \oplus U^{\perp}$.

and