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Chapter 1

Preliminaries

In this chapter we collect some results which are preliminary to the main subjects of the course
and probably the student already knows, possibly in a little bit different form. However, it may
be useful to have at disposal an easily reachable reference, and this is what we are aiming at.

1.1 The Lebesgue measure in Rn

In this section we want to give the rudiments, concerning the theory of measure and integration
in the sense of Lebesgue.

As a subset of Rn may have infinite measure, it is convenient to extend the standard opera-
tions of sum and product between real numbers to the case that a summand or a factor is +∞.
So we set

[0,+∞] := [0,+∞[∪{+∞}, (1.1.1)

where +∞ is an object which does not belong to [0,+∞[. We suppose that

a < +∞ ∀a ∈ [0,+∞[. (1.1.2)

Next, we set, given a ∈ [0,+∞],

a+ (+∞) = (+∞) + a = +∞ (1.1.3)

and

a · (+∞) = (+∞) · a =

{
+∞ if a 6= 0,

0 if a = 0.
(1.1.4)

If (an)n∈N is a sequence with values in [0,+∞], we define the sum of the series

∞∑
n=1

an =

{
usual if the series converges in R,
+∞ otherwise.

(1.1.5)

We shall sometimes employ also the symbol −∞, and we shall assume it as satisfying

−∞ < a ∀a ∈ R. (1.1.6)

We set
[−∞,+∞] := R ∪ {−∞,+∞}. (1.1.7)
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Now we construct the Lebesgue measure starting from bounded intervals in Rn, the n−dimensional
volume of which voln we are going to define.

Definition 1.1.1. A bounded interval in Rn is the cartesian product of n bounded intervals in
R.

If I is a bounded interval in R, we set

`(I) :=

{
sup I − inf I if I 6= ∅,

0 if I = ∅. (1.1.8)

If I is a bounded interval in Rn and I = I1 × ...× In, we set

voln(I) := `(I1) · .... · `(In). (1.1.9)

Now we define the outer measure of an arbitrary subset of Rn.

Definition 1.1.2. Let A ⊆ Rn. We define the outer maesure L∗n(A) di A as follows:

L∗n(A) := inf{
∑∞

k=1 voln(Ik) : Ikn− dimensional interval ∀k ∈ N,
A ⊆ ∪k∈NIk}.

(1.1.10)

We observe that, in case L∗n(A) = +∞, for any countable family (Ik)k∈N of n−dimensional

bounded intervals which ”covers” A (in the sense that A ⊆ ∪k∈NIk), it holds
∞∑
k=1

voln(Ik) = +∞.

Remark 1.1.3. Let A be a set (the elements of which may have arbitrary nature). We shall
say that A is countable if there exists a bijection φ : N → A. This means, in few words,
that the elements of A can be listed in a sequence {φ(1), φ(2), ...}. N is, obviously, countable.
It is not difficult to verify that even Z (the set of integer numbers) is countable: we can define
φ : N→ Z, φ(1) = 0, φ(2) = 1, φ(3) = −1, and so on. Although it is by no means obvious, one
could show that the set Q of rational numbers is countable.

On the other hand, if a and b are real numbers and a < b, the set ]a, b[ is not countable.
More precisely, it does not exist a surjective function from N to ]a, b[. So, in some sense, ]a, b[
has ”more elements” than N.

We recall that a set A is finite if it is empty, or there exist n ∈ N and φ : {k ∈ N : k ≤ n} →
A, which is a bijection. One could show that the natural number n is uniquely determined by A
and is called the cardinality of A. A is said to be infinite if it is not finite. Countable sets are
infinite, but they are, in some sense, the smallest infinite sets, in the sense that every infinite
set contains a countable one.

The outer measure L∗n is, to some extent, unsatisfactory. In fact, it would be desirable that,
given two arbitrary and disjoint subsets A and B in Rn, it held

L∗n(A ∪B) = L∗n(A) + L∗n(B).

and this does not happen in general. We can only say that the inequality

L∗n(A ∪B) ≤ L∗n(A) + L∗n(B),

is always true, but, even in the case that A and B are disjoint, it may happen that the strict
inequality holds. In order to remedy this inconvenience, we limit ourselves to consider a subclass
of subsets of Rn, the so called sets which are measurable in the sense of Lebesgue, in which
everything works well.
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Definition 1.1.4. Let A ⊆ Rn. We shall say that A is measurable in the sense of Lebesgue
if ∀E ⊆ Rn

L∗n(E) = L∗n(E ∩A) + L∗n(E ∩ (Rn \A)).

We shall indicate with Mn the class of subsets of Rn which are measurable in the sense of
Leabesque. This class of sets is very flexible, with respect to the usual set operations:

Theorem 1.1.5. (I) ∅ and Rn belong to Mn;
(II) if A and B belong to Mn, then A \B belongs to Mn;
(III) the union of a finite or countable family of elements of Mn belongs to Mn;
(IV) the intersection of a not empty, finite or countable family of elements of Mn belongs

to Mn.

We define the Lebesgue measure Ln as the restriction of L∗n to Mn. The following facts
hold:

Theorem 1.1.6. Let I be {1, ...n} for some n ∈ N, or the set of natural numbers N. Then:
(I) Ln(∅) = 0;
(II) if Ai ∈Mn ∀i ∈ I, one has

Ln(∪i∈IAi) ≤
∑
i∈I

Ln(Ai);

(we observe that ∪i∈IAi is misurable by Theorem 1.1.5(III));
(III) if, moreover, the sets Ai are pairwise disjoint, one has

Ln(∪i∈IAi) =
∑
i∈I

Ln(Ai);

(IV) if A and B are elements of Mn and A ⊆ B, the inequality

Ln(A) ≤ Ln(B)

holds;
(V) if , moreover, Ln(B) < +∞, one has

Ln(B \A) = Ln(B)− Ln(A).

The most interesting result in Theorem 1.1.6 is probably (III): if the sets Ai, pairwise
disjoint, are a finite or countable family, the measure of their union coincides with the sum of
the measures. Finally, one might wonder whether, given a subset of Rn, there exist criteria to
establish if it is measurable. The following result meets this requirement:

Theorem 1.1.7. (I) If I is a n−dimensional interval, then I ∈Mn and Ln(I) = voln(I);
(II) every open subset of Rn is measurable;
(III) every closed subset if Rn is measurable.

Exercise 1.1.8. Let A be a finite or countable subset of Rn. Show that A is measurable in the
sense of Lebesgue and has measure 0.

Exercise 1.1.9. Let A be a subset of Rn such that L∗n(A) = 0. Show that A is measurable in
the sense of Lebesgue.
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1.2 Theory of integration in the sense of Lebesgue

After measure, we pass to consider integration in Rn. We shall begin by integrating the so called
nonnegative simple functions .

Definition 1.2.1. Let A ∈Mn, f : A→ R. We shall say that f is a simple function if there
exist A1, ..., Am (m ∈ N) measurable pairwise disjoint subsets of A , the union of which is A,
and real numbers α1, ..., αm such that,

f(x) = αi ∀x ∈ Ai, 1 ≤ i ≤ m.

Definition 1.2.2. Let A ∈ Mn, f : A → R simple according to Definition 1.2.1, with αi ≥ 0
∀i ∈ {1, ...,m}. We set ∫

A
f(x)dx :=

m∑
i=1

αiLn(Ai).

One can show that Definition 1.2.2 is well posed, in the sense that it does not depend on the
way we decompose A, provided we preserve the property that in each of the parts f is constant.
In case αi = 0, by Definition (1.1.4), the product αiLn(Ai) gives 0, even when Ln(Ai) = +∞.
As a consequence, we obtain that in an arbitrary measurable set, even of infinite measure, the
integral of the function identically equal to 0 is 0. In fact, the choice of (1.1.4) was directed
towards this.

Now we define a very large class of functions, the so called measurable functions .

Definition 1.2.3. Let A ∈ Mn, f : A → [−∞,+∞] (see (1.1.7)). We shall say that f is
measurable if there exists a sequence of simple functions (fk)k∈N with domain A, such that

lim
k→+∞

fk(x) = f(x) ∀x ∈ A.

It is clear from the definition that every simple function is measurable. However, for example,
one can see that

Theorem 1.2.4. Let A ∈Mn, f : A→ R, continuous. Then f is measurable.

Even the class of measurable functions is considerably flexible, with respect to standard
operations among sets:

Theorem 1.2.5. Let A ∈Mn, f, g : A→ R measurable, φ : R→ R continuous. Then:
(I) f + g, fg, φ ◦ f are measurable;
(II) if g(x) 6= 0 ∀x ∈ A, then f

g is measurable.

From (I), taking φ(y) = cy, it follows, in particular, that, if f is measurable and real valued,
the same happens for cf ∀c ∈ R.

We pass to define the integral of a nonnegative measurable function.

Definition 1.2.6. Let A ∈Mn, f : A→ [0,+∞], measurable. We set∫
A
f(x)dx

:= sup{
∫
A
φ(x)dx : φ : A→ [0,+∞[ simple , 0 ≤ φ(x) ≤ f(x) ∀x ∈ A}.
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One can see that, in case f is simple and nonnegative Definition 1.2.6 coincides with Defini-
tion 1.2.2.

Now we state some basic properties of the integral of a nonnegative measurable function.

Theorem 1.2.7. Let A ∈Mn, f, g : A→ [0,+∞] measurable, α ∈ [0,+∞[. Then:
(I)
∫
A f(x)dx ∈ [0,+∞];

(II) if f(x) ≤ g(x) ∀x ∈ A, one has also
∫
A f(x)dx ≤

∫
A g(x)dx;

(III)
∫
A(f(x) + g(x))dx =

∫
A f(x)dx+

∫
A g(x)dx;

(IV)
∫
A αf(x)dx = α

∫
A f(x)dx;

(V) if A = A1 ∪ ... ∪Am, with A1,...,Am measurable and pairwise disjoint, then, for each j,
f|Aj is measurable and ∫

A
f(x)dx =

m∑
j=1

∫
Aj

f(x)dx,

with
∫
Aj
f(x)dx :=

∫
Aj
f|Aj (x)dx (see the following Exercise 1.2.13).

Now we pass to consider the integration of functions with arbitrary sign. We start with the
following

Definition 1.2.8. Let A ∈ Mn, f : A → R. We shall say that f is summable if it is
measurable and ∫

A
|f(x)|dx < +∞

(this integral has a meaning by virtue of Theorem 1.2.5 (I)).

We consider now the two functions:
φ+ : R→ R,

φ+(x) =

{
x if x ≥ 0,
0 if x < 0,

(1.2.1)


φ− : R→ R,

φ−(x) =

{
−x if x ≤ 0,
0 if x > 0.

(1.2.2)

It is easy to verify that φ+ and φ− are continuous and nonnegative, φ+(x) − φ−(x) = x
∀x ∈ R, φ+(x) + φ−(x) = |x| ∀x ∈ R.

Now let f : A→ R, measurable. We set

f+ := φ+ ◦ f, f− := φ− ◦ f. (1.2.3)

From Theorem 1.2.5 (I) we have that f+ and f− are nonnegative and measurable. Moreover,

f = f+ − f−, |f | = f+ + f−. (1.2.4)

From Theorem 1.2.7(III) we deduce that∫
A
|f(x)|dx =

∫
A
f+(x)dx+

∫
A
f−(x)dx. (1.2.5)

So, if f is summable,the integrals in the second term of (1.2.5) are both real. Therefore, taking
into account the first formula in (1.2.4), the following definition becomes natural:
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Definition 1.2.9. Let A ∈Mn, f : A→ R summable. We set∫
A
f(x)dx :=

∫
A
f+(x)dx−

∫
A
f−(x)dx.

Theorem 1.2.7 admits the following extension to summable functions:

Theorem 1.2.10. Let A ∈Mn, f, g : A→ R summable, α ∈ R. Then:
(I) if f(x) ≤ g(x) ∀x ∈ A, one has also

∫
A f(x)dx ≤

∫
A g(x)dx;

(II) f + g is summable and∫
A

(f(x) + g(x))dx =

∫
A
f(x)dx+

∫
A
g(x)dx;

(III) αf is summable and ∫
A
αf(x)dx = α

∫
A
f(x)dx;

(IV)if A = A1 ∪ ... ∪ Am, with A1,...,Am measurable and pairwise disjoint, then f|Aj is
summable on Aj for each j = 1, ...,m and∫

A
f(x)dx =

m∑
j=1

∫
Aj

f|Aj (x)dx (1.2.6)

holds; on the other hand, if, j = 1, ...,m, f|Aj is summable on Aj, then f is summable on A and
(1.2.6) holds.

In many circumstances it is important to have at disposal a definition of integral for complex
valued functions.

Definition 1.2.11. Let A ∈ Mn, f : A → C. We shall say that f is summable if the two
real valued functions Re(f) e Im(f) are summable. In this case, we set∫

A
f(x)dx :=

∫
A
Re(f(x))dx+ i

∫
A
Im(f(x))dx.

A part of Theorem 1.2.10 can be extended to complex valued functions:

Theorem 1.2.12. Let A ∈Mn, f, g : A→ C summable, α ∈ C. Then:
(I) f + g is summable and∫

A
(f(x) + g(x))dx =

∫
A
f(x)dx+

∫
A
g(x)dx;

(II) αf is summable and ∫
A
αf(x)dx = α

∫
A
f(x)dx;

(III) if A = A1 ∪ ... ∪ Am, with A1,...,Am measurable and pairwise disjoint, then f|Aj is
summable on Aj for each j = 1, ...,m and∫

A
f(x)dx =

m∑
j=1

∫
Aj

f|Aj (x)dx (1.2.7)

holds; on the other hand, if, for each j = 1, ...,m f|Aj is summable on Aj, then f is summable
on A and (1.2.7) holds;

(IV) |f | is measurable,
∫
A |f(x)|dx < +∞ and inequality (1.2.8) holds.
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Exercise 1.2.13. Let A,B ∈Mn with A ⊆ B, f : B → [−∞,+∞] measurable. Show that f|A
is measurable in A.

Exercise 1.2.14. Let A ∈Mn, f : A→ R summable. Show that

|
∫
A
f(x)dx| ≤

∫
A
|f(x)|dx. (1.2.8)

Exercise 1.2.15. Let A ∈ Mn, f : A→ C summable. Prove that |f | is summable on A (hint:
|f | ≤ |Re(f)|+ |Im(f)|).

Exercise 1.2.16. Let A ∈ Mn, f : A → C. Show that f is summable if and only if Re(f) e
Im(f) are measurable and |f | is summable.

Exercise 1.2.17. Let A1, ..., Am ∈Mn, pairwise disjoint, f : ∪1≤i≤mAi → [−∞,+∞] such that
f|Ai is measurable on Ai for each i ∈ {1, ...,m}. Prove that f is measurable.

Exercise 1.2.18. Let A ∈ Mn, f : A→ C. Prove that, if f is summable, then f is summable
(given z ∈ C, we indicate with z the complex conjugate of z). Moreover,∫

A
f(x)dx =

∫
A
f(x)dx. (1.2.9)

1.3 Operational techniques for the computation of integrals

In this section we introduce some basic results, able to make often possible the effective compu-
tation of integrals in the sense of Lebesgue. We assume that the reader is acquainted with the
theory of integration in the sense of Riemann for functions of one real variable in a closed and
bounded interval.

The first result is the following:

Theorem 1.3.1. Let A ∈Mn, with Ln(A) = 0, f : A→ [0,+∞]. Then f is measurable and∫
A
f(x)dx = 0. (1.3.1)

If f : A→ C, then f is summable and (1.3.1) holds.

Proof See Exercise 1.3.9 �

Now we consider the case that A is a closed and bounded interval in R. We compare
integration with respect to Lebesgue’s theory with integration with respect to Riemann’s theory.

Theorem 1.3.2. Let a and b be real numbers, with a < b, f : [a, b] → R which is integrable in
the sense of Riemann. Then f is summable in [a, b] and the ’integral in the sense of Lebesgue
(Definition 1.2.9) coincides with the integral in the sense of Riemann.

Now we pass to consider integration in half-open intervals.

Theorem 1.3.3. Let −∞ < a < b ≤ +∞, f : [a, b[→ [0,+∞[ integrable in the sense of Riemann
in any interval [a, c] with c ∈]a, b[. Then f is measurable in [a, b[ and∫

[a,b[
f(x)dx = lim

c→b

∫ c

a
f(x)dx. (1.3.2)

holds.
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We observe that the limit in (1.3.2) exists (finite or infinite), because the integral function
c→

∫ c
a f(x)dx is nondecreasing in [a, b[. For a proof, using the monotone convergence theorem,

see Exercise 1.5.8.

An analogous result holds for functions defined in intervals of the form ]a, b], with −∞ ≤
a < b < +∞ (see Exercise 1.3.11).

We pass to real valued functions with arbitrary sign.

Theorem 1.3.4. Let −∞ < a < b ≤ +∞[, let f : [a, b[→ R be integrable in the sense of
Riemann [a, c[ for every c ∈]a, b[ and let limc→b

∫ c
a |f(x)|dx < +∞. Then:

(I) there exists in R limc→b
∫ c
a f(x)dx;

(II) f is summable in [a, b[;

(III)
∫

[a,b[ f(x)dx = limc→b
∫ c
a f(x)dx.

Now we consider the multidimensional case, with the classical theorems of Tonelli, Fubini
and of the change of variable. We state in advance some notations. We suppose of working in
Rm+n, with m and n in N and we indicate with (x, y) the generic element of Rm+n, with x ∈ Rm
and y ∈ Rn. Given x ∈ Rm, we set

Ax := {y ∈ Rn : (x, y) ∈ A}. (1.3.3)

Theorem 1.3.5. (of Tonelli) Let A ∈ Mm+n, f : A → [0,+∞] measurable. Let, moreover,
B ∈Mm, and such that

{x ∈ Rm : Ax ∈Mn, Ln(Ax) > 0} ⊆ B.

We define
g : B → [0,+∞],

g(x) =

{ ∫
Ax
f(x, y)dy if Ax 6= ∅, Ax ∈Mn, f(x, .) measurabile in Ax,

0 otherwise.

Then:

(I) g is measurable in B;

(II)
∫
A f(x, y)dxdy =

∫
B g(x)dx.

Theorem 1.3.6. (of Fubini) Let A ∈ Mm+n, let f : A → C be summable. Next, let B ∈ Mm

be such that

{x ∈ Rm : Ax ∈Mn, Ln(Ax) > 0} ⊆ B.

We define
g : B → C,

g(x) =

{ ∫
Ax
f(x, y)dy if Ax 6= ∅, Ax ∈Mn, f(x, .) summable in Ax,

0 otherwise.

Then:

(I) g is summable in B;

(II)
∫
A f(x, y)dxdy =

∫
B g(x)dx.

Now we pass to the theorem of the change of variable.
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Definition 1.3.7. Let Ω be an open subset of Rn, T : Ω→ Rn. We shall say that T is a change
of variable if

(I) T is injective;

(II) T is of class C1;

(III) for every x ∈ Ω the determinant detJT (x) of the Jacobian matrix of T in x is not 0.

Theorem 1.3.8. (the change of variable theorem) Let T : Ω→ Rn be a change of variable, with
Ω open in Rn, A ∈Mn, f : A→ [0,+∞] (resp. f : A→ C). We assume that A ⊆ T (Ω). Then:

(I) T−1(A) ∈Mn;

(II) f is measurable in A (resp. f is summable in A) if and only if x→ f(T (x))|detJT (x)|
is measurabile (resp. summable) in T−1(A); in such a case,

(III)
∫
A f(y)dy =

∫
T−1(A) f(T (x))|detJT (x)|dx.

