Mathematical Methods 2017/01/13

Solve the following exercises in a fully detailed way, explaining and justifying any step.
(1) (5 points) Compute $\int_{\mathbb{R}} \frac{x^{2}}{x^{4}+16}$.
(2) (6 points) Define $f_{n}(x)=\frac{(2-x) x^{n}}{1+2^{n}}$. Discuss the convergence of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ on sub-intervals of \mathbb{R}.
(3) (5 points) Let V be a real vector space and endowed with an inner product $\langle\cdot, \cdot\rangle$. Define the norm of a vector and show that it induces a distance on V. In the specific case when $V=C^{\infty}(0,2 \pi)$ and $\langle f, g\rangle=\int_{0}^{2 \pi} f(t) g(t) d t$, compute the norm of $\sin (x)$ and the distance between $\sin (x)$ and 1 .

SOLUTIONS

(1) The function $f(x)=\frac{x^{2}}{x^{4}+16}$ is continuous and positive, hence measurable and summable on bounded intervals. Moreover, for big x, f is bounded by a constant times $1 / x^{2}$. Since $1 / x^{2}$ is summable so is f and by monotone convergence

$$
\int_{\mathbb{R}} f(x)=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x
$$

To compute that integral we use the residue method. Let C_{R} be the upper semicircle of radius R centered at zero and counterclockwise oriented. C_{R} can be parametrized by $R e^{i t}$ with $t \in[0, \pi]$. Let $I_{R}=[-R, R]$ and γ_{R} be the concatenation of I_{R} and C_{R}.

As a function of a complex variable, f is holomorphic except at four simple poles: the zeroes of $x^{4}+16$, which are $\pm \sqrt{2}(1 \pm i)$. Let $z_{0}=\sqrt{2}+\sqrt{2} i, z_{1}=-\sqrt{2}+\sqrt{2} i, z_{2}=$ $-\sqrt{2}-\sqrt{2} i, z_{3}=\sqrt{2}-\sqrt{2} i$.

The index of γ_{R} at z_{0}, z_{1} is 1 and that at z_{2}, z_{3} is zero, because γ_{R} is counterclockwise oriented, z_{0}, z_{1} are inside the region bounded by γ_{R} while z_{2}, z_{3} lies outside.

The residue of f at z_{i} is

$$
\lim _{z \rightarrow z_{i}} \frac{\left(z-z_{i}\right) z^{2}}{z^{4}+16}=\lim _{z \rightarrow z_{i}} \frac{z^{2}}{4 z^{3}}=\frac{1}{4 z_{i}}
$$

(by de l'hopital's rule or, if you prefers, because $z^{4}+16=z^{4}-z_{i}^{4}=\left(z-z_{i}\right)\left(z^{3}+z^{2} z_{i}+\right.$ $\left.\left.z z_{i}^{2}+z_{i}^{3}\right)\right)$. So by residue theorem we have

$$
\int_{\gamma_{R}} f(z) d z=2 \pi i\left(\frac{1}{4 z_{1}}+\frac{1}{4 z_{0}}\right)=\frac{1}{2} \pi i\left(\frac{\bar{z}_{0}}{\left|z_{0}\right|^{2}}+\frac{\bar{z}_{1}}{\left|z_{1}\right|^{2}}\right)=\frac{1}{2} \pi i\left(\frac{\sqrt{2}-\sqrt{2} i-\sqrt{2}-\sqrt{2} i}{4}\right)=\frac{\pi}{2 \sqrt{2}}
$$

To conclude we have to check that the integral of f over γ_{R} is the requested integral:

$$
\int_{\mathbb{R}} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\int_{\gamma_{R}} f(z) d z-\lim _{R \rightarrow \infty} \int_{C_{R}} f(x) d x
$$

and $\left|\int_{C_{R}} f(x) d x\right| \leq \int_{C_{R}}|f(x)| \leq \int_{C_{R}} \frac{1}{R^{2}}=\pi / R \rightarrow 0$ as $R \rightarrow \infty$.
(2) For $|x|>2$ we have $\left|f_{n}(x)\right|=|(x-2)|\left(\frac{|x|}{2}\right)^{n} \frac{1}{1+1 / 2^{n}} \rightarrow \infty$ because $|x / 2|>1$. Therefore if $x>2$ then $f_{n}(x)$ goes to infinite and for $x<-2 f_{n}$ oscillates: $f_{2 k}(x) \rightarrow \infty$ and $f_{2 k+1}(x) \rightarrow-\infty$. In any case, for $|x|>2$ there is no pointwise convergence to a real-valued function.

If $|x|<2$ then $\left|f_{n}(x)\right|=|(x-2)|\left(\frac{|x|}{2}\right)^{n} \frac{1}{1+1 / 2^{n}} \rightarrow 0$ because $|x / 2|<1$. Therefore in $(-2,2)$ the sequence pointwise converges to zero.

