Mathematical Methods 2017/06/13

Solve the following exercises in a fully detailed way, explaining and justifying any step.
(1) (4 points) Compute $\int_{\mathbb{R}} \frac{\sin (-x)}{x^{4}+4}$.
(2) (7 points) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous, monotone, and summable function. Let $f_{n}(x)=f(n x)$. Discuss the convergence of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ on $[0, \infty)$ with respect to the sup-norm, the L^{1}-norm and the point-wise convergence.
(3) (5 points) Give the definition of Hilbert basis of a separable Hilbert space.

SOLUTIONS

(1) The function $f(x)=\frac{\sin (-x)}{x^{4}+4}$ is summable on \mathbb{R} because

$$
\left|\frac{\sin (-x)}{x^{4}+4}\right| \leq \frac{1}{x^{4}+4}
$$

which is summable on \mathbb{R}. Moreover $f(x)=-f(-x)$. Thus

$$
\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) d x=-\int_{0}^{\infty} f(x) d x+\int_{0}^{\infty} f(x) d x=0
$$

(2) Since f is monotone and summable, then $\lim _{x \rightarrow \infty} f(x)=0$. Therefore, for any $x \neq 0$ $f_{n}(x)$ point-wise converges to $0 . f_{n}(0)=f(0)$ is a constant sequence, hence f_{n} converges point-wise to

$$
f_{\infty}(x)= \begin{cases}f(0) & x=0 \\ 0 & x \neq 0\end{cases}
$$

In particular, since the set $\{0\}$ has measure zero, f_{∞} is equivalent to the zero function.
Since f is monotone, so is f_{n}. This implies that the essential sup of f_{n} is $\lim _{x \rightarrow 0} f_{n}(x)$, and by continuity we get $\left\|f_{n}\right\|_{\infty}=f_{n}(0)=f(0)=\|f\|_{\infty}$. Therefore, either $\|f\|_{\infty}=0$, hence $f=0$ because f is monotone, or there is no uniform convergence.

For the L^{1} convergence, it suffices to note that since f is monotone, then the sequence of function f_{n} is monotone. Therefore we can apply the monotone convergence theorem and

$$
\lim \int\left|f_{n}\right|=\int \lim \left|f_{n}\right|=\int\left|f_{\infty}\right|=\int 0=0
$$

so f_{n} converges to f_{∞} in $L^{1}([0, \infty))$.
(3) An Hilbert space is separable if it has a countable dense set. An Hilbert basis of a separable Hilbert space H is an ordered set $\left(v_{n}\right)_{n \in \mathbb{N}}$ of vectors of H which are linearly independent, unitary, pairwise orthogonal, and that span a dense subspace of H.