Exercise 1.3.9. Prove Theorem 1.3.1, assuming that every function of domain A is measurable
(hint: employ the result of Exercise 1.1.9, starting by considering the case that f is simple and
nonnegative).

Exercise 1.3.10. Let f : [0, 1] → R, f(x) = 1 if x ∈ Q, f(x) = 0 otherwise. Verify that f
is summable in [0, 1] and has integral 0 (hint: employ the result of Exercise 1.1.8). f is the
so called ”Dirichlet function”, which is not integrable in the sense of Riemann. This example
shows that the statement of Theorem 1.3.2 is not invertible.

Exercise 1.3.11. State the analog of Theorem 1.3.3 for an interval of the form ]a, b], with
−∞ ≤ a < b < +∞.

Exercise 1.3.12. Extend Theorem 1.3.4 to the case of complex valued functions.

1.4 Identification of measurable functions coinciding almost e-
verywhere

We start with the following quite suggestive definition:

Definition 1.4.1. Let A ∈ Mn. We shall say that a certain property P (x) is valid almost
everywhere in A (a.e.), or for almost every x ∈ A , if {x ∈ A : P (x) does not hold } is
measurable and has measure 0.

Given f and g defined in A and complex valued, we shall say that f is equivalent to g, and
we shall write

f ∼ g

if f(x) = g(x) a. e. in A. One can easily verify that ∼ is an equivalence relation, that is, given
three arbitrary functions f , g and h from A to C, one has:

(I) f ∼ f (reflexive property);

(II) if f ∼ g, then g ∼ f (simmetric property);

(III) if f ∼ g and g ∼ h, then f ∼ h (transitive property).

Given f : A→ C, we define the equivalence class [f ] of f as

[f ] := {g : A→ C : g ∼ f}. (1.4.1)

The following result will be important in the sequel:
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Theorem 1.4.2. Let A ∈Mn, f, g, f1, f2, g1, g2 : A→ C , with f ∼ g, f1 ∼ g1, f2 ∼ g2, c ∈ C.
Then:

(I) f1 + g1 ∼ f2 + g2;

(II) cf ∼ cg;

(III) Re(f) ∼ Re(g), Im(f) ∼ Im(g);

(IV) if f and g are real valued and f is measurable, even g is measurable;

(V) if f is summable, even g is summable and one has∫
A
f(x)dx =

∫
A
g(x)dx.

Proof We verify only (IV ) and leave the rest to the reader (see Exercise 1.4.4). Let N :=
{x ∈ A : f(x) 6= g(x)}. N is measurable and has measure 0. So g coincides with f in A \ N
and is measurable in N by Theorem 1.3.1. Therefore, we obtain the conclusion from the result
of Exercise 1.2.17. �

From Therem 1.4.2 it follows that, if f and g are complex valued functions with domain A,
the following expressions are well defined:

[f ] + [g] := [f + g] (1.4.2)

and

λ[f ] := [λf ]. (1.4.3)

This happens because, in each case, the second term in (1.4.2)-(1.4.3) is independent of the
choice of the single elements in each class.

Exercise 1.4.3. Prove that the relation ∼ enjoys the properties (I)− (III).

Exercise 1.4.4. Complete the proof of Theorem 1.4.2.

1.5 Passage to the limit under the sign of integral

Now we state without proof some basic results of passage to the limit under the sign of integral.
Let A ∈ Mn and, for k ∈ N, let fk : A → [0,+∞] (resp. fk : A → C), f : A → [0,+∞] (resp.
f : A→ C) be such that, for almost every x ∈ A, lim

k→+∞
fk(x) = f(x) holds. Assuming that the

functions fk admit an integral in the sense of Definition 1.2.6 or of Definition 1.2.9, we wonder

when it is possible to conclude that f admits an integral and lim
k→+∞

∫
A
fk(x)dx =

∫
A f(x)dx

holds. The problem is not trivial, as the following example shows:

Example 1.5.1. Let, for k ∈ N,
fk : [0, 1]→ R,

fk(x) =


k3x if x ∈ [0, 1

k ],
k2 − k3(x− 1

k ) if x ∈ [ 1
k ,

2
k ],

0 if x ∈ [ 2
k , 1].

It is easy to see that lim
k→+∞

fk(x) = 0 ∀x ∈ [0, 1]. This is obvious if x = 0. If x > 0, it suffices to

observe that, if k is large enough, one has x > 2
k , so that fk(x) = 0. However,

∫
[0,1] fk(x)dx = k

∀k ∈ N, so that limk→+∞
∫

[0,1] fk(x)dx = +∞.
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Now we are going to see two classical theorems of passage to the limit. We state before the
following notion of convergence for a complex valued sequence, a generalization of which will
be examined in the sequel (see the following Section 2.3): let (an)n∈N be a sequence in C and
let a ∈ C. We shall write lim

n→+∞
an = a if ∀ε > 0 there exists n(ε) ∈ N such that, ∀n ∈ N con

n > n(ε), one has |an − a| < ε.

Theorem 1.5.2. (of Beppo Levi, or of the monotone convergence) Let A ∈Mn and, for k ∈ N,
let fk : A → [0,+∞] be measurable. Assume, moreover, that fk(x) ≤ fk+1(x) ∀k ∈ N, ∀x ∈ A.
We set f : A → [0,+∞], f(x) = lim

k→+∞
fk(x) (the limit exists in force of the monotonicity of

(fk(x))k∈N). Then f is measurable, with values in [0,+∞], and∫
A
f(x)dx = lim

k→+∞

∫
A
fk(x)dx.

Example 1.5.3. Let, for k ∈ N, fk : [1,+∞[→ R, fk(x) = xke−x

1+xk
. fk is measurable, because it

is continuous, and nonnegative. If x ≥ 1, one has xk ≤ xk+1, and, as y → y
1+y is nondecreasing

in [0,+∞[, xk

1+xk
≤ xk+1

1+xk+1 . So, fk(x) ≤ fk+1(x), for every k ∈ N and x ∈ [1,+∞[. We have

lim
k→+∞

fk(x) =

{
1
2e if x = 1,
e−x if x > 1.

So we set 
f : [1,+∞[→ R,

f(x) =

{
1
2e if x = 1,
e−x if x > 1.

Now, by the monotone convergence theorem,

lim
k→+∞

∫
[1,+∞[

fk(x)dx =

∫
[1,+∞[

f(x)dx

=

∫
{1}

1

2e
dx+

∫
]1,+∞[

e−xdx

=

∫
]1,+∞[

e−xdx =

∫
{1}

e−xdx+

∫
]1,+∞[

e−xdx

=

∫
[1,+∞[

e−xdx,

where we have used Theorem 1.2.7(V ) and Theorem 1.3.1, because L1({1}) = 0. At this point,
we apply Theorem 1.3.3 and obtain∫

[1,+∞[
e−xdx = lim

c→+∞

∫ c

1
e−xdx

= lim
c→+∞

(e−1 − e−c) = e−1.

We pass to consider complex valued functions.
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Theorem 1.5.4. (of Lebesgue, of the dominated convergence) Let A ∈ Mn and, for k ∈ N, let
fk : A→ C be measurable and g : A→ [0,+∞[ summable. We assume also that |fk(x)| ≤ g(x)
∀k ∈ N and a. e. in A. Let f : A → C be such that f(x) = lim

k→+∞
fk(x) a. e. in A. Then the

functions fk and f are summable in A and∫
A
f(x)dx = lim

k→+∞

∫
A
fk(x)dx

holds.

Example 1.5.5. Let, for k ∈ N, fk : [0,+∞[→ R, fk(x) = sin(xn)e−x. fk is measurable,
because it is continuous. We set g : [0,+∞[→ R, g(x) = e−x. g is summable, nonnegative
and |fk(x)| ≤ g(x) ∀k ∈ N, ∀x ≥ 0. Finally, we have lim

k→+∞
fk(x) = 0 ∀x ≥ 0. So, from the

dominated convergence theorem, it follows that, for every k ∈ N, fk is summable in [0,+∞[ and

lim
k→+∞

∫
[0,+∞[

fk(x)dx =

∫
[0,+∞[

0 dx = 0.

Exercise 1.5.6. Let A ∈Mn, let, for k ∈ N, fk : A→ [0,+∞] be measurable, s : A→ [0,+∞],
s(x) =

∑∞
k=1 fk(x). Prove that f is measurable and∫

A
s(x)dx =

∞∑
k=1

∫
A
fk(x)dx.

Exercise 1.5.7. Let A ∈ Mn and, for k ∈ N, let fk : A → C be measurable. We suppose also
that

(a) Ln(A) < +∞;
(b) there exists M ≥ 0, such that |fk(x)| ≤M ∀x ∈ A;
(c) there exists f : A→ C, such that f(x) = lim

k→+∞
fk(x) a. e. in A.

Prove that the functions fk and f are summable, and∫
A
f(x)dx = lim

k→+∞

∫
A
fk(x)dx.

Exercise 1.5.8. Prove Theorem 1.3.3. Hint: take an arbitrary increasing sequence (tk)k∈N,
converging to b. Define, for k ∈ N, fk : [a, b[→ [0,+∞[, fk(x) = f(x) if a ≤ x ≤ tk, fk(x) = 0 if
tk < x < b. Applying the monotone convergence theorem, prove that f is measurable and∫

[a,b[
f(x)dx = lim

k→+∞

∫
[a,b[

fk(x)dx = lim
k→+∞

∫ tk

a
f(x)dx.

Conclude, using the monotonicity of t→
∫ t
a f(x)dx.

Exercise 1.5.9. Prove Theorem 1.3.4. Hint: employ the dominated concergence theorem,
taking g = |f |



Chapter 2

Normed spaces

2.1 Norms

We assume that the reader is acquainted with the basic elements of linear algebra. For com-
pleteness and in order to establish the notation, we start by recalling some of these elements.
Let us see, firstly, the notion of linear (vector) space on the field K = R o C.

Definition 2.1.1. Let X be a nonempty set, + an operation in X ( that is, a function from
X × X yo X), (λ, x) → λx a map from K × X a X, which we shall denominate ”scalar
multiplication”. We shall say that X, with the sum + and this scalar multiplication), is a linear
space over K if the following proprieties hold:

(ASV1) ∀x, y ∈ X
y + x = x+ y

(commutative propriety of the sum);
(ASV2) ∀x, y, z ∈ X

x+ (y + z) = (x+ y) + z

(associative propriety of the sum);
(ASV3) there esists an element O ∈ X such that, ∀x ∈ X

x+O = O + x = x

(esistence of a neutral element for the sum);
(ASV4) ∀x ∈ X there exists −x ∈ X such that

x+ (−x) = (−x) + x = 0;

(existence of an inverse element, with respect to the sum, for every x ∈ X);
(ASV5) ∀λ, µ ∈ K, ∀x ∈ X

(λ+ µ)x = λx+ µx;

(ASV6) ∀λ ∈ K, ∀x, y ∈ X
λ(x+ y) = λx+ λy;

(ASV7) ∀λ, µ ∈ K, ∀x ∈ X
λ(µx) = (λµ)x;

(ASV8) ∀x ∈ X
1x = x.

15
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Remark 2.1.2. As usual, we have indicated with the same symbol + the sum in X and the
sum in K. For example, in (ASV 5) the first + indicates the sum in K, the second the sum in
X.

Example 2.1.3. Given K = R or C and n ∈ N, we indicate with Kn the set of ordered n−tuples
of elements of K. If x = (x1, ..., xn) and y = (y1, ..., yn) are elements of Kn, we set

x+ y := (x1 + y1, ..., xn + yn). (2.1.1)

Moreover, if λ ∈ K, we set

λx := (λx1, ..., λxn). (2.1.2)

It is well known that Kn, equipped with the sum (2.1.1) and the scalar multiplication (2.1.2) is
a linear space over K.

Example 2.1.4. Let A be a nonempty (arbitrary) set. We indicate with F(A,K) the set of
functions with domain A and values in K. Given f and g in F(A,K) and λ ∈ K, we set{

f + g : A→ K,
(f + g)(a) = f(a) + g(a),∀a ∈ A, (2.1.3)

{
λf : A→ K,
(λf)(a) = λ · f(a),∀a ∈ A, (2.1.4)

with · product in K. It is easy to see that F(A,K), with the sum (2.1.3) and the scalar
multiplication (2.1.4), is a linear space over K.

Remark 2.1.5. Given a linear space X on the field K and given Y ⊆ X, it is said that Y
is a (linear) subspace of X if, given y1, y2 and y elements of Y and λ ∈ K, one always has
y1 + y2 ∈ Y and λy ∈ Y . It is not difficult to verify that, if Y is a subspace of X, it is a linear
space over K with the restrictions of the sum to Y ×Y and of the scalar multiplication to K×Y .

If A ⊆ Rn, the linear space F(A,R) has several interesting subspaces. We indicate some of
them.

B(A,R) is the space of bounded functions form A to R.
C(A,R) is the space of continuous functions from A to R.
BC(A,R) is the space of bounded and continuous functions from A to R.
If A is measurable in the sense of Lebesgue, M(A,R) is the space of measurable functions

from A to R.
If A is measurable in the sense of Lebesgue, L1(A,R) is the space of summable functions

from A to R.
Instead, we indicate with L1(A) the space of (in general) complex valued summable functions,

with domain A. In this case, we obtain a linear space over C.

Definition 2.1.6. Let X be a linear space over K (= R or C). A norm in X is a function
‖.‖ : X → [0,+∞[, x→ ‖x‖ ∀x ∈ X, such that

(I) ∀λ ∈ K, ∀x ∈ X
‖λx‖ = |λ|‖x‖;

(II) ∀x, y ∈ X
‖x+ y‖ ≤ ‖x‖+ ‖y‖;

(III) if x ∈ X and ‖x‖ = 0, then x = 0.
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Example 2.1.7. Given x = (x1, ..., xn) ∈ Rn, we set,

‖x‖ := (

n∑
j=1

x2
j )

1
2 .

‖.‖ is the Euclidean norm in Rn and it is well known that it fulfills the conditions (I)− (III) in
Definition 2.1.6.

It is not the unique norm in Rn. Two different norms are, for x = (x1, ..., xn) ∈ Rn,

‖x‖1 :=

n∑
j=1

|xj |, (2.1.5)

and

‖x‖∞ := max
1≤j≤n

|xj |. (2.1.6)

In order to verify that they are really norms, see the following Exercise 2.1.13.

Example 2.1.8. In analogy with (2.1.6), given A ⊆ Rn (in fact, one can take an arbitrary
nonempty set), if we put X := B(A,R), we can define in X the norm

‖x‖∞ := sup
A
|f | = sup{|f(a)| : a ∈ A}. (2.1.7)

We verify that ‖.‖∞ is a norm in X.

First of all, it is clear that ‖.‖∞ is well defined in X and with values in [0,+∞[. We examine,
one by one, the proprieties (I)− (III) in Definition 2.1.6.

(I) If a ∈ A, |λf(a)| = |λ||f(a)| ≤ |λ| supA{|f(a)| : a ∈ A} = |λ|‖f‖∞. As this holds for
every element a, we deduce

‖λf‖∞ = sup{|λf(a)| : a ∈ A} ≤ |λ|‖f‖∞. (2.1.8)

If λ 6= 0, osserving that f = λ−1(λf) and applying (2.1.8), we obtain

‖f‖∞ ≤ |λ−1|‖λf‖∞,

from which we immediately draw (I). The case λ = 0 is trivial.

(II) Let f and g be elements of X and a ∈ A. Then

|f(a) + g(a)| ≤ |f(a)|+ |g(a)| ≤ ‖f‖∞ + ‖g‖∞.

It follows that

‖f + g‖∞ = sup{|f(a) + g(a)| : a ∈ A} ≤ ‖f‖∞ + ‖g‖∞.

(III) Let f ∈ X be such that ‖f‖∞ = 0. Then sup{|f(a)| : a ∈ A} = 0. Evidently, this implies
that f(a) = 0 ∀a ∈ A. The function which vanishes in every point of A is precisely the neutral
element with respect to the sum in the linear space X. It follows that even (III) holds.

Remark 2.1.9. It is easy to verify that in every subspace of B(A,R) (for example, BC(A,R))
(2.1.7) defines a norm.
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Example 2.1.10. Let A ∈ Mn (the classe of measurable subsets in Rn). We put, given
f ∈ L1(A),

‖f‖1 :=

∫
A
|f(x)|dx. (2.1.9)

If ‖.‖1 were a norm, the following fact should hold:

”If f ∈ L1(A) and
∫
A |f(x)|dx = 0, then f(x) is identically 0.”

However, it is easy to see that this is false. For example, if A = Rn, B ∈ Mn, B 6= ∅ and
Ln(B) = 0, we set 

f : A→ R,

f(x) =

{
1 if x ∈ B,
0 if x 6∈ B.

f is a nonnegative simple function, not identically equal to 0 and

‖f‖1 =

∫
A
f(x)dx = 1 · Ln(B) + 0 · Ln(Rn \B) = 0.

In fact, the following important result can be shown:

Lemma 2.1.11. Let A ∈ Mn and let f : A → [0,+∞] be measurable. Then the two following
conditions are equivalent:

(I)
∫
A f(x)dx = 0;

(II) f(x) = 0 a. e. in A, that is, {x ∈ A : f(x) > 0} is measurable and has measure 0.

So, if ‖f‖1 = 0, we can only say that |f(x)| = 0 a. e. in A, and, consequently, f(x) = 0 a.
e. in A. In order to overcome this inconvenience, we replace L1(A) with the linear space

L1(A) := {[f ] : f ∈ L1(A)}, (2.1.10)

where [f ] is the equivalence class of f defined in (1.4.1). L1(A) is a linear space over C, with the
operations of sum and scalar multiplication defined in (1.4.2) and (1.4.3). Given [f ] ∈ L1(A),
we set

‖[f ]‖1 :=

∫
A
|f(x)|dx. (2.1.11)

The definition is well posed, by Theorem 1.4.2(V ).
Let us show that ‖.‖1 is a norm in L1(A,R).
First of all, if λ ∈ C and f ∈ L1(A),

‖λ[f ]‖1 = ‖[λf ]‖1

=

∫
A
|λf(x)|dx = |λ|

∫
A
|f(x)|dx

= |λ|‖[f ]‖1.

If f and g are elements of L1(A),

‖[f ] + [g]‖1 = ‖[f + g]‖1

=

∫
A
|f(x) + g(x)|dx ≤

∫
A
|f(x)|dx+

∫
A
|g(x)|dx
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= ‖[f ]‖1 + ‖[g]‖1.

Finally, let ‖[f ]‖1 = 0. Then
∫
A |f(x)|dx = 0, and so f(x) = 0 a. e. . This means that f is

equivalent to the neutral element, that is, [f ] = [0].

Remark 2.1.12. Although the elements of L1(A) (A ∈ Mn) are not functions, but classes of
functions coinciding almost everywhere, it is convenient and usual to speak of a certain function
f as an element of L1(A). In reality, we shall always mean the corresponding equivalence class.

Exercise 2.1.13. Check that ‖.‖1 e ‖.‖∞, defined in (2.1.5) and (2.1.6), are norms in Rn.

Exercise 2.1.14. Check that, if ‖.‖ is a norm in X, ∀x, y ∈ X one has

|‖x‖ − ‖y‖| ≤ ‖x− y‖.

Exercise 2.1.15. Let f : [0, 2π]→ R, f(x) = x− sin(x)− 4π. Calculate ‖f‖∞. Calculate also
‖f‖1.

Exercise 2.1.16. Let f : [−2, 1]→ R, f(x) = x3. Calculate ‖f‖∞ and ‖[f ]‖1.