If $x=2$ then $f_{n}(x)=0$ for any n and so the limit is 0 . If $x=-2$ then the sequence $f_{n}(-2)=4(-1)^{n} \frac{2^{n}}{1+2^{n}}$ oscillates between -4 and 4 . So $f_{n}(-2)$ does not converge pointwise.

In conclusion, the sequence pointwise converges to zero on $(-2,2]$ and has no real limit elsewhere.

Let's check the uniform convergence. We have to compute $\left\|f_{n}-0\right\|$ by using the L^{∞} _ norm (i.e. the sup-norm). Since f is smooth, we can search for its extremal points by finding the zeroes of its derivative.

$$
f_{n}^{\prime}=\frac{2 n x^{n-1}-(n+1) x^{n}}{1+2^{n}}=\frac{x^{n-1}}{1+2^{n}}(2 n-x(n+1))
$$

which vanishes at $x=0$ and $x=\frac{2 n}{n+1}$. Note that $\frac{2 n}{n+1} \rightarrow 2$ as $n \rightarrow \infty$. Therefore the extremal values of f_{n} in $(-2,2]$ are the max and the min of $\left\{f_{n}(-2), f_{n}(2), f_{n}(0), f_{n}\left(\frac{2 n}{n+1}\right)\right\}$ (do not forget the extremes of the interval!!!). Since $\left|f_{n}(-2)\right| \rightarrow 4 \neq 0$ we have no uniform convergence on (-2,2].

On the other hand, in any other interval $[a, b]$ contained in $(-2,2]$ (that is to say $a>$ $-2, b \leq 2)$ the extremal values of f are the sup and the min of

$$
\left\{f_{n}(a), f_{n}(b), f_{n}(0), f_{n}\left(\frac{2 n}{n+1}\right)\right\}
$$

Since $f_{n}(a), f_{n}(b), f_{n}(0) \rightarrow 0$ (because we have pointwise convergence to zero in $\left.(-2,2]\right)$ we have only to check the value

$$
f_{n}\left(\frac{2 n}{n+1}\right)=\frac{\left(2-\frac{2 n}{n+1}\right)\left(\frac{2 n}{n+1}\right)^{n}}{1+2^{n}}=\left(\left(2-\frac{2 n}{n+1}\right)\left(\frac{n}{n+1}\right)^{n}\right) \frac{2^{n}}{1+2^{n}}=\frac{1}{n+1}\left(\frac{n}{1+n}\right)^{n} \frac{2^{n}}{1+2^{n}}
$$

which is bounded by $\frac{1}{n+1}$ which goes to zero.
Therefore, for any $[a, b] \subset(-2,2]$ the sequence f_{n} uniformly converges to zero.
As for the L^{p} convergence, note that since f_{n} is bounded on $(-2,2]$, the uniform convergence to zero on any $[a, b] \subset(-2,2]$ implies the L^{p} convergence to zero in $(-2,2]$.
(3) The norm of a vector v is defined as $\|v\|=\sqrt{\langle v, v\rangle}$. The induced distance on V is given by $d(v, w)=\|v-w\|$. We check now that $\|v-w\|$ is a distance.
(1) (Positiveness) $d(v, w)$ is positive by definition and $d(v, w)=0$ only if $\|v-w\|=0$, which is the case only if $v-w=0$, that is to say if $v=w$.
(2) (Symmetry) $\|v\|=\|-v\|$ for any v, so $d(v, w)=\|v-w\|=\|w-v\|=d(w, v)$.
(3) (Triangular inequality) For any $u, v, w \in V$ we have
$d(v, w)=\|v-w\|=\|v-u+u-w\|=\sqrt{\langle v-u+u-w, v-u+u-w\rangle}=$ $\sqrt{\langle v-u, v-u\rangle+2\langle v-u, u-w\rangle+\langle u-w, u-w\rangle}=$
$\sqrt{\|v-u\|^{2}+2\langle v-u, u-w\rangle-\|u-w\|^{2}} \leq$
$\sqrt{\|v-u\|^{2}+2\left\|v-u\left|\|\mid u-w\|+\|u-w\|^{2}\right.\right.}=\sqrt{(\|v-u\|+\|u-w\|)^{2}}=$
$\|v-u\|+\|u-w\|=d(v, u)+d(u, w) \mid$ where the inequality follows from the Cauchy-Schwarz inequality.
The norm of $\sin x$ is $\sqrt{\int_{0}^{2 \pi} \sin ^{2}(x)}=\sqrt{\pi}$. The distance from $\sin x$ and 1 is $\|\sin (x)-1\|=$ $\sqrt{\int_{0}^{2 \pi}(\sin x-1)^{2}}=\sqrt{\int \sin ^{2}-2 \sin x+1}=\sqrt{\pi+2 \pi-2 \int_{0}^{2 \pi} \sin x}=\sqrt{3 \pi}$.

