Mathematical Methods 2017/07/11

Solve the following exercises in a fully detailed way, explaining and justifying any step.
(1) (10 points) For $y \in(1, \infty)$ let $f(y)=\int_{0}^{2 \pi} \frac{1}{\sin (x)+y} d x$.
(a) Compute $f(y)$.
(b) Say if f is summable in $(1, \infty)$.
(c) Say if f is summable in $(2, \infty)$.
(d) Say if f is summable in $(1,2)$.
(e) Say if f is summable in $(2,3)$.
(f) Say if f^{2} is summable in $(2, \infty)$.
(g) Say if f^{2} is summable in $(1,2)$.
(2) (6 points) Let V be an Hilbert space. Let $v_{1}, v_{2} \in V$ and let W be the space generated by v_{1}, v_{2}. Prove, or disprove with a counterexample, that $V=W \oplus W^{\perp}$. Is is true that for any subspace $U<V$ we have $V=U \oplus U^{\perp}$? (prove it or disprove with a counterexample.)

SOLUZIONI

(1) By setting $\sin x=\left(e^{i x}-e^{-i x}\right) / 2 i$ and by changing variable $z=e^{i x}, d z=i e^{i x} d x=$ $i z d x$, the integral becomes an integral over the unit circle γ.

$$
\begin{gathered}
\int_{0}^{2 \pi} \frac{1}{\sin (x)+y} d x=\int_{0}^{2 \pi} \frac{1}{\frac{e^{i x-e} x}{2 i}+y} d x=\int_{\gamma} \frac{1}{\frac{z-z^{-1}}{2 i}+y} \frac{1}{i z} d z=\int_{\gamma} \frac{1}{\frac{z^{2}-1}{2 i z}+y} \frac{1}{i z} d z \\
=\int_{\gamma} \frac{2}{z^{2}-1+2 i z y} d z
\end{gathered}
$$

The function $\frac{2}{z^{2}-1+2 i z y}$ has two simple poles at

$$
z_{ \pm}=-i y \pm \sqrt{-y^{2}+1}
$$

which, since $y>1$, equals

$$
z_{ \pm}=i\left(-y \pm \sqrt{y^{2}-1}\right)
$$

Again because $y>1$, only $z_{+}=i\left(-y+\sqrt{y^{2}-1}\right)$ sits in the interior of the unit disk. The residue of $\frac{2}{z^{2}-1+2 i z y}$ at z_{+}is

$$
\frac{2}{z_{+}-z_{-}}=\frac{2}{i\left(-y+\sqrt{y^{2}-1}-\left(-y-\sqrt{y^{2}-1}\right)\right)}=\frac{1}{i \sqrt{y^{2}-1}}
$$

The index of γ around z_{+}is 1 . By Residue Theorem it follows that

$$
f(y)=2 \pi i \frac{1}{i \sqrt{y^{2}-1}}=\frac{2 \pi}{\sqrt{y^{2}-1}}=\frac{2 \pi}{\sqrt{(y-1)(y+1)}}
$$

and

$$
f^{2}(y)=\frac{4 \pi^{2}}{y^{2}-1}=\frac{4 \pi^{2}}{(y-1)(y+1)}
$$

In particular, $f(y)$ behaves like $1 / y$ for $y \rightarrow \infty$, hence it is not summable in $(1, \infty)$ nor in $(2, \infty)$. On the other hand, near 1, $f(y)$ behaves like $1 / \sqrt{y-1}$ and since $1 / \sqrt{x}$ is summable near zero, f is summable on (1,2). On $[2,3]$ the function f is continuous hence summable because $(2,3)$ is a bounded interval.

As for the summability of f^{2} we have: f^{2} behaves like $1 / y^{2}$ at infinity, so it is summable on $(2, \infty)$. On the other hand, f behaves like $1 /(y-1)$ near 1 so it is not summable in $(1,2)$.
(2) If both v_{1} and v_{2} are zero then there is nothing to prove. W.l.o.g. we can suppose $v_{1} \neq 0$. We apply the Gram-Schmidt process: Let $w_{1}=v_{1}$ and $w_{2}=v_{2}-\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}$. Then w_{2} is orthogonal to w_{1} and, if w_{2} is not zero, then w_{1}, w_{2} is a basis of W. For any $v \in V$ we have

$$
v=v-\frac{\left\langle v, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}+\left(\frac{\left\langle v, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}+\frac{\left\langle v, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}\right)
$$

where we agree that if $w_{2}=0$, the we just omit it. Clearly

$$
w=\frac{\left\langle v, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}+\frac{\left\langle v, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}
$$

belongs to W. We claim that

$$
u=v-\frac{\left\langle v, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}
$$

is orthogonal to both w_{1} and w_{2}, hence to W. For $i=1,2$ we have

$$
\left\langle u, w_{i}\right\rangle=\left\langle v-\frac{\left\langle v, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}, w_{i}\right\rangle=\left\langle v, w_{i}\right\rangle-\left\langle\frac{\left\langle v, w_{i}\right\rangle}{\left\langle w_{i}, w_{i}\right\rangle} w_{i}, w_{i}\right\rangle=0 .
$$

It follows that $V=W+W^{\perp}$. If $u \in W \cap W^{\perp}$ then we have $u=a_{1} w_{1}+a_{2} w_{2}$ because $u \in W$ and for $i=1,2$

$$
0=\left\langle u, w_{i}\right\rangle=\left\langle a_{1} w_{1}+a_{2} w_{2}, w_{i}\right\rangle=a_{i}\left\langle w_{i}, w_{i}\right\rangle .
$$

Thus $u=0$. So $W \cap W^{\perp}=0$ and $V=W \oplus W^{\perp}$.
For the second claim consider the space U of simple functions $[0,1]$ as a subspace of $L^{2}([0,1])$. It's orthogonal is the zero space because if $f \neq 0$ in L^{2} then, up to changing f with $-f$, we may suppose that $f_{+} \neq 0$, hence there is a set $A \subset[0,1]$ of positive measure where $f>0$, and letting χ_{A} be the characteristic function of A, we have $\left\langle\chi_{A}, f\right\rangle=\int_{A} f>0$.

But $U \neq L^{2}$, hence $L^{2} \neq U \oplus U^{\perp}$.