2.2 Notions of topological type in a normed space

Now we introduce in a generic normed space a series of notions of topological anture already
seen in Rn. In this section X will be an arbitrary normed space over K = R or C. We shall
indicate with ‖.‖ the norm in X.

Let x ∈ X and r > 0. We set

B(x, r) := {y ∈ X : ‖y − x‖ < r}. (2.2.1)

We shall denominate B(x, r) the open ball with centre x and radius r.
Let A ⊆ X and x0 ∈ X. We shall say that x0 belongs to the interior of A, and we shall

write

x0 ∈ Å, (2.2.2)

if there exists r > 0, such that B(x0, r) ⊆ A.
Next, given A ⊆ X, we shall say that A is open if Å = A.
Given A ⊆ X and x0 ∈ X, we shall say that x0 belongs to the boundary of A, and we

shall write

x0 ∈ ∂A, (2.2.3)

if every open ball B(x0, r), with r > 0, contains both elements of A, and elements not belonging
to A.

We shall say that A ⊆ X is closed if ∂A ⊆ A.
Next, given A ⊆ X, we shall denominate closure of A, and we shall indicate with A, the

set

A := A ∪ ∂A. (2.2.4)

If A ⊆ X and A = X, we shall say that A is dense in X.
Finally we introduce the notion of continuity.
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Definition 2.2.1. Let X and Y be normed spaces, with norms, respectively, ‖.‖X and ‖.‖Y ,
A ⊆ X, f : A → Y , x0 ∈ A. We shall say that f is continuous in x0 if ∀ε ∈ R+ there exists
r(ε) ∈ R+, such that , ∀x ∈ A, if ‖x− x0‖X < r(ε), the inequality

‖f(x)− f(x0)‖Y < ε

holds.
We shall say that f is continuous if it is continuous in every point of A.

It is convenient to introduce also the notions of limit point and of limit.

Definition 2.2.2. Let A ⊆ X, with X normed space, and x0 ∈ X. We shall say that x0 is a
limit point of A (and we shall write x0 ∈ L(A)) if ∀r > 0 B(x0, r) contains some element of A
which is distinct from x0.

Definition 2.2.3. Let X and Y be normed spaces, with norms, respectively, ‖.‖X e ‖.‖Y . Next,
let A ⊆ X, x0 ∈ L(A) and l ∈ Y . We shall write lim

x→x0
f(x) = l if ∀ε ∈ R+ there esists r(ε) ∈ R+

such that, ∀x ∈ A with ‖x− x0‖X < r(ε) and x 6= x0, one has

‖f(x)− l‖Y < ε.

Example 2.2.4. We consider the linear space X := C([0, 1],R) with the norm ‖.‖∞ (see (2.1.7)).
We observe that, by Weierstrass theorem, C([0, 1],R) coincides with BC([0, 1],R), and so this
norm is well defined in X. We set{

f : X → X,

f(x)(t) :=
∫ t

0 x(s)ds, x ∈ X. (2.2.5)

The fundamental theorem of integral calculus guarantees that f(x) is continuous and so it
belongs to X. We check that f is continuous.

Let x0 ∈ X and ε > 0; given x ∈ X, one has, ∀t ∈ [0, 1],

|F (x)(t)− F (x0)(t)| = |
∫ t

0
(x(s)− x0(s))ds|

≤
∫ t

0
|x(s)− x0(s)|ds ≤ t‖x− x0‖∞

≤ ‖x− x0‖∞.

It follows that
‖F (x)− F (x0)‖∞ ≤ ‖x− x0‖∞.

So, if we set r(ε) := ε, we have that, if ‖x− x0‖∞ < r(ε), ‖F (x)− F (x0)‖∞ < ε holds.

Exercise 2.2.5. Prove that open balls are open.

Exercise 2.2.6. Prove that, if A = B(x0, r), with x0 ∈ X and r > 0,

∂A = {x ∈ X : ‖x− x0‖ = r}.

Exercise 2.2.7. Let A ⊆ X. Prove that A is open if and only if

A ∩ ∂A = ∅.
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Exercise 2.2.8. Let A ⊆ X. Prove that A is closed if and only if

A = A.

Exercise 2.2.9. Let A ⊆ X, f : A → C. Prove that f is continuous if and only if Re(f) and
Im(f) are real valued continuous functions.

(Hint.: for every λ ∈ C max{|Re(λ)|, |Im(λ)|} ≤ |λ| ≤ |Re(λ)|+ |Im(λ)|).

Exercise 2.2.10. Check that, if X is a normed space with norm ‖.‖, such a norm is continuous
from X to R.

(Hint: employ the result of Exercise 2.1.14).

Exercise 2.2.11. State and prove a theorem of uniqueness of the limit.

Exercise 2.2.12. Let f : A ⊆ X → Y , with X and Y normed spaces. Next, let x0 ∈ A∩L(A).
Prove that f is continuous in x0 if and only if there exists lim

x→x0
f(x) and it coincides with f(x0).

2.3 Sequences in a normed space and completeness

We start with the definition of limit of a sequence in a normed space X ( with norm ‖.‖).

Definition 2.3.1. Let (xn)n∈N be a sequence in the normed space X and let l ∈ X. We shall
say that (xn)n∈N converges to l, or has limit l if ∀ε ∈ R+ there exists n(ε) ∈ N such that,
for every n ∈ N with n > n(ε), one has

‖xn − l‖ < ε.

Remark 2.3.2. Definition 2.3.1 is equivalent to require that

lim
n→+∞

‖xn − l‖ = 0.

Remark 2.3.3. One can easily check, with the same argument employed for real values se-
quences, that, if the limit exists, it is unique (see Exercise 2.3.17).

Remark 2.3.4. The convergence with respect to the norm ‖.‖∞ in B(A,R) (with A nonempty
set) is usually called uniform convergence.

Example 2.3.5. Let δ ∈]0, 1[, X = C([0, δ],R), with the norm ‖.‖∞. Given n ∈ N, t ∈ [0, δ],
we set

xn(t) := tn, (2.3.1)

l(t) = 0. (2.3.2)

We check that the sequence (xn)n∈N converges to l. In fact,

‖xn − l‖∞ = sup
t∈[0,δ]

|xn(t)− l(t)|

= δn → 0(n→ +∞).

It is quite clear that uniform convergence implies pointwise convergence, in the sense that,
if (xn)n∈N is a sequence in B(A,R) uniformly convergent to l (∈ B(A,R)), then for every t ∈ A
one has

lim
n→∞

xn(t) = l(t).
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The inverse does not hold. In fact, consider the normed space B([0, 1],R) with the norm ‖.‖∞.
For n ∈ N, let xn : [0, 1]→ R, again defined as (2.3.1), and let

m : [0, 1]→ R,

m(t) =

{
0 if t ∈ [0, 1[,
1 if t = 1.

It is very easy to check that lim
n→+∞

xn(t) = m(t) ∀t ∈ [0, 1]. However, it is not true that

lim
n→+∞

‖xn −m‖∞ = 0. In fact, for every n ∈ N,

|xn(t)−m(t)| =
{
tn if t ∈ [0, 1[,
0 if t = 1.

So ‖xn −m‖∞ = 1 ∀n ∈ N.

A first important consequence of convergence of a sequence is its boundedness:

Theorem 2.3.6. Let (an)n∈N be convergent in the normed space X. Then (an)n∈N is bounded,
in the sense that there exists M ≥ 0 such that

‖an‖ ≤M ∀n ∈ N.

Proof Let limn→∞ an = l ∈ X. There exists n(1) ∈ N such that, if n > n(1), one has
‖an − l‖ < 1. Consequently, if n > n(1),

‖an‖ = ‖(an − l) + l‖ ≤ ‖l‖+ ‖an − l‖ < ‖l‖+ 1.

So, setting
M := max{‖a1‖, ..., ‖an‖, ‖l‖+ 1},

one has ‖an‖ ≤M ∀n ∈ N. �

Now we are going to examine some important links between the notion of limit of a sequence
and some of the notions introduces in Section 2.2.

Theorem 2.3.7. Let A ⊆ X, with X normed space, and let x0 ∈ X. Then the following facts
are equivalent:

(I) x0 ∈ A;
(II) there exists a sequence (an)n∈N with values in A, which is convergent to x0.

Proof We check that (I) implies (II). Let x0 ∈ A. We construct a sequence with values
in A, convergent to x0. If x0 ∈ A, then, either x0 ∈ A, or x0 ∈ ∂A. In the first case, we
can take an = x0 ∀n ∈ N. Instead, let x0 ∈ ∂A. By definition, for every n ∈ N there exists
an ∈ A ∩B(x0,

1
n). One has

‖an − x0‖ <
1

n
→ 0(n→ +∞).

So, (I) implies (II).
On the other hand, assume that (II) holds. We must show that x0 ∈ A. We consider

separately the two cases x0 ∈ A and x0 6∈ A. In the first case, x0 ∈ A. In the second case, let
r > 0. As x0 6∈ A, B(x0, r) contains some element not belonging to A: x0 itself. Next, choosing
n ∈ N in such a way that ‖an − x0‖ < r, we obtain that an ∈ A ∩B(x0, r). So x0 ∈ ∂A. �
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Theorem 2.3.8. Let X and Y be normed spaces, with norms, respectively, ‖.‖X and ‖.‖Y , let
A ⊆ X, f : A→ Y , x0 ∈ A. Then, the following facts are equivalent:

(I) f is continuous in x0;

(II) if (an)n∈N is an arbitrary sequence with values in A and convergent in X to x0, one has
that the sequence (f(an))n∈N converges in Y to f(x0).

Proof We show that (I) implies (II). Let (an)n∈N be with values in A and convergent in X
to x0. Next, let ε ∈ R+. As f is continuous in x0, there exists r(ε) > 0 such that, if a ∈ A and
‖a− x0‖X < r(ε), then ‖f(a)− f(x0)‖Y < ε. From the definition of convergence of a sequence,
one has that there exists n(r(ε)) ∈ N such that, if n > n(r(ε)), one has ‖an − x0‖X < r(ε). It
follows that ‖f(an)− f(x0)‖Y < ε. So (II) holds.

On the other hand, we assume that (II) holds . We have to show that f is continuous in
x0. We argue by contradiction, assuming that it is not so. Therefore, there exists ε > 0, such
that, for every r > 0, there exists a ∈ A with ‖a − x0‖X < r and ‖f(a) − f(x0)‖Y ≥ ε. Let us
take r = 1, 1

2 , ...,
1
n , ... and let us choose an ∈ A ∩ B(x0,

1
n), with ‖f(an) − f(x0)‖Y ≥ ε. Then,

evidently, (an)n∈N converges to x0, but (f(an))n∈N does not converge to f(x0). So (II) does not
hold, and this is a contradiction. �

Now we are going to introduce and examine the notion of completeness in a normed space.
We start with following

Definition 2.3.9. Let X be a normed space and let (xn)n∈N be a sequence in X. We shall say
that (xn)n∈N is a Cauchy sequence if ∀ε ∈ R+ there exists n(ε) ∈ N such that, for every
choice of m and n in N, with m > n(ε) and n > n(ε), one has

‖an − am‖ < ε.

Remark 2.3.10. Every convergent sequence is a Cauchy sequence. In fact, let (xn)n∈N be a
sequence in X and let x0 ∈ X be such that ‖xn − x0‖ → 0 (n → +∞). Next, let ε > 0 and
n( ε2) ∈ N be such that ‖xn − x0‖ < ε

2 if n > n( ε2). If we take n and m in N, both larger than
n( ε2), we have

‖xn − xm‖ = ‖(xn − x0) + (x0 − xm)‖

≤ ‖xn − x0‖+ ‖x0 − xm‖ <
ε

2
+
ε

2

= ε.

In general, the converse does not hold: in a normed space there may exist Cauchy sequences
which are not convergent.

Definition 2.3.11. Let X be a normed space, with norm ‖.‖. We shall say that X with such
norm is complete if every Cauchy sequence is convergent. Complete normed spaces are also
called Banach spaces.

Now we are going to see some examples of Banach spaces. The first and fundamental result
is the following

Theorem 2.3.12. R, with the absolute value as norm, is complete.

This result can be esaily extended to Rn:

Theorem 2.3.13. Rn, with the Euclidean norm, is complete.
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Proof Let (xk)k∈N be a Cauchy sequence in Rn with respect to the Euclidean norm, which
we indicate with ‖.‖. We have to show that the sequence is convergent.

Given k ∈ N, let xk = (xk1, ..., x
k
n). We fix ε > 0. Then, there exists k(ε) ∈ N such that, if i

and j are natural numbers larger than k(ε), we have ‖xi − xj‖ < ε. Let r be a natural number
less or equal than n. We consider the sequence in R (xkr )k∈N. If i and j are natural numbers
larger than k(ε), one has

|xir − xjr‖ ≤ ‖xi − xj‖ < ε.

Therefore, for r = 1, ..., n, (xkr )k∈N is a Cauchy sequence in R. As R is complete, each sequence
(xkr )k∈N has a real limit x0

r . We set

x0 := (x0
1, ..., x

0
n).

Then the sequence (xk)k∈N converges to x0. In fact,

‖xk − x0‖ = [
n∑
r=1

(xkr − x0
r)

2]
1
2 → 0(k → +∞).

�
Now we consider the norm ‖.‖∞.

Theorem 2.3.14. Let A ⊆ Rn be nonempty. Then the space B(A,R), normed with ‖.‖∞, is
complete.

The space BC(A,R) with the norm ‖.‖∞ is complete.

Proof Let (xk)k∈N be a Cauchy sequence in B(A,R) with respect to the norm ‖.‖∞. Let
ε > 0. Then, there exists k(ε) ∈ N such that, if i and j are natural numbers larger than k(ε),
one has ‖xi − xj‖∞ < ε. Let a be an arbitrary element of A. We consider the sequence in R
(xk(a))k∈N. If i and j are natural numbers larger than k(ε), one has

|xi(a)− xj(a)| ≤ ‖xi − xj‖∞ < ε.

So, ∀a ∈ A, (xk(a))k∈N is a Cauchy sequence in R. As R is complete, each sequence (xk(a))k∈N
has a real limit x0(a). Evidently, x0 is a function from A to R. We check that x0 ∈ B(A,R)
and that

‖xk − x0‖∞ → 0(k → +∞).

Let ε > 0 and let k(ε) be as before. Let j > k(ε). Next, let i > k(ε) and a ∈ A. One has

|xi(a)− xj(a)| ≤ ‖xi − xj‖∞ < ε. (2.3.3)

Passing to the limit as i → +∞ in (2.3.3), we obtain that |x0(a) − xj(a)| ≤ ε ∀a ∈ A. In
particular, from the case ε = 1 we obtain, ∀a ∈ A and for an arbitrary j > k(1),

|x0(a)| = |(x0(a)− xj(a)) + xj(a)|

≤ |x0(a)− xj(a)|+ |xj(a)| ≤ 1 + ‖xj‖∞.

So x0 ∈ B(A,R) and ‖x0‖∞ ≤ 1 + ‖xj‖∞. Moreover, if j > k( ε2), we have

‖x0 − xj‖∞ ≤
ε

2
< ε.

From this we obtain the first statement.
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Now we check the completeness ofBC(A,R). Let (xk)k∈N be a Cauchy sequence inBC(A,R).
Evidently, it is a Cauchy sequence also in B(A,R) and so, from the first statement, there exists
x0 ∈ B(A,R) such that ‖xk − x0‖∞ → 0 (k → ∞). To conclude, we have only to verify that
x0 ∈ BC(A,R). As we already know that x0 is bounded, we have only to check that it is
continuous.

Let a0 ∈ A. We verify that x0 is continuous in a0. Let ε > 0. Let k ∈ N be such that
‖xk − x0‖∞ < ε

3 . As xk is continuous, there exists r > 0 such that, if a ∈ A and ‖a− a0‖ < r,
|xk(a)− xk(a0)| < ε

3 . We such choice of a, one has

|x0(a)− x0(a0)|

= |(x0(a)− xk(a)) + (xk(a)− xk(a0)) + (xk(a0)− x0(a0))|

≤ |x0(a)− xk(a)|+ |xk(a)− xk(a0)|+ |xk(a0)− x0(a0)|

≤ 2‖xk − x0‖∞ + |xk(a)− xk(a0)| < ε.

So x0 is continuous in a0. �
One could also prove the following

Theorem 2.3.15. Let A ∈Mn. Then L1(A), normed with ‖.‖1, is complete.

Example 2.3.16. From Theorem 2.3.14, it follows that C([0, 1],R) is a Banach space with the
norm ‖.‖∞. Let X be the linear space of polynomial functions with real coefficients, restricted
to [0, 1]. A celebrated theorem due to Weierstrass asserts that X is dense in C([0, 1],R). In
other words, by virtue of Theorem 2.3.7, we can say that, given an arbitrary continuous function
f with domain [0, 1] and real valued, there exists a sequence of polynomial functions uniformly
convergent to f . From this it immediately follows that X, with norm ‖.‖∞, is not complete. To
see this, it suffices to take a sequence (xk)k∈N of polynomial functions uniformly convergent to
a continuous function which is not polynomial (for example, to a continuous function which is
not differentiable somewhere). This sequence is a Cauchy sequence in X by Remark 2.3.10, but
it is not convergent in X.

Exercise 2.3.17. Check that in any normed space the limit of a sequence (if existing) is unique.

Exercise 2.3.18. Check that in any normed space X, if (xn)n∈N converges to x0 and (yn)n∈N
converges to y0, then (xn+yn)n∈N converges to x0+y0 and, if λ belongs to K, (λxn)n∈N converges
to λx0.

Exercise 2.3.19. With reference to Example 2.3.5, check that the sequence (xn)n∈N converges
to 0 in L1([0, 1]). Observe that m(x) = 0 almost everywhere in [0, 1].

Exercise 2.3.20. Let X, Y and Z be three normed spaces, let A ⊆ X, B ⊆ Y , f : A → Y ,
g : B → Z, with f(A) ⊆ B. Next, let x0 ∈ A be such that f is continuous in x0 and g is
continuous in f(x0). Prove that g ◦ f is continuous in x0. (Hint: apply Theorem 2.3.8).

Exercise 2.3.21. Verify that C, with the absolute value as norm, is complete.

Exercise 2.3.22. Let A ⊆ X, with X normed space. Prove that the two following conditions
are equivalent:

(I) A is closed;
(II) let l ∈ X be such that there exists a sequence (an)n∈N with values in A, convergent to

l. Then l ∈ A.
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Exercise 2.3.23. Study the convergence of the following sequences (xk)k∈N in the space B(A,R)
indicated:

(a) A = [0,+∞[; xk(t) = [2 sinh(2kt)− e2kt]t;
(b) A =]0, 2]; xk(t) = ( t2)k ln( t2);
(c) A = R; xk(t) = sin( tk )− cos( tk );
(d) A = [0, 2π]; xk(t) = sin( tk )− cos( tk );
(e) A = [0,+∞[; xk(t) = π

2 − arctan(kt);
(f) A = [1,+∞[; xk(t) = π

2 − arctan(kt);
(g) A = R+; xk(t) = t

1+k2t2
;

(h) A = R+; xk(t) = t
t+k ;

(i) A = [0, 1]; xk(t) = t
t+k .

2.4 Spaces with inner product, Hilbert spaces

We start with the definition of inner product.

Definition 2.4.1. Let X be a linear space over K (as usual, coinciding with R or C), < ., . >
a map from X ×X to K (that is, associating with each ordered pair (x, y) in X ×X an element
< x, y > belonging to K). We shall say that < ., . > is an inner (scalar) product in X if
the following conditions hold:

(IP1) ∀y ∈ X x→< x, y > is linear from X to K;
(IP2) < y, x >= < x, y > ∀x, y ∈ X;
(IP3) < x, x > is a nonnegative real number ∀x ∈ X;
(IP4) if x ∈ X and < x, x >= 0, then x = 0.

