
Mathematical Methods 2017/01/13

Solve the following exercises in a fully detailed way, explaining and justifying any step.

(1) (5 points) Compute

∫

R

x2

x4 + 16
.

(2) (6 points) Define fn(x) =
(2− x)xn

1 + 2n
. Discuss the convergence of the sequence

{fn}n∈N on sub-intervals of R.
(3) (5 points) Let V be a real vector space and endowed with an inner product 〈·, ·〉.

Define the norm of a vector and show that it induces a distance on V . In the
specific case when V = C∞(0, 2π) and 〈f, g〉 =

∫

2π

0
f(t)g(t)dt, compute the norm

of sin(x) and the distance between sin(x) and 1.

SOLUTIONS

(1) The function f(x) =
x2

x4 + 16
is continuous and positive, hence measurable and

summable on bounded intervals. Moreover, for big x, f is bounded by a constant times
1/x2. Since 1/x2 is summable so is f and by monotone convergence

∫

R

f(x) = lim
R→∞

∫ R

−R

f(x)dx.

To compute that integral we use the residue method. Let CR be the upper semicircle of
radius R centered at zero and counterclockwise oriented. CR can be parametrized by Reit

with t ∈ [0, π]. Let IR = [−R,R] and γR be the concatenation of IR and CR.
As a function of a complex variable, f is holomorphic except at four simple poles: the

zeroes of x4 + 16, which are ±
√
2(1 ± i). Let z0 =

√
2 +

√
2i, z1 = −

√
2 +

√
2i, z2 =

−
√
2−

√
2i, z3 =

√
2−

√
2i.

The index of γR at z0, z1 is 1 and that at z2, z3 is zero, because γR is counterclockwise
oriented, z0, z1 are inside the region bounded by γR while z2, z3 lies outside.
The residue of f at zi is

lim
z→zi

(z − zi)z
2

z4 + 16
= lim

z→zi

z2

4z3
=

1

4zi

(by de l’hopital’s rule or, if you prefers, because z4 + 16 = z4 − z4i = (z − zi)(z
3 + z2zi +

zz2i + z3i )). So by residue theorem we have
∫

γR

f(z)dz = 2πi(
1

4z1
+

1

4z0
) =

1

2
πi(

z̄0
|z0|2

+
z̄1
|z1|2

) =
1

2
πi(

√
2−

√
2i−

√
2−

√
2i

4
) =

π

2
√
2

To conclude we have to check that the integral of f over γR is the requested integral:
∫

R

f(x)dx = lim
R→∞

∫ R

−R

f(x)dx =

∫

γR

f(z)dz − lim
R→∞

∫

CR

f(x)dx

and |
∫

CR

f(x)dx| ≤
∫

CR

|f(x)| ≤
∫

CR

1

R2 = π/R → 0 as R → ∞.
1
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(2) For |x| > 2 we have |fn(x)| = |(x − 2)|
(

|x|
2

)n
1

1+1/2n
→ ∞ because |x/2| > 1.

Therefore if x > 2 then fn(x) goes to infinite and for x < −2 fn oscillates: f2k(x) → ∞
and f2k+1(x) → −∞. In any case, for |x| > 2 there is no pointwise convergence to a
real-valued function.

If |x| < 2 then |fn(x)| = |(x − 2)|
(

|x|
2

)n
1

1+1/2n
→ 0 because |x/2| < 1. Therefore in

(−2, 2) the sequence pointwise converges to zero.
If x = 2 then fn(x) = 0 for any n and so the limit is 0. If x = −2 then the sequence

fn(−2) = 4(−1)n 2n

1+2n
oscillates between −4 and 4. So fn(−2) does not converge pointwise.

In conclusion, the sequence pointwise converges to zero on (−2, 2] and has no real limit
elsewhere.
Let’s check the uniform convergence. We have to compute ||fn − 0|| by using the L∞-

norm (i.e. the sup-norm). Since f is smooth, we can search for its extremal points by
finding the zeroes of its derivative.

f ′
n =

2nxn−1 − (n+ 1)xn

1 + 2n
=

xn−1

1 + 2n
(2n− x(n+ 1))

which vanishes at x = 0 and x = 2n
n+1

. Note that 2n
n+1

→ 2 as n → ∞. Therefore the

extremal values of fn in (−2, 2] are the max and the min of {fn(−2), fn(2), fn(0), fn(
2n
n+1

)}
(do not forget the extremes of the interval!!!). Since |fn(−2)| → 4 6= 0 we have no uniform
convergence on (−2, 2].
On the other hand, in any other interval [a, b] contained in (−2, 2] (that is to say a >

−2, b ≤ 2) the extremal values of f are the sup and the min of

{fn(a), fn(b), fn(0), fn(
2n

n+ 1
)}

Since fn(a), fn(b), fn(0) → 0 (because we have pointwise convergence to zero in (−2, 2])
we have only to check the value

fn(
2n

n+ 1
) =

(2− 2n
n+1

)( 2n
n+1

)n

1 + 2n
= ((2− 2n

n+ 1
)(

n

n+ 1
)n)

2n

1 + 2n
=

1

n+ 1

(

n

1 + n

)n
2n

1 + 2n

which is bounded by 1

n+1
which goes to zero.

Therefore, for any [a, b] ⊂ (−2, 2] the sequence fn uniformly converges to zero.
As for the Lp convergence, note that since fn is bounded on (−2, 2], the uniform conver-

gence to zero on any [a, b] ⊂ (−2, 2] implies the Lp convergence to zero in (−2, 2].
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(3) The norm of a vector v is defined as ||v|| =
√

〈v, v〉. The induced distance on V is
given by d(v, w) = ||v − w||. We check now that ||v − w|| is a distance.

(1) (Positiveness) d(v, w) is positive by definition and d(v, w) = 0 only if ||v−w|| = 0,
which is the case only if v − w = 0, that is to say if v = w.

(2) (Symmetry) ||v|| = || − v|| for any v, so d(v, w) = ||v − w|| = ||w − v|| = d(w, v).
(3) (Triangular inequality) For any u, v, w ∈ V we have

d(v, w) = ||v − w|| = ||v − u + u − w|| =
√

〈v − u+ u− w, v − u+ u− w〉 =
√

〈v − u, v − u〉+ 2〈v − u, u− w〉+ 〈u− w, u− w〉 =
√

||v − u||2 + 2〈v − u, u− w〉 − ||u− w||2 ≤
√

||v − u||2 + 2||v − u||||u− w||+ ||u− w||2 =
√

(||v − u||+ ||u− w||)2 =
||v − u|| + ||u − w|| = d(v, u) + d(u, w)| where the inequality follows from the
Cauchy-Schwarz inequality.

The norm of sin x is
√

∫

2π

0
sin2(x) =

√
π. The distance from sin x and 1 is || sin(x)−1|| =

√

∫

2π

0
(sin x− 1)2 =

√

∫

sin2 −2 sin x+ 1 =
√

π + 2π − 2
∫

2π

0
sin x =

√
3π.