Remark 2.4.2. (IP1) means that ∀λ1, λ2 ∈ K, ∀x1, x2, y ∈ X one has

< λ1x
1 + λ2x

2, y >= λ1 < x1, y > +λ2 < x2, y > .

Next, from (IPI) and (IP2) it follows that, ∀λ1, λ2 ∈ K, ∀x, y1, y2 ∈ X,

< x, λ1y
1 + λ2y

2 >=

< λ1y1 + λ2y2, x > = λ1 < y1, x > +λ2 < y2, x > =

= λ1 < x, y1 > +λ2 < x, y2 > .

It is customary to say that, ∀x ∈ X, y →< x, y > is antilinear from X to K. In case K = R,
this means that a scalar product is linear also in its second term.

Example 2.4.3. Let X = Rn and K = R. If x = (x1, ..., xn) and y = (y1, ..., yn), we set

< x, y >:= x1y1 + ...+ xnyn. (2.4.1)

It is easy to check that the mapping defined in (2.4.1) is an inner produch in Rn (which probably
the reader already knows).

Example 2.4.4. Let X = Cn and K = C. If x = (x1, ..., xn) and y = (y1, ..., yn), we set

< x, y >:= x1y1 + ...+ xnyn. (2.4.2)

The mapping defined in (2.4.2) is an inner product in Cn. We leave the easy proof to the reader
(see Exercise 2.4.16).
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Example 2.4.5. Let A ∈ Mn and let f : A → C be measurable. We shall say that f belongs
to L2(A) if ∫

A
|f(x)|2dx < +∞.

If a and b are nonnegative real numbers , we have

0 ≤ (a− b)2 = a2 + b2 − 2ab.

As a consequence, we obtain the inequality

ab ≤ 1

2
(a2 + b2). (2.4.3)

So let f and g be elements of L2(A). It x ∈ A, we have

|f(x) + g(x)|2 ≤ (|f(x)|+ |g(x)|)2

= |f(x)|2 + |g(x)|2 + 2|f(x)||g(x)|

≤ 2(|f(x)|2 + |g(x)|2),

using (2.4.3). Hence ∫
A
|f(x) + g(x)|2dx

≤
∫
A

2(|f(x)|2 + |g(x)|2)dx

= 2(

∫
A
|f(x)|2dx+

∫
A
|g(x)|2) < +∞.

Therefore, f + g ∈ L2(A). It is also easy to see that, if λ ∈ C and f ∈ L2(A), even λf ∈ L2(A).
We deduce that L2(A) is a linear space over C with the usual operations of sum and scalar
multiplication. Moreover, it is easy to check that, if f ∈ L2(A) and f ∼ g in the sense of
Definition 1.4.1, then even g ∈ L2(A) (see Exercise 2.4.17).

Definition 2.4.6. Let A ∈Mn. We set

L2(A) := {[f ] : f ∈ L2(A)}.

L2(A) is a linear space over C with the sum and scalar multiplication defined in (1.4.2) and
(1.4.3), as it is easy to check.

Let now f and g be elements of L2(A). Applying again (2.4.3), we have, ∀x ∈ A,

|f(x)g(x)| = |f(x)||g(x)| ≤ 1

2
(|f(x)|2 + |g(x)|2).

It follows that fg is summable in A. So let [f ] and [g] be elements of L2(A). We set

< [f ], [g] >:=

∫
A
f(x)g(x)dx. (2.4.4)

It is easy to see (applying Theorem 1.4.2) that (2.4.4) does not depend on the choice of the
elements in the equivalence classes. We check that < ., . > is an inner product in L2(A).

We leave to the reader the inspection of (IP1).
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We check (IP2). One has
< [g], [f ] >=

=

∫
A
g(x)f(x)dx =

∫
A
f(x)g(x)dx

=

∫
A
f(x)g(x)dx

(applying formula (1.2.9)
= < [f ], [g] >.

We check (IP3). if f ∈ L2(A),

< [f ], [f ] >=

∫
A
|f(x)|2dx ≥ 0.

Finally, we check (PI4). The condition < [f ], [f ] >= 0 is equivalent to
∫
A |f(x)|2dx = 0.

From Lemma 2.1.11, it follows that |f(x)|2 = 0 a. e. in A, and so f(x) = 0 a.e. in A. We
conclude that

[f ] = [0].

Now we examine how it is possible to intoduce a norm in a space with an inner product,
which is intimately connected with the inner product itself.

Definition 2.4.7. Let X be a linear space over K, in which an inner product < ., . > has been
introduced. We set, ∀x ∈ X,

‖x‖ :=
√
< x, x >.

We shall name the mapping x→ ‖x‖ the norm associated with the inner product < ., . >.

Remark 2.4.8. We observe that Definition 2.4.7 is well posed by virtue of condition (PI3).
We shall soon check that ‖.‖ is really a norm, in the sense of Definition 2.1.6.

In order to prove that ‖.‖ is a norm, we shall employ the following

Theorem 2.4.9. Let X be a linear space over K, with inner product < ., . >. Next, let ‖.‖ be
as in Definition 2.4.7. Then, ∀x, y ∈ X

| < x, y > | ≤ ‖x‖‖y‖.

(Cauchy-Schwarz inequality)

Proof Let α ∈ K, which we are going to specify later. Then, ∀t ∈ R, using (PI1)− (PI3),

0 ≤< x+ tαy, x+ tαy >

=< x, x > +t(α < y, x > +α < x, y >) + t2|α|2 < y, y >

= ‖x‖2 + 2tRe(α < y, x >) + t2|α|2‖y‖2,

as
α < y, x > +α < x, y >= α < y, x > +α < y, x >

= 2Re(α < y, x >).

We choose
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α =

{ <x,y>
|<x,y>| if < x, y >6= 0,

1 if < x, y >= 0.

We observe that in any case |α| = 1 and we have

P (t) :=< x+ tαy, x+ tαy >= ‖x‖2 + 2t| < x, y > |+ t2‖y‖2 ∀t ∈ R.

P is a polynomial of degree not exceedin two, with real coefficients, and P (t) ≥ 0 ∀t ∈ R. This
implies that its discriminant is not positive, that is,

| < x, y > |2 − ‖x‖2‖y‖2 ≤ 0,

which implies immediately the conclusion. �

Theorem 2.4.10. Let X be a linear space over K and < ., . > an inner product in in X. Then
the norm associated with < ., . > (Definition 2.4.7) is a norm, in the sense of Definition 2.1.6.

Proof We indicate, as usual, with ‖.‖ the norm associated with < ., . >. Let λ ∈ K and
x ∈ X. Then

‖λx‖ =
√
< λx, λx > =

√
|λ|2 < x, x > = |λ|‖x‖.

Next, if x and y are elements of X, we have

‖x+ y‖2 =< x+ y, x+ y >= ‖x‖2 + 2Re(< x, y >) + ‖y‖2

≤ ‖x‖2 + 2|Re(< x, y >)|+ ‖y‖2 ≤ ‖x‖2 + 2| < x, y > |+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

(by Cauchy-Schwarz inequality)

= (‖x‖+ ‖y‖)2,

from which, taking the square roots, we obtain

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Finally, if ‖x‖ = 0, then < x, x >= 0, which implies x = 0. �

Example 2.4.11. We consider Example 2.4.3. Given x = (x1, ..., xn) ∈ Rn, we obtain from the
scalar product the norm

‖x‖ =
√
< x, x > =

√
x2

1 + ...+ x2
n,

which is the well known Euclidean norm.

Example 2.4.12. We consider Example 2.4.4. Given x = (x1, ..., xn) ∈ Cn, we obtain from the
scalar product the norm

‖x‖ =
√
< x, x > =

√
|x1|2 + ...+ |xn|2. (2.4.5)

Example 2.4.13. We consider Example 2.4.5. From the scalar product defined in L2(A), we
obtain the norm

‖[f ]‖ =
√
< [f ], [f ] > =

√∫
A
|f(x)|2dx. (2.4.6)
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In this case, Cauchy-Schwarz inequality gives the following integral inequality, which is valid for
f and g in L2(A):

|
∫
A
f(x)g(x)dx| ≤

√∫
A
|f(x)|2dx

√∫
A
|g(x)|2dx. (2.4.7)

We conclude with the definition of Hilbert space.

Definition 2.4.14. Let X be a normed space, with a norm ‖.‖ associated with a certain inner
product < ., . >. We shall say that with such norm X is a Hilbert space if it is complete, in
the sense of Definition 2.3.11.

We have already seen (Theorem 2.3.13) that Rn, with the Euclidean norm, is complete and
is, therefore, a Hilbert space. Even Cn with the norm 2.4.5, is complete (Exercise 2.4.18). Next,
it is possible to prove the following

Theorem 2.4.15. Let A ∈Mn. Then the space L2(A), with the norm (2.4.6), is complete and
so it is a Hilbert space.

Exercise 2.4.16. Check in detail that the map (2.4.2) is an inner product in Cn. (Hint: start
by showing that, if z and v are elements of C, then zv = zv. We recall that zz = |z|2.)

Exercise 2.4.17. Check that, if f ∈ L2(A) and f ∼ g, then g ∈ L2(A).

Exercise 2.4.18. Check that Cn, with the norm (2.4.5), is complete. (Hint.: observe that with
such norm Cn coincides with R2n, equipped with the corresponding Euclidean norm.)

2.5 Orthogonal projections in Hilbert spaces

We start with the (probably) most important result in the theory of Hilbert spaces.

Recalling the usual interpretation of the standard scalar product in Rn, we shall say that
two elements x and y in a space with inner product < ., . > are orthogonal if < x, y >= 0.

Theorem 2.5.1. Let H be a Hilbert space, A ⊆ H nonempty, convex and closed. Next, let
x ∈ H. Then the mapping y → ‖y − x‖ has a minimum in A. Such minimum is taken in a
unique point PAx ∈ A.

We want to give a complete proof of Theorem 2.5.1, also in order to show the role of com-
pleteness in the space H.

We start with the following simple

Lemma 2.5.2. (The parallelogram lemma) Let H be a Hilbert space and let x and y be elements
of H. Then

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Proof We have

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + 2Re < x, y > +‖y‖2 + ‖x‖2 − 2Re < x, y > +‖y‖2.

�
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Remark 2.5.3. The parallelogram lemma is a generalization of the well known fact that, in a
parallelogram, the sum of the areas of the squares constructed on the diagonals is double the
sum of the areas of the squares constructed on the sides.

Proof of Theorem 2.5.1 We indicate with ν the infimum of the function y → ‖y−x‖ restricted
to A. Obviously, ν ≥ 0. We take a sequence (yn)n∈N in A, such that

lim
n→+∞

‖yn − x‖ = ν. (2.5.1)

It is clear that a sequence of this type exists: in fact, by the definition of infimum, for every
n ∈ N there exists yn ∈ A, such that

ν ≤ ‖yn − x‖ ≤ ν + 2−n.

Now we show that the sequence (yn)n∈N is convergent. As H is complete, it suffices to show
that it is a Cauchy sequence. In fact, by the parallelogram lemma, ∀n,m ∈ N,

‖yn − ym‖2 = ‖(yn − x)− (ym − x)‖2 = 2(‖yn − x‖2 + ‖ym − x‖2)− ‖yn + ym − 2x‖2.

As A is convex, 1
2(yn + ym) ∈ A. It follows that

‖yn + ym − 2x‖2 = 4‖1

2
(yn + ym)− x‖2 ≥ 4ν2.

We deduce that
‖yn − ym‖2 ≤ 2(‖yn − x‖2 + ‖ym − x‖2)− 4ν2,

and, as (2.5.1) holds, there exists n(ε) in N, such that, if both n and m are larger than n(ε),

‖yn − ym‖2 < ε2.

So, (yn)n∈N is convergent to some element y0 ∈ H. By Theorem 2.3.7, y0 ∈ A = A, because A
is closed. By the result of Exercise 2.2.10,

‖y0 − x‖ = lim
n→+∞

‖yn − x‖ = ν.

We deduce that the mapping y → ‖y − x‖ has minimum in A. It remains to show that, if y0

and y1 are elements of A, such that

‖y0 − x‖ = |y1 − x‖ = ν,

then y0 = y1. To this aim, we consider the following function
φ : [0, 1]→ R,

φ(t) = ‖(1− t)y0 + ty1 − x‖2.

We start by observing that, as A is convex, ∀t ∈ [0, 1] (1− t)y0 + ty1 = y0 + t(y1 − y0) ∈ A. We
deduce that φ(t) ≥ ν2 ∀t ∈ [0, 1]. On the other hand,

‖(1− t)y0 + ty1 − x‖ = ‖(1− t)(y0 − x) + t(y1 − x)‖ ≤ (1− t)‖y0 − x‖+ t‖y1 − x‖ = ν,

so that φ(t) = ν2 ∀t ∈ [0, 1]. We observe that

φ(t) = ‖t(y1 − y0) + y0 − x‖2 = t2‖y1 − y0‖2 + 2tRe < y0 − x, y1 − y0 > +‖y0 − x‖2,

which implies that, as φ is constant,

0 = φ′′(1) = 2‖y1 − y0‖2.

So y0 = y1 and the proof is complete. �
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Remark 2.5.4. In essence, Theorem 2.5.1 states that, if A is convex and closed, for each point
x ∈ H, there exists a unique point PAx in A, which has minimum distance from x. In the case
that A is a closed subspace of H, PAx may be thought as the orthogonal projection of x onto
A, on the basis of the following result.

Theorem 2.5.5. Let H be a Hilbert space, A a closed subspace of H. Next, let x ∈ H. Then,
given y ∈ A, the following conditions are equivalent:

(I) y = PAx;
(II) < x− y, z >= 0 ∀z ∈ A.

Proof We check that, if y = PAx, < x − y, z >= 0 ∀z ∈ A. Let z ∈ A and t ∈ R. As
y + tz ∈ A ∀t ∈ R, the function {

P : R→ R,
P (t) := ‖x− y − tz‖2

has minimum in t = 0. One has

P (t) = ‖x− y‖2 − 2tRe(< x− y, z >) + t2‖z‖2.

So P is a polynomial function. Necessarily, P ′(0) = 0, which implies

Re(< x− y, z >) = 0.

If K = C, even iz ∈ A and so we have also Re(< x− y, iz >) = 0; this means that

Im(< x− y, z >) = Re(−i < x− y, z >) = Re(< x− y, iz >) = 0.

With this we have proved that (I) implies (II).
On the other hand, let y ∈ A be such that < x− y, z >= 0 ∀z ∈ A. Then, given z ∈ A, we

have
‖x− z‖2 = ‖(x− y) + (y − z)‖2

= ‖x− y‖2 + 2Re(< x− y, y − z >) + ‖y − z‖2 = ‖x− y‖2 + ‖y − z‖2

(because y − z ∈ A)
≥ ‖x− y‖2.

So y = PAx. �

Now we want to give an explicit formula for PA in the case that A is a finite dimensional
subspace of H. We start with the following preliminary

Definition 2.5.6. Let {xi : i ∈ I}, with I arbitrary set of indexes, a subset of the Hilbert space
H. We shall say that {xi : i ∈ I} is an orthonormal system if, ∀i, j ∈ I,

< xi, xj >= δij

with δij Kronecker’s delta.

Remark 2.5.7. In essence, in Definition 2.5.6 we require that the vectors xi are pairwise
orthogonal and have unitary norm. For example, the standard basis {ei : i ∈ {1, ..., n}} of Rn
is an orthonormal system with respect to the standard inner product (see Example 2.4.3). The
same happens in Cn with the inner product described in Example 2.4.4.
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As we are going to see, it is helpful to have an orthonormal basis at disposal. To this aim,
we state the following

Theorem 2.5.8. Let A be a finite dimensional subspace of the Hilbert space H. Then A has an
orthonormal basis with respect to the inner product in H.

Proof The proof we are giving is constructive, in the sense that it describes a method (the
so called Gram-Schmidt method) to construct an orthonormal basis of A starting from an
arbitrary basis {f i : 1 ≤ i ≤ n}, with n dimension of A. For simplicity, we are going to consider
the case n = 3, even if the method is completely general and follows the lines of the particular
case we are going to treat.

Let {f1, f2, f3} be a basis of A. We set

e1 :=
1

‖f1‖
f1.

(observe that f1 6= 0). One has ‖e1‖ = 1.
We look for an element ε2 ∈ A in the form

ε2 = ce1 + f2,

which is orthogonal to e1. We get

0 =< ε2, e1 >= c+ < f2, e1 > .

So, we have to take
c = − < f2, e1 > .

We observe that, whatever c is, ε2 6= 0, as e1 and f2 are linearly independent. Now we set

e2 :=
1

‖ε2‖
ε2.

It is clear that e1 and e2 are orthogonal and with unitary norm. Moreover, they are both linear
combinations of f1 and f2.

Finally, we look for an element ε3 ∈ A in the form

ε2 = c1e
1 + c2e

2 + f3,

which is orthogonal to both e1 and e2. We obtain

0 =< ε3, e1 >= c1+ < f3, e1 >,

0 =< ε3, e2 >= c2+ < f3, e2 > .

So we have to take
c1 = − < f3, e1 >, c2 = − < f3, e2 > .

We have that ε3 6= 0, as f3 does not depend linearly on e1 and e2, because it does not depend
on f1 and f2. So we set

e3 :=
1

‖ε3‖
ε3,

and {e1, e2, e3} is an orthonormal basis. �
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Example 2.5.9. Let H = L2([−1, 1]), and let A be the subspace of the equivalence classes
containing the restrictions to [−1, 1] of polynomial functions of degree less or equal to 2. It is
obvious that A is a finite dimensional subspace and a basis of A is {[1], [t], [t2]}. In the following,
given f ∈ L2([0, 1]), we shall write f instead of [f ], for simplicity of notation. Let f1(t) = 1,
(t ∈ [−1, 1]). One has

‖f1‖ = (

∫ 1

−1
12dt)

1
2 =
√

2.

So we set e1(t) := 1√
2

(t ∈ [−1, 1]). Following the general method in the proof of Theorem 2.5.8,
we set

c := − < f2, e1 >= −
∫ 1

−1

t√
2
dt = 0.

So,

ε2(t) = t, t ∈ [−1, 1].

One has

‖ε2‖ = (

∫ 1

−1
t2dt)

1
2 =

√
2

3
,

so that

e2(t) =

√
3

2
t.

Finally, we set

c1 := − < f3, e1 >= −
∫ 1

−1

t2√
2
dt = −

√
2

3
,

c2 := − < f3, e2 >= −
∫ 1

−1
t2(

√
3

2
t)dt = 0.

So we have

ε3(t) = t2 − 1

3
.

Next, one can verify that ‖ε3‖ = 2
3

√
2
5 . So we set

e3(t) =
3

2

√
5

2
(t2 − 1

3
).

{e1, e2, e3} is an orthonormal basis of A.

Now, as promised, we are going to exibit a formula for PA in the case that A is a finite
dimensional subspace of H.

Theorem 2.5.10. Let H be a Hilbert space, A a finite dimensional subspace, and let {e1, ..., en}
be an orthonormal basis of A. Then A is closed. Moreover, ∀x ∈ H,

PAx =
n∑
i=1

< x, ei > ei. (2.5.2)
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Proof The statement that A is closed is left to the reader (Exercise 2.5.14). Concerning
(2.5.2), as PAx ∈ A, it can be written in the form

PAx = c1e
1 + ...+ cne

n,

with c1, ..., cn elements of the field K. Let 1 ≤ j ≤ n. From Theorem 2.5.5 it follows that

0 =< x−
n∑
i=1

cie
i, ej >=< x, ej > −cj ,

and the conclusion follows. �

Example 2.5.11. Let H = L2([0, 1]) and let A be the subspace of H of polynomial functions
of degree less or equal than 2. Let f(t) = sin(t). f is an element of H. PAf may be interpreted
as the best approximation of f in A, in the sense that

∫
[−1,1] |f(t)−P (t)|2dt, with P polynomial

of degree less or equal to 2, takes the minimum value exactly for P = PAf . In Example 2.5.9
we have determined an orthonormal basis {e1, e2, e3} of A. Using the calculations already done,
we obtain that

PAf(t) =
3∑
i=1

< f, ei > ei(t) =

=
1√
2

∫ 1

−1

sin(s)√
2
ds+

∫ 1

−1
sin(s)

√
3

2
sds

√
3

2
t

+

∫ 1

−1
sin(s)

3

2

√
5

2
(s2 − 1

3
)ds

3

2

√
5

2
(t2 − 1

3
) =

= 3(sin(1)− cos(1))t.

We conclude this section with the following

Theorem 2.5.12. Let (Vn)n∈N be a sequence of closed subspaces of the Hilbert space H, such

that Vn ⊆ Vn+1 ∀n ∈ N and V :=
⋃
n∈N

Vn is dense in H. Given n ∈ N, we indicate with Pn the

orthogonal projection onto Vn. Then, ∀x ∈ H

lim
n→+∞

Pnx = x

holds.

Proof Let ε > 0. Applying Theorem 2.3.7, we can say that there exists v0 ∈ V , such that
‖x − v0‖ < ε. Let v0 ∈ Vn0 , with n0 ∈ N. If n > n0, we shall have that, keeping into account
that v0 ∈ Vn,

‖x− Pnx‖ ≤ ‖x− v0‖ < ε.

�

Exercise 2.5.13. Show that, if A is a closed subspace of H, the operator PA : H → A is linear.
(Hint.: use Theorem 2.5.5)

Exercise 2.5.14. Show that, if A is a finite dimensional subspace of the Hilbert space H, then
A is closed. (Hint: let {e1, ..., en} be an orthonormal basis of A. If x = x1e

1 + ...+ xne
n, then

‖x‖ = (|x1|2 + ...+ |xn|2)
1
2 = ‖(x1, ..., xn)‖Cn ,

where ‖.‖Cn is the norm in Cn introduced in Example 2.4.4. Use the result of Exercise 2.4.18.
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Exercise 2.5.15. Construct a basis of the subspace of polynomial functions of degree less or
equal to 3, which is orthonormal with respect to the inner product in L2([−1, 1]).

Exercise 2.5.16. Let x1,...,xn be elements of H, which are pairwise orthogonal. Show that

‖x1 + ...+ xn‖2 = ‖x1‖2 + ...+ ‖xn‖2.

This formula may be considered a generalization of the classical Pithagoras’ theorem.

2.6 Fourier series

We start by recalling that, given y ∈ R, by definition

eiy = cos(y) + i sin(y).

Observe that one has
eix = cos(x)− i sin(x) =

= cos(−x) + i sin(−x) = e−ix.

Moreover, the basic formula

eixeiy = ei(x+y) ∀x, y ∈ R, (2.6.1)

holds, from which it follows
(eix)n = einx ∀n ∈ N

Next, taking into account that ei0 = 0, from (2.6.1) we see that

(eix)−1 = e−ix ∀x ∈ R.

Finally, we observe that

cos(x) = Re(eix) =
eix + eix

2
=
eix + e−ix

2
(2.6.2)

and

sin(x) = Im(eix) =
eix − eix

2i
=
eix − e−ix

2i
(2.6.3)

(2.6.2) and (2.6.3) are the well known Euler’s formulas. Let now m and n be integers, with
m 6= n. One has ∫ π

−π e
inxeimxdx =

=
∫ π
−π e

i(n−m)xdx =
∫ π
−π cos((n−m)x)dx+ i

∫ π
−π sin((n−m)x)dx =

= 0.

(2.6.4)

On the other hand, ∫ π

−π
einxe−inxdx = 2π. (2.6.5)

From (2.6.4) and (2.6.5) we deduce that { einx√
2π

: n ∈ Z} is an orthonormal system in L2([−π, π]).

Given n ∈ N, we indicate with Vn the subspace of L2([−π, π]) generated by { eikx√
2π

: −n ≤ k ≤ n}.
If f ∈ L2([−π, π]), the orthogonal projection Pnf of f onto Vn is given by
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Pnf(t) =
1

2π

∫ π

−π
f(s)

n∑
k=−n

eik(t−s)ds (2.6.6)

Taking into account the formula of the sum of the term in a geometric progression, one has, for
ei(t−s) 6= 1,

n∑
k=−n

eik(t−s) = e−in(t−s)
2n∑
k=0

eik(t−s) = e−in(t−s) 1− ei(2n+1)(t−s)

1− ei(t−s)

= e−in(t−s) (1− ei(2n+1)(t−s))(1− e−i(t−s))
|1− ei(t−s)|2

.

One has
|1− ei(t−s)|2 = [1− cos(t− s)]2 + sin2(t− s)

= 2− 2 cos(t− s) = 4 sin2(
t− s

2
).

e−in(t−s)(1− ei(2n+1)(t−s))(1− e−i(t−s)) =

= ein(t−s) + e−in(t−s) − ei(n+1)(t−s) − e−i(n+1)(t−s)

= 2[cos(n(t− s))− cos((n+ 1)(t− s))]

(by Euler’s formulas)

= 4 sin((n+
1

2
)(t− s)) sin(

t− s
2

)

(by the prostaphaeresis formulas). We conclude that, if ei(t−s) 6= 1, one has

n∑
k=−n

eik(t−s) =
sin((n+ 1

2)(t− s))
sin( t−s2 )

.

Extending arbitrarily
sin((n+ 1

2
)(t−s))

sin( t−s
2

)
to the points (in finite number in [−π, π]) such that sin( t−s2 ) =

0, we have obtained

Pnf(t) =
1

2π

∫ π

−π

sin((n+ 1
2)(t− s))

sin( t−s2 )
f(s)ds. (2.6.7)

We set V :=
⋃
n∈N

Vn. It is possible to show that V is dense in L2([−π, π]). Applying Theorem

2.5.12, we get the following

Theorem 2.6.1. Let f ∈ L2([−π, π]). Then the sequence (Pnf)n∈N, with Pnf given by(2.6.7),
converges to f , for n→ +∞, in L2([−π, π]).

We shall usually write

f =

+∞∑
n=−∞

eint

2π

∫ π

−π
f(s)e−insds, (2.6.8)

in the sense that f = lim
n→+∞

n∑
k=−n

eik.

2π

∫ π
−π f(s)e−insds in L2([−π, π]). We observe that, generally

speaking, there is no pointwise convergence. Observe, by the way, that, as elements of L2([−π, π])
are equivalence classes of functions and not functions, the value of f(t), as depending on the
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specific element in the class, is not defined. One might wonder whether, for example, given
f ∈ C([−π, π]), it holds (point by point) lim

n→+∞
Pnf(t) = f(t), with Pnf(t) defined in (2.6.7). It

is possible to show the following

Theorem 2.6.2. Let f ∈ C([−π, π]) be such that
(I) f(−π) = f(π);
(II) there exist C and α positive, such that

|f(t)− f(s)| ≤ C|t− s|α (2.6.9)

∀t, s ∈ [−π, π]. Then the sequence (Pnf)n∈N converges to f uniformly in [−π, π].

Remark 2.6.3. Applying the mean value theorem, it is not diificult to check that, if Re(f)
and Im(f) are of class C1, then assumption (II) of Theorem 2.6.2 is satisfied, with α = 1. In
general, one could show that, if f ∈ C([−π, π]) and (I) holds, the conclusion of Theorem 2.6.2
is false.

Remark 2.6.4. Given f ∈ L2([−π, π], we shall call (2.6.8) the classical Fourier expansion of
f .

In general, if S := {en : n ∈ N} is an orthonormal system in the Hilbert space H, such that
the linear space generated by S is dense in H, one has that, ∀f ∈ H,

f = lim
n→+∞

n∑
k=1

< f, ek > ek. (2.6.10)

We shall write

f =

∞∑
n=1

< f, en > en (2.6.11)

and we shall speak even in this case of the Fourier expansion of f . We shall see a significant
example in the following section.

Exercise 2.6.5. Check the assertion in the first part of Remark 2.6.3.

Exercise 2.6.6. Check that, if f =
∑∞

n=1 < f, en > en is a Fourier expansion of f ∈ H in the
sense of (2.6.10), one has

‖f‖2 =
∞∑
n=1

| < f, en > |2.

(Bessel’s identity) (Hint: employ the results of Exercises 2.2.10 and 2.5.16. )

2.7 An application of Fourier expansions to the heat equation

We consider the time evolution of the temperature u in a bar made of a homogeneous material.
We know such temperature at time t = 0 and a thermostat keeps it constant (for example, at
the level 0) at the endpoints of the bar. We identify the bar with an interval [0, l] ⊆ R, with
l > 0. If t ≥ 0 and x ∈ [0, l], we indicate with u(t, x) the temperature at the point x at time
t ≥ 0. We know from physics that u satisfies the following differential equation:

Dtu(t, x) = k2D2
xu(t, x), (t, x) ∈]0,+∞[×[0, l], (2.7.1)
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with k positive costant, depending on the material. We have also

u(0, x) = f(x), x ∈ [0, l] (2.7.2)

and
u(t, 0) = u(t, l) = 0, t ≥ 0. (2.7.3)

Here f is a continuous real valued function, with domain [0, l], such that f(0) = f(l) = 0 (this
condition assures the compatibility of (2.7.2) and (2.7.3)).

A solution to system (2.7.1)-(2.7.2)-(2.7.3) will be a function u, which is continuous in
[0,+∞[×[0, l], equipped in ]0,+∞[×[0, l] of the continuous derivatives Dtu, Dxu, D2

xu, sat-
isfying the three conditions (2.7.1)-(2.7.2)-(2.7.3).

In this simple situation, we are going to apply the so called method of separation of
variables: firstly, we shall look for solutions to (2.7.1) and (2.7.3), which are the product of a
function of t by a function of x. Next, we shall construct a solution to the problem, employing
expansions involving the particular solutions found.

So, we start to carry out our program, looking for solutions in the form

v(t, x) = T (t)X(x), t ≥ 0, x ∈ [0, l], (2.7.4)

not identically equal to zero, and satisfying (2.7.1) and (2.7.3). It should be{
T ′(t)X(x) = k2T (t)X ′′(x), t > 0, x ∈ [0, l],

X(0) = X(l) = 0.
(2.7.5)

Let t0 > 0 be such that T (t0) 6= 0. Then, it holds{
λX(x) = X ′′(x), x ∈ [0, l],
X(0) = X(l) = 0,

(2.7.6)

with λ := T ′(t0)
k2T (t0)

. In the same way, if x0 ∈]0, l[ e X(x0) 6= 0, one has

T ′(t) =
k2X ′′(x0)

X(x0)
T (t) = λk2T (t). (2.7.7)

We are interested in solutions which are not identically zero.
Let us consider problem (2.7.6). It is not difficult to check that it has solutions of this type

if and only if λ is in the form

λ = −n
2π2

l2
, n ∈ N. (2.7.8)

In this case, the solutions are the functions X, which are representable in the form

X(x) = C sin(
nπx

l
), (2.7.9)

with C ∈ R arbitrary. If λ = −n2π2

l2
, we can compute the solutions of (2.7.7), which are the

functions of the form

T (t) = Ce−
(nπk)2t

l2 , (2.7.10)

with C ∈ R arbitrary. So, we obtain, for each n ∈ N, the function

vn(t, x) = e−
(nπk)2t

l2 sin(
nπx

l
), (2.7.11)
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fulfilling (2.7.1) e (2.7.3). So we look for a solution of (2.7.1)-(2.7.2)-(2.7.3) in the form

u(t, x) =
∞∑
n=1

cnvn(t, x). (2.7.12)

With formal computations, we obtain

f(x) = u(0, x) =
∞∑
n=1

cn sin(
nπx

l
). (2.7.13)

We set

εn(x) := sin(
nπx

l
). (2.7.14)

We indicate with < ., . > the inner product in L2([0, l]). If m 6= n, one has

< εn, εm >=

∫ l

0
sin(

nπx

l
) sin(

mπx

l
)dx

=
1

2
[

∫ l

0
cos(

(n−m)πx

l
)dx−

∫ l

0
cos(

(n+m)πx

l
)dx] = 0,

while

< εn, εn >=

∫ l

0
sin2(

nπx

l
)dx =

1

2
{
∫ l

0
[1− cos(

2nπx

l
)]dx} =

=
l

2
.

So, if we set

en(x) =

√
2

l
sin(

nπx

l
), (2.7.15)

we obtain that {en : n ∈ N} is an orthonormal system in L2([0, l]). Now, it is possible to show
that the linear space generated by {en : n ∈ N} is dense in L2([0, l]). This implies, in force of
Remark 2.6.4, that every element f ∈ L2([0, l]) can be represented in the form (2.6.11), with the
series convergent in L2([0, l]). So, it is natural to take in (2.7.12)

cn =

√
2

l
< f, en >=

2

l

∫ l

0
sin(

nπy

l
)f(y)dy, (2.7.16)

from which we deduce

u(t, x) =
2

l

∞∑
n=1

e−
(nπk)2t

l2 sin(
nπx

l
)

∫ l

0
sin(

nπy

l
)f(y)dy (2.7.17)

We observe that, if t > 0, the series in the second term of (2.7.17) is absolutely convergent, as,
∀n ∈ N ,

|e−
(nπk)2t

l2 sin(
nπx

l
)

∫ l

0
sin(

nπy

l
)f(y)dy|

≤ e−
(nπk)2t

l2

∫ l

0
|f(y)|dy,



AN APPLICATION OF FOURIER EXPANSIONS ETC. 41

and the series with such expression as n−th term is convergent, by the root test. In addition,
it is possible to check that it is correct to differentiate with respect to t and x under the sign of
series in (2.7.17) and the following function

u(t, x) =


2
l

∑∞
n=1 e

− (nπk)2t

l2 sin(nπxl )
∫ l

0 sin(nπyl )f(y)dy
if t > 0, x ∈ [0, l],

f(x)
if t = 0, x ∈ [0, l],

(2.7.18)

is a solution in the specified sense of system (2.7.1)-(2.7.2)-(2.7.3). One might wonder whether
it is unique.

So, let v be another solution to the same problem. It is immediately seen that z := u− v is
a solution to (2.7.1)-(2.7.2)-(2.7.3) with f = 0. In conclusion, we are reduced to the following
problem : let z ∈ C([0,+∞[×[0, l]), equipped with the continuous derivatives Dtz, Dxz, D

2
xz in

]0,+∞[×[0, l], and such that

Dtz(t, x) = k2D2
xz(t, x), ∀(t, x) ∈]0,+∞[×[0, l], (2.7.19)

z(0, x) = 0, ∀x ∈ [0, l] (2.7.20)

and

z(t, 0) = z(t, l) = 0, ∀t ≥ 0. (2.7.21)

Are we allowed to say that z is identically zero? To this aim, let us introduce the function
E : [0,+∞[→ R, defined as follows:

E(t) :=

∫ l

0
z(t, x)2dx. (2.7.22)

From the regularity assumptions on z, one could deduce that E is continuous in [0,+∞[ and
differentiable in ]0,+∞[ and that, for t > 0, it holds

E′(t) = 2

∫ l

0
z(t, x)Dtz(t, x)dx.

It follows

E′(t) = 2k2

∫ l

0
z(t, x)D2

xz(t, x)dx =

(integrating by parts and using (2.7.21))

= −2k2

∫ l

0
(Dxz(t, x))2dx ≤ 0.

It follows that E is nonincreasing in [0,+∞[. So, ∀t ≥ 0,

0 ≤ E(t) ≤ E(0) = 0.

We conclude that E(t) = 0 ∀t ≥ 0. Applying Lemma 2.1.11, we can say that ∀t ≥ 0 z(t, x) = 0
a. e. in [0, l]. So, using the fact that z is continuous (see Exercise 2.7.2), we deduce that z is
identically zero.

We can summarize what we have seen in the following
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Theorem 2.7.1. Consider the problem (2.7.1)-(2.7.2)-(2.7.3), with f ∈ C([0, l],R), f(0) =
f(l) = 0. Then such problem has a unique solution u which is continuous and real valued in
[0,+∞[×[0, l], equipped with the continuous derivatives Dtu, Dxu, D2

xu in ]0,+∞[×[0, l]. Such
solution can be represented in the form (2.7.17).

Exercise 2.7.2. Let f ∈ C([0, l]) be such that f(x) = 0 a. e. in [0, l]. Show that f(x) = 0
∀x ∈ [0, l].

Exercise 2.7.3. Consider the problem (2.7.1)-(2.7.2), with the further condition

Dxu(t, 0) = Dxu(t, l) = 0, t ≥ 0 (2.7.23)

replacing (2.7.3). Following the arguments employed for problem (2.7.1)-(2.7.2)-(2.7.3), study
the system (2.7.1)-(2.7.2)-(2.7.23). Use the fact that the linear space generated by { 1√

l
} ∪

{
√

2
l cos(nπ.l ) : n ∈ N} is dense in L2([0, l]). In such a way, prove (at least, partially) the

following

Theorem 2.7.4. Consider the problem (2.7.1)-(2.7.2)-(2.7.23), with f ∈ C([0, l],R). Then
such problem has a unique solution u, which is continuous and real valued in [0,+∞[×[0, l],
equipped with the continuous derivatives Dtu, Dxu, D2

xu in ]0,+∞[×[0, l]. Such solution can be
represented in the form

u(t, x) =


2
l [

1
2

∫ l
0 f(y)dy +

∑∞
n=1 e

− (nπk)2t

l2 cos(nπxl )

×
∫ l

0 cos(nπyl )f(y)dy] se t > 0, x ∈ [0, l],
f(x) se t = 0, x ∈ [0, l].

(2.7.24)



Chapter 3

Functions of one complex variable

3.1 Holomorphic functions

The absolute value is a norm in C, thinking of it as a linear space over itself. We recall that,
as a set, C = R2 and we observe that the complex absolute value coincides with the Euclidean
norm in R2. So, employing well known results concerning the theory of several real variables,
we can say that:

Lemma 3.1.1. Given A ⊆ C, f : A→ C and z ∈ A, f is continuous in z if and only if Re(f)
and Im(f) are continuous in z.

If z ∈ L(A), lim
v→z

f(v) = l is equivalent to

lim
v→z

Re(f(v)) = Re(l), lim
v→z

Im(f(v)) = Im(l).

We are going to introduce the notion of complex derivative.

Definition 3.1.2. Let A ⊆ C, open, f : A→ C, z0 ∈ A. We shall say that f is differentiable
in complex sense in z0 if there exists in C

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0
= lim

h→0

f(z0 + h)− f(z0)

h
. (3.1.1)

We shall call f ′(z0) the (complex) derivative of f in z0.

Definition 3.1.3. Let A ⊆ C, open, f : A → C. We shall say that f is holomorphic in A if
it is differentiable in complex sense in each point of A and, moreover, the function z → f ′(z) is
continuous in A.

Example 3.1.4. Let n ∈ N, f : C → C, f(z) = zn. Then f is holomorphic. In fact, ∀z ∈ C,
one has

lim
h→0

(z + h)n − zn

h
= lim

h→0
[(z + h)n−1 + (z + h)n−2z + ...+ (z + h)zn−2 + zn−1]

= nzn−1.

Example 3.1.5. Let f : C → C, f(z) = Re(z). Then f is not differentiable in complex sense
in any point of C. In fact, if z ∈ C,

lim
h→0,h∈R

Re(z + h)−Re(z)
h

= 1,

43
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while

lim
h→0,h∈R

Re(z + ih)−Re(z)
ih

= 0.

Here is a list of properties already seen for the standard derivative:

Theorem 3.1.6. Let A ⊆ C open, f, g : A → C, z0 ∈ A. Next, let f and g be differentiable in
complex sense in z0. Then:

(I) f is continuous in z0;
(II) f + g is differentiable in z0 and

(f + g)′(z0) = f ′(z0) + g′(z0);

(III) fg is differentiable in z0 and

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0);

(IV) if g(z) 6= 0 ∀z ∈ A, f
g is differentiable in z0 and

(
f

g
)′(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)

g(z0)2
.

Theorem 3.1.7. Let A and B be open subsets of C, let f : A → C, g : B → C be such that
f(A) ⊆ B, z0 ∈ A. Next, let f be differentiable in z0 and let g be differentiable in f(z0). Then
g ◦ f is differentiable in z0 and

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).

The next, extremely important, result states a basic link between the real and the imaginary
part of a holomorphic function.

Theorem 3.1.8. Let A ⊆ C, A open and let f : A → C. Then, the following conditions are
equivalent:

(I) f is holomorphic in A;
(II) we set u := Re(f), v := Im(f), and we think of them as functions from A open subset

of R2 to R. Then u and v belong to C1(A) and the following (Cauchy-Riemann) conditions
hold:

Dxu = Dyv, (3.1.2)

Dyu = −Dxv. (3.1.3)

Proof Let f : A → C be holomorphic. Next, let z ∈ A. If z = (x, y) (x + iy in algebraic
notation), we have

f ′(z) = lim
h→0,h∈R

f(z + h)− f(z)

h
=

= lim
h→0,h∈R

(
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h
).

From Lemma 3.1.1 it follows the existence of Dxu(x, y) and of Dxv(x, y). Moreover, we have

Dxu(x, y) = Re(f ′(z)), Dxv(x, y) = Im(f ′(z)). (3.1.4)
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Next, we have

f ′(z) = lim
h→0,h∈R

f(z + ih)− f(z)

ih
=

= lim
h→0,h∈R

(
v(x, y + h)− v(x, y)

h
− iu(x, y + h)− u(x, y)

h
).

From Lemma 3.1.1 it follows the existence of Dyu(x, y) and of Dyv(x, y). Moreover, we have

Dyu(x, y) = −Im(f ′(z)), Dyv(x, y) = Re(f ′(z)). (3.1.5)

Comparing (3.1.4) with (3.1.5), we obtain that (I) implies (II).
On the other hand, let us assume that (II) holds. We set

α := Dxu(z) = Dyv(z),

β := Dxv(z) = −Dyu(z).

We indicate with h = (h1, h2) = h1 + ih2 the generic element of C. We consider the first order
Taylor expansions of u and v around z: if z + h ∈ A, we have

u(z + h) = u(x+ h1, y + h2) = u(z) + αh1 − βh2 + r(h),

v(z + h) = v(x+ h1, y + h2) = v(z) + βh1 + αh2 + s(h),

with

lim
h→0

r(h)

|h|
= lim

h→0

s(h)

|h|
= 0.

It follows
f(z + h)− f(z)

h
=
u(z + h)− u(z) + i(v(z + h)− v(z))

h

=
αh1 − βh2 + r(h) + i(βh1 + αh2 + s(h))

h
=

=
(α+ iβ)(h1 + ih2) + r(h) + is(h)

h

= α+ iβ +
r(h) + is(h)

h
.

From

|r(h) + is(h)

h
| ≤ |r(h)|

|h|
+
|s(h)|
|h|

→ 0(h→ 0)

it follows the existence of f ′(z) and the identity

f ′(z) = α+ iβ.

�

Remark 3.1.9. Let f : A → C be holomorphic, with A open and pathwise connected in C.
From the Cauchy Riemann conditions it immediately follows that the vector fields

U(x, y) := (u(x, y),−v(x, y)) (3.1.6)

and
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V (x, y) := (v(x, y), u(x, y)) (3.1.7)

are closed in A.

On the contrary, if U and V , defined in (3.1.6) and (3.1.7), are of class C1 and closed,
f := u+ iv is holomorphic.

We conclude this section with some important examples of holomorphic functions.

Example 3.1.10. (Complex exponential function ) Let z ∈ C, z = x + iy, with x and y real.
We set

ez := exeiy = ex(cos(y) + i sin(y)). (3.1.8)

The following basic properties are easy to check. We leave the proof to the reader (see Exercise
3.1.15).

(I) ∀z, v ∈ C ezev = ez+v

(II) ∀z ∈ C |ez| = eRe(z) > 0;
(III) ∀z ∈ C (ez)−1 = e−z.

(3.1.9)

Setting f : C → C, f(z) = ez, it is easy to verify that f is holomorphic, as it fulfills the
Cauchy-Riemann conditions. In fact, if u := Re(f), v := Im(f), one has, given z = (x, y),

u(x, y) = ex cos(y),

v(x, y) = ex sin(y),

from which

Dxu(x, y) = ex cos(y) = Dyv(x, y),

Dyu(x, y) = −ex sin(y) = −Dxv(x, y).

Moreover, one has

f ′(z) = Dxu(z) + iDxv(z) = ex cos(y) + iex sin(y) = f(z).

Example 3.1.11. (Logarithm functions) Let A be open and pathwise connected in C\{0}. We
have to exclude 0 because of propriety (II) of the exponential function. A logarithm function
is a function f : A→ C continuous and such that ef(z) = z ∀z ∈ A. It is possible to show that,
if f is a logarithm function, it is holomorphic and f ′(z) = 1

z ∀z ∈ A. Here we limit ourselves to
consider one specific function of this type.

Let A := C \ {x ∈ R : x ≤ 0}. We set

f : A→ C,

f(z) = ln(|z|) + iArg(z),

with Arg(z) unique element of arg(z) which is larger than −π and less than π. From Exercise

3.1.16, one has ef(z) = z ∀z ∈ A. If θ := Arg(z), necessarily cos(θ) = Re(z)
|z| , sin(θ) = Im(z)

|z| ,

θ ∈]− π, π[. We consider the particular case Re(z) > 0. Then θ ∈]− π
2 ,

π
2 [ and

tan(θ) =
sin(θ)

cos(θ)
=
Im(z)

Re(z)
.
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holds. So, if z = x+ iy, with x > 0, we have

f(z) = ln(
√
x2 + y2) + i arctan(

y

x
).

If u := Re(f) and v := Im(f), it follows that, for x > 0,

Dxu(x, y) =
x

x2 + y2
= Dyv(x, y),

Dyu(x, y) =
y

x2 + y2
= −Dxv(x, y),

implying that f fulfills the Cauchy-Riemann conditions, at least in {z ∈ C : Re(z) > 0}.
Moreover,

f ′(z) = Dxu(z) + iDxv(z) =
x

x2 + y2
− i y

x2 + y2
=

1

x+ iy
=

1

z
.

Example 3.1.12. Let A ⊆ C \ {0} be open and pathwise connected, g a logarithm function in
A. If α ∈ R, we set

fα(z) := eαg(z).

We observe that fα is a possible version of zα. We take into account that its definition depends
on the chosen logarithm function.

By examples 3.1.10 and 3.1.11 and Theorem 3.1.7, fα is holomorphic and we have, ∀z ∈ A,

f ′α(z) =

= α
eαg(z)

z
= α

eαg(z)

eg(z)
= αe(α−1)g(z)

= αfα−1(z).

We have written that, in general, fα depends on the logarithm function g. However, let α ∈ Z.
If g1 e g2 are logarithm functions in A, we have that g1(z) − g2(z) = 2kπi ∀z ∈ A, for some
k ∈ Z (see the following Exercise 3.1.17). It follows that

eαg1(z)

eαg2(z)
= eα(g1(z)−g2(z)) = e2kαπi = 1,

because kα ∈ Z. So, in case α ∈ Z, fα does not depend on the logarithm function.

Example 3.1.13. We extend the trigonometric functions ”sine” and ”cosine” to C. In force of
Euler’s formulas, it is natural to set, given z ∈ C:

sin(z) :=
eiz − e−iz

2i
, (3.1.10)

cos(z) :=
eiz + e−iz

2
. (3.1.11)

It is immediate to verify that these extensions are holomorphic in C. For some of their
properties, we refer also to Exercise 3.1.18.
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Exercise 3.1.14. Let A be open and pathwise connected in C, f, g : A → C holomorphic.
Prove that:

(I) if Re(f) is costant, then f is constant;
(II) if Im(f) is costant, then f is constant;
(III) if f ′(z) = g′(z) = 0 ∀z ∈ A, then f − g is costant.
(Hint.: employ the Cauchy-Riemann conditions and well known results concerning vector

fields. )

Exercise 3.1.15. Check the validity of the properties of the complex exponential function
stated in Example 3.1.10.

Exercise 3.1.16. Let v ∈ C \ {0}. Prove that the equation

ez = v (3.1.12)

has infinite solutions in C: precisely, the complex numbers which are representable in the form

z = ln(|v|) + iθ, (3.1.13)

with θ ∈ arg(v), wher arg(v) := {θ ∈ R : eiθ = v
|v|}.

Observe that ez = 1 if and only if z = 2kπi, for some k ∈ Z.

Exercise 3.1.17. Let A be open and pathwise connected in C \ {0}, let f, g : A → C two
logarithm functions. Check that there exists k ∈ Z, such that

f(z)− g(z) = 2kπi

∀z ∈ A. (Hint.: employ the results of Exercises 3.1.14 (III) and 3.1.16.)

Exercise 3.1.18. Check that, ∀z, v ∈ C,
(I)

sin′(z) = cos(z), cos′(z) = − sin(z); (3.1.14)

(II)

sin2(z) + cos2(z) = 1; (3.1.15)

(III)

sin(−z) = − sin(z), cos(−z) = cos(z); (3.1.16)

(IV )

sin(v + z) = sin(v) cos(z) + cos(v) sin(z); (3.1.17)

(V )

cos(v + z) = cos(v) cos(z)− sin(v) sin(z); (3.1.18)

(V I) sin(z) = 0 if and only if z = kπ for some k ∈ Z;
(V II) cos(z) = 0 if and only if z = k π2 for some k ∈ Z, k odd.

Exercise 3.1.19. Characterize
(I) {z ∈ C : sin(z) = 2};
(II) {z ∈ C : cos(z) = 3}.
The fact that these sets are not empty implies that, differently from the case of R, in C the

ranges of sin and cos are not contained in [−1, 1]!
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3.2 Complex integrals

Many important properties of holomorphic functions are expressed in terms of complex integrals.
In this section we are going to collect the main facts, concerning them, that we shall use.

Definition 3.2.1. Let J = [a, b] be a closed and bounded interval in R. A continuous map
α : [a, b] → C will be called a continuous path in C. If α is of class C1 (see the following
Remark 3.2.2), we shall say that α is a path of class C1. We shall say that α is a piecewise
C1 path if it is a continuous path and there exists {a = a0 < .... < ak = b} subset of [a, b],
such that, if j = 1, ..., k, α|[aj−1,aj ] is of class C1.

If α is a continuous path, its range will be called the support of α and will be indicated
with supp(α).

If α : [a, b]→ C is a continuous path, such that α(a) = α(b), we shall say that it is closed.

Remark 3.2.2. With reference to Definition 3.2.1, we recall that C = R2. So, if α(t) :=
(α1(t), α2(t)) (t ∈ [a, b]), the statement ”α is of class C1” is equivalent to the statement that
α1 and α2, which are, respectively, its real and inmaginary part, are of class C1. Moreover,
∀t ∈ [a, b], one has

α′(t) = (α′1(t), α′2(t)) = α′1(t) + iα′2(t). (3.2.1)

Of course, α′(t) is defined, as usual, as

lim
h→0

α(t+ h)− α(t)

h
.

Example 3.2.3. Let z0 ∈ C, r > 0, α : [0, 2π] → C, α(t) = z0 + reit. α is a continuous
path, having as support the circumference of centre z0 and radius r. One has α(t) = Re(z0) +
r cos(t) + i(Im(z0) + r sin(t)). So α is of class C1. Moreover, ∀t ∈ [0, 2π],

α′(t) = −r sin(t) + ir cos(t) = ireit.

We pass to the definition of complex integral.

Definition 3.2.4. Let α : [a, b]→ C be a continuous path of class C1, f : α([a, b])→ C. If t→
f(α(t))α′(t) is summable in [a, b], we define the complex integral

∫
α f(z)dz as

∫
[a,b] f(α(t))α′(t)dt.

Example 3.2.5. Let z0 ∈ C, r > 0, α : [0, 2π]→ C, α(t) := z0 + reit. Let n ∈ Z. We compute∫
α(z − z0)ndz. By definition, ∫

α
(z − z0)ndz

=

∫
[0,2π]

(z0 + reit − z0)nrieitdt = rn+1i

∫ 2π

0
ei(n+1)tdt

If n 6= −1, one has∫ 2π

0
ei(n+1)tdt =

∫ 2π

0
cos((n+ 1)t)dt+ i

∫ 2π

0
sin((n+ 1)t)dt =

= [
sin((n+ 1)t)

n+ 1
]t=2π
t=0 + i[−cos((n+ 1)t)

n+ 1
]t=2π
t=0 = 0.
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In case n = −1, one has ∫ 2π

0
ei(n+1)tdt =

∫ 2π

0
1dt = 2π.

In conclusion, ∫
α
(z − z0)ndz =

{
0 if n 6= −1,

2πi if n = −1.

It is convenient to extend the definition of complex integral to the case that α is piecewise
of class C1:

Definition 3.2.6. Let α : [a, b] → C be a piecewise C1 path, with a = a0 < a1 < ... < ak = b,
and α|[a0,a1], ..., α|[ak−1,ak] of class C1. We shall indicate with αj (1 ≤ j ≤ k) the restriction of
α to [aj−1, aj ]. If f : α([a, b]) → C is such that all the integrals

∫
α1 f(z)dz, ...,

∫
αk f(z)dz are

defined, we set ∫
α
f(z)dz =

∫
α1

f(z)dz + ...+

∫
αk
f(z)dz.

It is possible to check that this definition is independent of {a0, a1, . . . , ak−1, ak}. .

Remark 3.2.7. Now we recall that, if A is a pathwise connected open subset of R2, f : A→ R2

is a vector field and α : [a, b] → R2 is a path of class C1 and support in A, the following
curvilinear integral of second type is defned:∫

f · dα :=

∫
[a,b]

f(α(t)) · α′(t)dt, (3.2.2)

with · standard inner product in R2.

Let f(z) = (u(z), v(z)) = u(z) + iv(z) and α(t) = (α1(t), α2(t)) = α1(t) + iα2(t). Then,
concerning the complex integral

∫
α f(z)dz, one has∫

α
f(z)dz =

=

∫
[a,b]

f(α(t))α′(t)dt =

∫
[a,b]

[u(α(t)) + iv(α(t))][α′1(t) + iα′2(t)]dt =

=

∫
[a,b]

[u(α(t))α′1(t)− v(α(t))α′2(t)]dt+ i

∫
[a,b]

[v(α(t))α′1(t) + u(α(t))α′2(t)]dt

=

∫
U · dα+ i

∫
V · dα,

with U(z) := (u(z),−v(z)) and V (z) := (v(z), u(z)). We recall (Remark 3.1.9) that, if f is
holomorphic, then the vector fields U and V are closed.

From Remark 3.2.7, employing well known properties of curvilinear integrals of second type,
we can draw some basic properties of complex integrals. We start with the following sequence
of statements (see also Exercise 3.2.23):

Theorem 3.2.8. Let α : [a, b]→ C be a path which is piecewise of class C1, f, g : α([a, b]) → C,
such that the integrals

∫
α f(z)dz and

∫
α g(z)dz are defined, r and s complex numbers. Then:

(I) the integral
∫
α[rf(z) + sg(z)]dz is defined and coincides with r

∫
α f(z)dz + s

∫
α g(z)dz;
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(II) let c ∈]a, b[. We indicate with α1 and α2 the restrictions of α to (respectively) [a, c] and
[c, b]. Then the integrals

∫
α1 f(z)dz and

∫
α2 f(z)dz and defined and the identity∫

α
f(z)dz =

∫
α1

f(z)dz +

∫
α2

f(z)dz

holds.

Now we consider the influence of changes of parameter on complex integrals. We begin with
a definition:

Definition 3.2.9. Let α : [a, b] → C and β : [c, d] → C be continuous paths. We shall say that
they are equivalent if there exists u : [c, d]→ [a, b], of class C1, with u′(t) 6= 0 ∀t ∈ [c, d] and
surjective onto [a, b], such that

β(t) = α(u(t)) ∀t ∈ [c, d].

We shall say that α and β are positively equivalent if u′(t) > 0 ∀t ∈ [c, d].

Remark 3.2.10. Definition 3.2.9 is well known in the theory of curves. One can check that it
is an equivalence relation between paths. The condition u′(t) 6= 0 ∀t ∈ [c, d] implies that, either
u′(t) > 0 ∀t ∈ [c, d], or u′(t) < 0 ∀t ∈ [c, d], so that u is strictly monotone. In the first case the
passage from α to β preserves the sense of motion, in the second it inverts it.

From Remark 3.2.7 and corresponding properties for curvilinear integrals we deduce the
following

Theorem 3.2.11. Let α and β be paths which are piecewise C1and equivalent. Let f : α([a, b]) =
β([c, d])→ C (see Exercise 3.2.24) be such that

∫
α f(z)dz is defined. Then:

(I)
∫
β f(z)dz is defined as well. Let u be the map from [c, d] to [a, b] of class C1 described

in Definition 3.2.9. Then:
(II) if u′(t) > 0 ∀t ∈ [c, d], one has∫

β
f(z)dz =

∫
α
f(z)dz;

(III) if u′(t) < 0 ∀t ∈ [c, d], one has∫
β
f(z)dz = −

∫
α
f(z)dz.

We recall that, if α is a continuous path, α : [a, b]→ C, its length l(α) is defined as

l(α) := sup{
k∑
j=1

|α(tj)− α(tj−1)| : a = t0 < t1 < ... < tk−1 < tk = b}. (3.2.3)

It is well known that, if α is of class C1, one has

l(α) =

∫ b

a
|α′(t)|dt. (3.2.4)

The following estimate is rather useful:
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Theorem 3.2.12. Let α : [a, b]→ C be piecewise C1, f : α([a, b])→ C bounded, and such that∫
α f(z)dz is defined. Then

|
∫
α
f(z)dz| ≤ sup |f | · l(α).

Proof Limiting ourselves to the case that α is of class C1, we have

|
∫
α
f(z)dz|

= |
∫

[a,b]
f(α(t))α′(t)dt| ≤

∫
[a,b]
|f(α(t))||α′(t)|dt

(by Theorem 1.2.12 (IV ))

≤ sup |f | ·
∫

[a,b]
|α′(t)|dt =

= sup |f | · l(α).

�
Now we introduce some important definitions and results, concerning closed paths and vector

fields.

Definition 3.2.13. Let A be an open subset of C, α, β : [a, b] → C continuous and closed
paths, with support in A. We shall say that α and β are A−homotopic if there exists F :
[0, 1]× [a, b]→ A such that:

(I) F is continuous;
(II) F (0, t) = α(t), F (1, t) = β(t) ∀t ∈ [a, b];
(III) F (s, a) = F (s, b) ∀s ∈ [0, 1].
A map F with properties (I)− (III) is called a homotopy between α e β.

Remark 3.2.14. α and β are A−homotopic if it is possible to modify α with continuity in such
a way to carry it to β, without going out of A. The deformation must be such that, in each
instant, the path is always closed. (this conditions is expressed rigorously by (III)).

Example 3.2.15. Let z0 ∈ C, A := C \ {z0}, 0 < r0 < r1, αj : [0, 2π]→ C, αj(t) := z0 + rje
it

(j ∈ {0, 1}). α0 and α1 are A−homotopic. It suffices to take:{
F : [0, 1]× [0, 2π]→ A,

F (s, t) = z0 + [r0 + s(r1 − r0)]eit, (s, t) ∈ [0, 1]× [0, 2π].

Example 3.2.16. Let A := C, let α : [a, b] → C be a closed path, β : [a, b] → C, such that
β(t) = z0 ∀t ∈ [a, b], with z0 ∈ C. We shall say that β is a punctual path. α and β are A
homotopic. To see this, it suffices to take{

F : [0, 1]× [a, b]→ A,
F (s, t) = (1− s)α(t) + sz0, (s, t) ∈ [0, 1]× [a, b].

So, every closed path is C−homotopic to a punctual path. If A is an open subset of C, we shall
say that A is simply connected if every closed path with support in A is A−homotopic to a
punctual path.

It is possible to prove the following important theorem:
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Theorem 3.2.17. Let A be a pathwise connected open subset in R2, F : A→ R2 a closed vector
filed, α and β closed, piecewise C1 paths with support in A and A−homotopic. Then∫

F · dα =

∫
F · dβ.

Remark 3.2.18. We recall that, in the particular case that F has a potential,
∫
F · dα = 0 for

every closed piecewise C1 path with support in A

Theorem 3.2.17 has some important consequences, concerning complex integrals of holomor-
phic functions:

Corollary 3.2.19. Let A be an open, pathwise connected subset of C, α and β closed piecewise
C1 paths with support in A and A−homotopic, f : A→ C holomorphic. Then∫

α
f(z)dz =

∫
β
f(z)dz.

Proof From Remark 3.2.7,∫
α
f(z)dz =

∫
U · dα+ i

∫
V · dα,

with U and V closed vector fields. The conclusion follows immediately from Theorem 3.2.17. �

Corollary 3.2.20. Let A be an open simply connected subset of C, α a closed piecewise C1 path
with support in A, f : A→ C holomorphic. Then∫

α
f(z)dz = 0.

Proof It suffices to apply Corollary 3.2.19, taking as β a punctual path.
�
We conclude this section with a classical formula.
We shall employ the following notation: if z0 ∈ C, r > 0, we set{

Cr : [0, 2π]→ C,
Cr(t) = z0 + reit, t ∈ [0, 2π].

(3.2.5)

Theorem 3.2.21. (Cauchy’s integral formula) Let A be an open subset of C, z0 ∈ A, r > 0
such that {z ∈ C : |z − z0| ≤ r} ⊆ A, f : A → C holomorphic. Let α be a piecewise C1, closed
path, A \ {z0}− homotopic to Cr(z0). Then∫

α

f(z)

z − z0
dz = 2πif(z0).

Proof As z → f(z)
z−z0 is holomorphic in A \ {z0}, by Corollary 3.2.19,∫

α

f(z)

z − z0
dz =

∫
Cr(z0)

f(z)

z − z0
dz.

Moreover, Cr(z
0) is A \ {z0}−homotopic to Cρ(z

0) for every ρ ∈]0, r]. It follows that∫
Cr(z0)

f(z)

z − z0
dz = lim

ρ→0

∫
Cρ(z0)

f(z)

z − z0
dz
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= lim
ρ→0

∫ 2π

0
f(z0 + ρeit)idt = 2πif(z0) + lim

ρ→0

∫ 2π

0
[f(z0 + ρeit)− f(z0)]idt.

From Theorem 3.2.12 we obtain

|
∫ 2π

0
[f(z0 + ρeit)− f(z0)]idt| ≤ max

t∈[0,2π]
|f(z0 + ρeit)− f(z0)|2π → 0(ρ→ 0),

because f is continuous in z0. The conclusion follows.
�

Remark 3.2.22. A−homotopic paths are defined (by definition) in the same interval. Employ-
ing Theorem 3.2.11, it may be useful to generalize slightly Theorem 3.2.21, requiring only that
α is positively equivalent to some closed, piecewise C1 path, which is A \ {z0}− homotopic to
Cr(z

0). This little bit more general version does not require that α and β are defined in [0, 2π].
For example, let f : C→ C be holomorphic. We consider the following piecewise C1 path α:

α : [0, 4]→ C,

α(t) =


1 + t(i− 1) if t ∈ [0, 1],

i+ (t− 1)(−1− i) if t ∈ [1, 2],
−1 + (t− 2)(−i+ 1) if t ∈ [2, 3],
−i+ (t− 3)(1 + i) if t ∈ [3, 4].

α describes once in counterclockwise sense the boundary of the square with vertexes 1, i, −1,
−i. α is positively equivalent to β : [0, 2π] → C, β(s) = α(2s

π ). It is intuitively clear that β is
C \ {0}−homotopic to C1(0) as well. So we have

f(0) =
1

2πi

∫
α

f(z)

z
dz.

Moreover, employing again Theorems 3.2.11 and 3.2.8(II), we can also write:∫
α

f(z)

z
dz =

∫ 1

0

f(1 + t(i− 1))

1 + t(i− 1)
(i− 1)dt+

∫ 1

0

f(i+ t(−1− i))
i+ t(−1− i)

(−1− i)dt

+

∫ 1

0

f(−1 + t(−i+ 1))

−1 + t(−i+ 1)
(−i+ 1)dt+

∫ 1

0

f(−i+ t(1 + i))

−1 + t(1 + i)
(1 + i)dt.

Exercise 3.2.23. Prove Theorem 3.2.8.

Exercise 3.2.24. Check that equivalent paths have the same support.

3.3 Analytic functions

We start with some basic results, concerning series with complex terms, which will be crucial
for the main subject of the section. These results are extensions of well known facts, which we
have already seen in the case of real terms.

Let (an)n∈N be a sequence of complex numbers. Starting from it, we can construct another
sequence, called sequence of partial sums or series associated with (an)n∈N, setting, for n ∈ N,

sn := a1 + ...+ an. (3.3.1)
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We shall indicate the series with the notation
∑∞

n=1 an. If the sequence (sn)n∈N (that is, the
series) has a limit in C for n → +∞, we shall say that it is convergent and we shall call such
limit the sum of the series.

If an = xn + iyn, with xn and yn real numbers for each n ∈ N, one has, for every n,

sn =
n∑
k=1

ak =
n∑
k=1

xk + i
n∑
k=1

yk.

As the convergence of a sequence with complex terms is equivalent to the convergence of the
two sequences with real terms of the real and imaginary parts,

∑∞
n=1 an is convergent in C if

and only if the series
∑∞

n=1 xn and
∑∞

n=1 yn are convergent in R.
The notion of absolute convergence is extensible to series with terms in C:

Definition 3.3.1. Let an ∈ C ∀n ∈ N. We say that the series
∑∞

n=1 an is absolutely convergent
if the series

∑∞
n=1 |an| is convergent in R.

In the next theorem, we shall list some extensions to C of well known properties of series
with terms in R.

Theorem 3.3.2. Let (an)n∈N be a series with terms in C, with an = xn + iyn (xn and yn real
numbers) ∀n ∈ N. Then

(I) if the series
∑∞

n=1 an is convergent, necessarily lim
n→+∞

an = 0;

(II) if the series
∑∞

n=1 an is absolutely convergent, it is also convergent.

Proof (I) If the series
∑∞

n=1 an is convergent, even
∑∞

n=1 xn and
∑∞

n=1 yn are convergent.
Applying the corresponding result for series with real terms, one has lim

n→+∞
xn = lim

n→+∞
yn = 0.

So
lim

n→+∞
an = lim

n→+∞
(xn + iyn) = 0.

(II) One has, ∀n ∈ N,

|xn| = |Re(an)| ≤ |an|, |yn| = |Im(an)| ≤ |an|.

Recalling well known properties of series with real nonnegative terms, we can say that, if the
series

∑∞
n=1 an is assolutely convergent, the same happens for

∑∞
n=1 xn and

∑∞
n=1 yn. So the

series
∑∞

n=1 xn and
∑∞

n=1 yn are convergent, from which the conclusion follows.
�
We pass to the definitions of power series and analytic function.

Definition 3.3.3. A power series is a series in the form

∞∑
n=0

an(z − z0)n,

depending on the complex parameter z. Here z0 and an (∀n ∈ N0) are fixed complex numbers.

Definition 3.3.4. Let A be an open subset of C and f : A→ C. We shall say that f is analytic
in A if, ∀z0 ∈ A there exist r > 0 and a power series in the form

∑∞
n=0 an(z − z0)n, such that:

a) B(z0, r) = {z ∈ C : |z − z0| < r} ⊆ A;
b) the series

∑∞
n=0 an(z − z0)n is convergent for every z ∈ B(z0, r);

c) ∀z ∈ B(z0, r) one has f(z) =
∑∞

n=0 an(z − z0)n.
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Let us examine some properties of power series. We introduce preliminarily the notion of
radius of convergence.

Definition 3.3.5. Let
∑∞

n=0 an(z − z0)n be a power series. Its radius of convergence is
defined as

sup{|z − z0| :
∞∑
n=0

an(z − z0)n is convergent}.

Remark 3.3.6. Observe first that a power series converges, at least, for z = z0. Obviously, the
radius of convergence of a power series is an element of [0,+∞]. In particular, saying that it is
+∞ is equivalent to saying that, for each r in R+, there exists z ∈ C such that |z − z0| > r and
the series

∑∞
n=0 an(z − z0)n is convergent.

The main property of power series is described by the following

Theorem 3.3.7. (Lemma of Abel) Let z1 ∈ C be such that the series
∑∞

n=0 an(z1 − z0)n is
convergent. Then, ∀z ∈ C such that |z− z0| < |z1− z0| the series

∑∞
n=0 an(z− z0)n is absolutely

convergent.

Proof Let z ∈ C be such that |z − z0| < |z1 − z0| (observe that the existence of z implies
that |z1 − z0| > 0). By Theorems 3.3.2(I) and 2.3.6, there exists M ≥ 0 such that

|an||z1 − z0|n ≤M ∀n ∈ N0.

It follows that

|an(z − z0)n| = |an||z1 − z0|n(
|z − z0|
|z1 − z0|

)n ≤M(
|z − z0|
|z1 − z0|

)n.

As |z−z0||z1−z0| < 1, the series
∑∞

n=0M( |z−z0||z1−z0|)
n is convergent. The conclusion follows immediately.

�
From the lemma of Abel, we immediately deduce the following

Theorem 3.3.8. Let ρ ∈ [0,+∞] be the radius of convergence of the power series
∑∞

n=0 an(z−
z0)n. Then:

(I) if ρ = 0 the series converges only if z = z0;
(II) if 0 < ρ < +∞, the series converges absolutely if |z − z0| < ρ, it does not converge if

|z − z0| > ρ;
(III) if ρ = +∞, the series converges absolutely for every z ∈ C.

Proof We limit ourselves to the case (II). The other cases can be treated analogously, with
some simplifications.

Let |z − z0| < ρ. Then, there exists z1 ∈ C such that |z − z0| < |z1 − z0| and the series∑∞
n=0 an(z1 − z0)n is convergent (othewise, it would be ρ ≤ |z − z0|). So , by the lemma of

Abel, the series
∑∞

n=0 an(z − z0)n is assolutely convergent. On the contrary, if |z − z0| > ρ, the
conclusion follows from the definition of radius of convergence,

�
For future use we state the following

Corollary 3.3.9. Let
∑∞

n=0 an(z−z0)n be a power series with radius of convergence ρ ∈ [0,+∞],
and let z1 ∈ C. Then:

(I) if
∑∞

n=0 an(z1 − z0)n is absolutely convergent, |z1 − z0| ≤ ρ;
(II) if

∑∞
n=0 an(z1 − z0)n is not absolutely convergent, |z1 − z0| ≥ ρ.
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Proof See Exercise 3.3.21. �

Example 3.3.10. We consider the power series
∑∞

n=0 n!zn. If z ∈ R+, it follows from the
ratio test that the series is not convergent. From Corollary 3.3.9 we deduce that the radius of
convergence is 0.

Example 3.3.11. We consider the power series
∑∞

n=0 z
n. If z ∈ [0, 1[, the series is convergent,

while it is not convergent if z ∈ [1,+∞]. Consequently, the radius of convergence is necessarily
1. Arguing as in the case of z ∈ R, one can see that, if |z| < 1, the sum of the series is (1− z)−1.

Example 3.3.12. We consider the power series
∑∞

n=0
zn

n! . From the ratio test, it follows imme-
diately that the series is absolutely convergent for every z ∈ C. So, in this case the radius of
convergence is +∞.

Remark 3.3.13. If the radius of convergence of the power series
∑∞

n=0 an(z−z0)n is ρ ∈]0,+∞[
and |z − z0| = ρ, Theorem 3.3.8 does not say if the series is convergent. Let us examine some
examples.

We start with the series considered in Example 3.3.11, with radius of convergence 1. If
|z| = 1, one has |zn| = 1 ∀n ∈ N0. Consequently, it is not satisfied the condition lim

n→+∞
zn = 0,

which is necessary for convergence (see Theorem 3.3.2(I)).
Next, let us consider the power series

∑∞
n=1

zn

n . If z = 1, the series is not convergent.
Consequently, the radius of convergence ρ is less or equal to 1. On the other hand, if z ∈ [0, 1[,
the series is convergent by the ratio test. So we conclude that the radius of convergence is again
1. Observe that, by Leibniz test, the series is convergent for z = −1. In fact, it is possible to
show that there is convergence for every z ∈ C, with absolute value equal to 1 and z 6= 1.

Finally, let us consider the power series
∑∞

n=1
zn

n2 . Still, the radius of convergence is 1 (this
can be seen observing that, if r ∈ R+, there is convergence if r ∈ [0, 1], there is not convergence
if r > 1). In general, if |z| = 1, one has | zn

n2 | = 1
n2 . So, there is absolute convergence for every

z ∈ C such that |z| = 1.

We consider the power series
∑∞

n=0 an(z− z0)n. Differentiating it formally term by term, we
obtain

∑∞
n=1 nan(z− z0)n−1, or also, setting n− 1 = m,

∑∞
m=0(m+ 1)am+1(z− z0)m. We shall

call the power series
∑∞

n=0(n+ 1)an+1(z − z0)n formal derivative . We wonder what one can
say, concerning the convergence of the formal derivative. The following result holds:

Theorem 3.3.14. The formal derivative of a power series has the same radius of convergent
as the original series.

Proof Let us indicate with ρ the radius of convergence of the power series
∑∞

n=0 an(z−z0)n,
with ρ′ the radius of convergence of its formal derivative.

We start by showing that ρ′ ≤ ρ. This is obvious if ρ′ = 0. Otherwise, let z ∈ C be such
that |z − z0| < ρ′. Then, for every n ∈ N, we have

|an(z − z0)n| = |z − z0|
n

|nan(z − z0)n−1| ≤ |z − z0||nan(z − z0)n−1|.

As the series
∑∞

n=1 |nan(z− z0)n−1| is convergent, this implies that the series
∑∞

n=0 an(z− z0)n

is convergent, and so, ρ′ ≤ ρ.
On the other hand, let us check that ρ ≤ ρ′. Again, this is obvious if ρ = 0. So we suppose

that ρ ∈]0,+∞]. Let z ∈ C, with |z−z0| < ρ. We show that the series
∑∞

n=0(n+1)an+1(z−z0)n

is absolutely convergent. We fix z1 ∈ C such that |z − z0| < |z1 − z0| < ρ. Then the series
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∑∞
n=0 an(z1 − z0)n is convergent. Employing an argument already used, we obtain that there

exists M ≥ 0 such that |an(z1 − z0)n| ≤M ∀n ∈ N0. It follows that, ∀n ∈ N0,

|(n+ 1)an+1(z − z0)n| = |an+1(z1 − z0)n+1|| n+ 1

z1 − z0
|| z − z0

z1 − z0
|n ≤

≤ M

|z1 − z0|
|(n+ 1)| z − z0

z1 − z0
|n.

The series
∑∞

n=0
M

|z1−z0| |(n+ 1)| z−z0z1−z0 |
n is convergent, taking into account that | z−z0z1−z0 | < 1, as a

consequence of the ratio test.
So, the formal derivative is absolutely convergent whenever |z − z0| < ρ. It follows that

ρ ≤ ρ′.
�
Theorem 3.3.14 makes the following result, that we limit ourselves to state, plausible:

Theorem 3.3.15. Let
∑∞

n=0 an(z−z0)n be a power series with radius of convergence ρ > 0. We
set f : B(z0, ρ)→ C (f : C→ C if ρ = +∞), f(z) =

∑∞
n=0 an(z− z0)n. Then f is holomorphic.

Moreover, for every z ∈ B(z0, ρ) (z ∈ C if ρ = +∞) one has

f ′(z) =

∞∑
n=1

nan(z − z0)n−1 =

∞∑
n=0

(n+ 1)an+1(z − z0)n.

Corollary 3.3.16. Let A ⊆ C be open, f : A→ C analytic. Then:
(I) f is holomrphic, it has complex derivatives of any order and these derivatives are holo-

morphic;
(II) if, for some r > 0, f(z) =

∑∞
n=0 an(z − z0)n in B(z0, r), then

an =
f (n)(z0)

n!
∀n ∈ N0.

Proof The proof follows almost immediately from Theorem 3.3.15. In fact, if, for some
r > 0, f(z) =

∑∞
n=0 an(z − z0)n in B(z0, r), the radius of convergence of

∑∞
n=0 an(z − z0)n is

greater or equal than r. It follows from Theorem 3.3.15 that f is holomorphic in B(z0, r) and

f ′(z) =
∞∑
n=1

nan(z − z0)n−1 =
∞∑
n=0

(n+ 1)an+1(z − z0)n ∀z ∈ B(z0, r). (3.3.2)

Applying now Theorems 3.3.14 and 3.3.15 to the formal derivative, we deduce that we can
differentiate f ′ in B(z0, r) and obtain that ∀z ∈ B(z0, r) one has

f ′′(z) =

∞∑
n=1

(n+ 1)nan+1(z − z0)n−1 =

∞∑
n=0

(n+ 2)(n+ 1)an+2(z − z0)n (3.3.3)

and so on.
Concerning (II), one has, first of all, a0 = f(z0) and, from (3.3.2) and (3.3.3),

f ′(z0) = a1, f
′′(z0) = 2a2.

Differentiating again, (II) can be obtained in general.
�
The inverse of Corollary 3.3.16 is also true:



ANALYTIC FUNCTIONS 59

Theorem 3.3.17. Let A ⊆ C be open, f : A→ C holomorphic. Then f is analytic in A.

Incomplete proof Let z0 ∈ A and r > 0 be such that {z ∈ C : |z − z0| ≤ r} ⊆ A. Next, let
z ∈ C be such that |z − z0| < r. Then it is clear that Cr(z0) is A \ {z}−homotopic to Cρ(z), if
ρ > 0 is sufficiently small. From Cauchy’s integral formula we deduce

f(z) =
1

2πi

∫
Cr(z0)

f(v)

v − z
dv. (3.3.4)

If |v − z0| = r, one has

1

v − z
=

1

(v − z0)− (z − z0)
=

1

v − z0

1

1− z−z0
v−z0

=

=
1

v − z0

∞∑
n=0

(
z − z0

v − z0
)n =

∞∑
n=0

(v − z0)−n−1(z − z0)n,

where we have used the fact that | z−z0v−z0 | < 1. Replacing the first term of this sequence of
identities with the last in (3.3.4), and assuming that it is possible to carry the series outside the
integral (which should be proved), we obtain

f(z) =

∞∑
n=0

an(z − z0)n, (3.3.5)

with

an =
1

2πi

∫
Cr(z0)

f(v)(v − z0)−n−1dv. (3.3.6)

�

Remark 3.3.18. From Corollary 3.3.16 we already know that an (defined in (3.3.6)) coincides

with f (n)(z0)
n! . Examining the proof of Theorem 3.3.17, we deduce also that the power series∑∞

n=0
f (n)(z0)

n! (z − z0)n has radius of convergence at least equal to r, for every r > 0 such that
{z ∈ C : |z − z0| ≤ r} ⊆ A and that, for such values of r, if |z − z0| < r,

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n (3.3.7)

holds.

Remark 3.3.19. Owing to Theorems 3.3.7 and 3.3.17, the classes of analytic and of holomorphic
functions coincide. As analytic functions are equipped of derivatives of any order and the
derivatives are all analytic, we draw the (at first sight surprising) fact that every holomorphic
function has, in fact, complex derivatives of any order and the derivatives are holomorphic. This
phenomenon has nothing corresponding for functions of one real variable: it is like saying that
every function of class C1 is automatically of class C∞!

Example 3.3.20. Let f : C → C, f(z) = ez. We know from Example 3.1.10 that f is
holomorphic. So, by Theorem 3.3.17, f is analytic in C. We recall that f ′(z) = f(z), ∀z ∈ C.
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Therefore, f (n)(z) = ez ∀n ∈ N0, ∀z ∈ C. In particular, f (n)(0) = 1 ∀n ∈ N0. We obtain,
keeping into account that the domain of f is C and applying Remark 3.3.18, that

ez =

∞∑
n=0

zn

n!
∀z ∈ C. (3.3.8)

From formulas (3.1.10) and (3.1.11), it follows that, for every z ∈ C,

cos(z) =

=
eiz + e−iz

2
=

1

2

∞∑
n=0

(iz)n + (−iz)n

n!
.

If n ∈ N0,
(iz)n + (−iz)n = [1 + (−1)n]inzn.

So, (iz)n + (−iz)n = 0 if n is odd. On the contrary, if n = 2k, with k ∈ N0, we have

(iz)n + (−iz)n = 2i2kz2k = 2(−1)kz2k.

It follows that
1

2

∞∑
n=0

(iz)n + (−iz)n

n!
=

1

2

∞∑
k=0

2(−1)k
z2k

(2k)!
,

implying the classical formula

cos(z) =
∞∑
k=0

(−1)kz2k

(2k)!
∀z ∈ C. (3.3.9)

Analogously, one can prove

sin(z) =

∞∑
k=0

(−1)2k+1z2k+1

(2k + 1)!
∀z ∈ C. (3.3.10)

For this, see Exercise 3.3.22.

Exercise 3.3.21. Prove Corollary 3.3.9.

Exercise 3.3.22. Prove formula (3.3.10.

Exercise 3.3.23. Show that

cosh(x) =
∞∑
k=0

x2k

(2k)!
∀x ∈ R.

Exercise 3.3.24. Show that

sinh(x) =
∞∑
k=0

x2k+1

(2k + 1)!
∀x ∈ R.

Exercise 3.3.25. Let log be the logarithm function considered in Example 3.1.11, with domain
C \ {x ∈ R : x ≤ 0}. Prove that, if |z − 1| < 1 the formula

log(z) =

∞∑
n=1

(−1)n−1 (z − 1)n

n

holds (Hint: observe that f (n)(z) = (−1)n−1 (n−1)!
zn (n ∈ N).
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3.4 Isolated singularities and Laurent expansions

Holomorphic functions allow some series expansion even in some neighbourhood of an isolated
singularity. In order to clarify the result we are interested in, we start by precising what we
mean with the term ”isolated singularity”.

Definition 3.4.1. Let A be an open subset of C, f : A → C holomorphic, z0 ∈ C. We
shall say that f has an isolated singularity in z0 if z0 6∈ A, but there exists r > 0 such that
B(z0, r) \ {z0} ⊆ A.

Let now an ∈ C for each n ∈ Z. If the two series
∑∞

n=0 an and
∑∞

n=1 a−n are convergent, we
set

+∞∑
n=−∞

an :=
+∞∑
n=0

an +
+∞∑
n=1

a−n. (3.4.1)

The result we are interested in is the following:

Theorem 3.4.2. Let A be an open subset of C, f : A→ C holomorphic, z0 an isolated singularity
of f . Then there exist, uniquely determined, two power series

∑∞
n=0 an(z−z0)n and

∑∞
n=1 a−nv

n

such that:
(I) if r > 0 and B(z0, r) \ {z0} ⊆ A, the series

∑∞
n=0 an(z − z0)n has radius of convergence

at least equal to r;
(II)

∑∞
n=1 a−nv

n has radius of convergence +∞;
(III) if r > 0 is such that B(z0, r) \ {z0} ⊆ A, ∀z ∈ B(z0, r) \ {z0} one has

f(z) =

+∞∑
n=−∞

an(z − z0)n. (3.4.2)

Incomplete proof Let r > 0 be such that B(z0, r) \ {z0} ⊆ A and z ∈ B(z0, r) \ {z0}. We fix
r1 and r2 positive, so that

r1 < |z − z0| < r2 < r.

We assume (for example) that Im(z) > Im(z0). Let 0 < ε < Arg(z) (see Example 3.1.11). Let
α be a piecewise C1 path, describing the following sequence of curves:

a) the segment with endpoints z0 + r1e
iε and z0 + r2e

iε;
b) the arch of circumference of radius r2 and centre z0, with endpoints z0 + r2e

iε and z0 + r2,
in counterclockwise sense on the circumference itself;

c) the segment with endpoints z0 + r2 e z0 + r1;
d) the arch of circumference of radius r1 and centre z0 with endpoints z0 + r1 and z0 + r1e

iε,
in clockwise sense on the circumference itself; clearly, this path is A \ {z}−homotopic to Cr(z),
for every r > 0 sufficiently small. So, by Cauchy’s integral formula,

f(z) =
1

2πi

∫
α

f(v)

v − z
dv.

Letting ε go to 0, the pieces a) e c) tend to eliminate each other, the piece b) tends to coincide
with the circumference Cr2(z0), the piece d) tends to coincide with the circumference of centre
z0 and radius r1, described in clockwise sense. These arguments make plausible, letting ε go to
0, the formula

f(z) =
1

2πi

∫
Cr2 (z0)

f(v)

v − z
dv − 1

2πi

∫
Cr1 (z0)

f(v)

v − z
dv. (3.4.3)
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The first integral in the second term of (3.4.3) can be treated like the integral (3.3.4): setting,
for n ∈ N0,

an =
1

2πi

∫
Cr2 (z0)

f(v)(v − z0)−n−1dv, (3.4.4)

we have

1

2πi

∫
Cr2 (z0)

f(v)

v − z
dv =

∞∑
n=0

an(z − z0)n.

Concerning the second integral in (3.4.3), if |v − z0| = r1, one has

1

v − z
=

1

(v − z0)− (z − z0)
= − 1

z − z0

1

1− v−z0
z−z0

=

= − 1

z − z0

∞∑
n=0

(
v − z0

z − z0
)n = −

∞∑
n=0

(v − z0)n(z − z0)−n−1,

where we have used the fact that |v−z0z−z0 | < 1. So, replacing the first formula of this chain with
the last in (3.4.3), and assuming (this should be proved) that we can carry the series outside
the integral, we obtain

− 1

2πi

∫
Cr1 (z0)

f(v)

v − z
dv =

∞∑
n=1

a−n(z − z0)−n, (3.4.5)

with

a−n =
1

2πi

∫
Cr1 (z0)

f(v)(v − z0)n−1dv, (3.4.6)

for every n ∈ N.

We stop here, without entering into further details of the proof.

�

Remark 3.4.3. With reference to the (incomplete) proof of Theorem 3.4.2, we can say (applying
Corollary 3.2.19) that, if R > 0 is such that B(z0, R) \ {z0} ⊆ A, for every z ∈ B(z0, R) \ {z0}
the formula

+∞∑
n=−∞

an(z − z0)n, (3.4.7)

holds, with

an =
1

2πi

∫
Cr(z0)

f(v)(v − z0)−n−1dv ∀n ∈ Z, (3.4.8)

where r is an arbitrary element of ]0, R[.

The expansion (3.4.7) is called the Laurent expansion of f around the point z0.

Now we pass to classify isolated singular points of holomorphic functions:
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Definition 3.4.4. Let A be an open subset of C, f : A → C holomorphic, z0 an isolated
singularity of f . Let (3.4.7) be the Laurent expansion of f around z0. We shall say that:

a) z0 is a removable singularity of f if an = 0 ∀n ∈ Z, n < 0;

b) z0 is a polar singularity of f if {n ∈ Z : n < 0 and an 6= 0} is finite, but not empty;

c) z0 is an essential singularity of f if {n ∈ Z : n < 0 and an 6= 0} is infinite.

In case b), it is also said that z0 is a pole of f . We shall say that the pole is of order n0

if n0 is the maximum natural number n, such that a−n 6= 0. The poles of order 1 are also called
simple poles.

Remark 3.4.5. In case a), there exists R > 0 such that, if |z − z0| < R, one has f(z) =∑+∞
n=0 an(z − z0)n. So it is clear that, extending f to z0, setting f(z0) = a0, we obtain a

holomorphic function in A ∪ {z0}. From this the term ”removable” comes.

Remark 3.4.6. If
∑+∞

n=−∞ an(z − z0)n is the Laurent expansion of f around the isolated sin-
gularity z0, the power series

∑∞
n=1 a−nv

n has convergence radius +∞. Consequently, the series∑∞
n=1 a−n(z − z0)−n converges for every z ∈ C \ {z0} and its sum gives a function which is

holomorphic in this set.

Let us examine some examples:

Example 3.4.7. Let f : C \ {0} → C, f(z) = ez−1
z . For every z ∈ C \ {0} we have

f(z) =
1

z
(
∞∑
n=0

zn

n!
− 1) =

∞∑
n=1

zn−1

n!
=
∞∑
n=0

zn

(n+ 1)!

So 0 is a removable singularity of f . The function

g : C→ C,

g(z) =

{
ez−1
z se z 6= 0,
1 se z = 0

is holomorphic in the whole C.

Example 3.4.8. Let f : C \ {0} → C, f(z) = ez

z2
. For every z ∈ C \ {0}, we have

f(z) =

∞∑
n=0

zn−2

n!
=

∞∑
n=−2

zn

(n+ 2)!
.

So an = 0 if n < −2, but a−2 = a−1 = 1. Therefore, 0 is a pole of order 2 for f .

Example 3.4.9. Let f : C \ {0} → C, f(z) = e
1
z . For every z ∈ C \ {0}, one has

f(z) =
∞∑
n=0

z−n

n!
=

0∑
n=−∞

zn

(−n)!
.

So an = 1
(−n)! for every n ∈ Z, n ≤ 0. We conclude that 0 is an essential singularity of f .
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3.5 The residue theorem

In this section we shall illustrate the so called residue theorem, a basic tool for the computation
of complex integrals, which has many important applications. We start with the definition of
residue:

Definition 3.5.1. Let A be an open subset of C, f : A → C holomorphic, z0 ∈ C an isolated
singularity of f . We shall call residue of f in z0, and we shall indicate with Res(f, z0), the
term a−1 in the Laurent expansion of f around z0.

We describe a simple method of calculation of the residue in the case of a polar singularity.

Lemma 3.5.2. Let A be an open subset of C, f : A → C holomorphic, z0 ∈ C an isolated
singularity of f . We suppose that z0 is a pole of order less or equal to n (n ∈ N). Then

Res(f, z0) =
1

(n− 1)!
lim
z→z0

(
d

dz
)n−1[(z − z0)nf(z)].

Incomplete proof We limit ourselves to the case n = 3. Then there exists r > 0 such that,
if 0 < |z − z0| < r, we have

f(z) = a−3(z − z0)−3 + a−2(z − z0)−2 + a−1(z − z0)−1 + a0 + a1(z − z0) + ...,

hence

(z − z0)3f(z) = a−3 + a−2(z − z0) + a−1(z − z0)2 + a0(z − z0)3 + a1(z − z0)4 + ...,

(
d

dz
)2[(z − z0)3f ](z) = 2a−1 + 6a0(z − z0) + 12a1(z − z0)2 + ...,

which implies the conclusion.
�
As a premise to the following example, we put here some simple results of practical usefulness.

We start with a complex version of De L’Hopital’s theorem:

Lemma 3.5.3. Let z0 ∈ C, r > 0, let f, g : B(z0, r) \ {z0} → C be holomorphic and such that
lim
z→z0

f(z) = lim
z→z0

g(z) = 0, g(z) 6= 0 ∀z ∈ B(z0, r) \ {z0}. Moreover, we assume that g′(z) 6= 0

∀z ∈ B(z0, r) \ {z0} and there exists in C lim
z→z0

f ′(z)
g′(z) . Then, there exists lim

z→z0
f(z)
g(z) and coincides

with lim
z→z0

f ′(z)
g′(z) .

Incomplete proof It is possible to check that the natural extensions of f and g to B(z0, r) are
holomorphic in B(z0, r). Suppose (calling again, for simplicity, these extensions f and g) that

g′(z0) 6= 0. Then, ∀z ∈ B(z0, r), f(z) =
∑∞

n=1
f (n)(z0)

n! (z−z0)n and g(z) =
∑∞

n=1
g(n)(z0)

n! (z−z0)n.
As g′(z0) 6= 0, we have

lim
z→z0

f ′(z)

g′(z)
=
f ′(z0)

g′(z0)
.

On the other hand, if z 6= z0,

f(z)

g(z)
=

(z − z0)
∑∞

n=0
f (n+1)(z0)

(n+1)! (z − z0)n

(z − z0)
∑∞

n=0
g(n+1)(z0)

(n+1)! (z − z0)n
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=

∑∞
n=0

f (n+1)(z0)
(n+1)! (z − z0)n∑∞

n=0
g(n+1)(z0)

(n+1)! (z − z0)n
→ f ′(z0)

g′(z0)
(z → z0).

�

Lemma 3.5.2 requires an estimate of the order of the pole. We illustrate a simple result in
this direction. If f : A → C is holomorphic (with A open subset of C) and z0 ∈ A, we shall
say that f has in z0 a zero of order m (m ∈ N0) if f (k)(z0) = 0 per k ∈ N0, k < m, while
f (m)(z0) 6= 0. Observe that, if f(z0) 6= 0, then f has in z0 a zero of order 0.

Lemma 3.5.4. Let A be an open subset of C, f, g : A → C holomorphic, z0 ∈ A. Suppose
that z0 is zero of order m for f , of order n for g, with m and n elements of N0. Next, let
h : {z ∈ A : g(z) 6= 0} → C, h(z) = f(z)

g(z) . Then:

(I) if m ≥ n, h has in z0 a removable singularity;
(II) if m < n, h has in z0 a pole of order n−m.

Proof If r > 0 is sufficiently small, we have, for |z − z0| < r,

f(z) =
∞∑
k=m

f (k)(z0)

k!
(z − z0)k =

= (z − z0)m
∞∑
r=0

f (r+m)(z0)

(r +m)!
(z − z0)r := (z − z0)mk(z)

and

g(z) =
∞∑
k=n

g(k)(z0)

k!
(z − z0)k =

(z − z0)n
∞∑
r=0

g(r+n)(z0)

(r + n)!
(z − z0)r := (z − z0)nl(z).

The functions k and l are holomorphic in {z ∈ C : |z − z0| < r}, k(z0) = f (m)(z0)
m! 6= 0 and

l(z0) = g(n)(z0)
n! 6= 0. Lowering (if necessary) r, we may assume l(z) 6= 0 if |z − z0| < r.

The function k
l allows a certain expansion

∑∞
k=0 ck(z − z0)k in B(z0, r) with c0 6= 0. So, if

0 < |z − z0| < r, one has

h(z) = (z − z0)m−n
∞∑
k=0

ck(z − z0)k =
∞∑
k=0

ck(z − z0)k+m−n =

=

∞∑
j=m−n

cj−m+n(z − z0)j ,

which implies the conclusion.
�

Example 3.5.5. Let A := {z ∈ C : sin(z) 6= 0}, f : A → C, f(z) = ez−1
sin2(z)

. Employing the

result in Exercise 3.1.18(V I), we have immediately that 0 is an isolated singularity for f . We
determine Res(f, 0). Lemma 3.5.2 requires an upper estimate of the order of the pole. The
function z → sin2(z) has in 0 a zero of order 2, while the function z → ez − 1 has in 0 a simple
zero (that is, of order 1).
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So, by virtue of Lemma 3.5.4, f has in 0 a pole of order 1 (or simple). Hence, by Lemma
3.5.2, we have

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

z(ez − 1)

sin2(z)
.

In order to compute this limit, we try to apply Lemma 3.5.3. Differentiating at the numerator
and at the denominator, we obtain ez−1+zez

2 sin(z) cos(z) , which is again in the undetermined form 0
0 .

Differentiang another time, we get 2ez+zez

2(cos2(z)−sin2(z))
, which tends to 1, as z → 0. We conclude

that Res(f, 0) = 1.

As a premise to the main result, we put the notion of index of a closed path with respect
to a point.

Definition 3.5.6. Let α be a closed, piecewise C1 path in C and let z0 ∈ C, with z0 not belonging
to the support of α. We define the index of α with respect to z0 and indicate with ind(α, z0) the
complex number

ind(α, z0) :=
1

2πi

∫
α
(z − z0)−1dz. (3.5.1)

It is possible to prove the following properties of the index:

Theorem 3.5.7. Let α be a a closed, piecewise C1 path in C. Then

(I) ∀z ∈ C \ supp(α) ind(α, z0) ∈ Z;

(II) if A ⊆ C \ supp(α) and A is arcwise connected, then ind(α, z) is the same for every
element z of A;

(III) if A ⊆ C \ supp(α) and A is arcwise connected and unbounded, then ind(α, z) = 0
∀z ∈ A.

Remark 3.5.8. In practice, ind(α, z0) indicates the number of times α ”turns around” z0,
counting 1 for each lap in counterclockwise sense, −1 for each lap in clockwise sense.

Example 3.5.9. Let n ∈ N and α : [0, 2π]→ C, α(t) = eint. Then supp(α) = {z ∈ C : |z| = 1}.
Let z0 ∈ C, with |z0| 6= 1. By Theorem 3.5.7(III) applied to A := {z ∈ C : |z| > 1}, we have
in this case ind(α, z0) = 0. On the contrary, assume that |z0| < 1. Then, applying Theorem
3.5.7(II) to A := {z ∈ C : |z| < 1}, we can say that

ind(α, z0) = ind(α, 0) =
1

2πi

∫
α
z−1dz =

=
1

2πi

∫ 2π

0
e−intineintdt = n.

In fact, α turns around z0 n times in counterclockwise sense. Let us consider, instead, β :
[0, 2π] → C, β(t) = ei(2π−t) = e−it, turning around (for example) 0 once in clockwise sense.
Then we have

ind(β, 0) =
1

2πi

∫
β
z−1dz =

=
1

2πi

∫ 2π

0
eit(−i)e−itdt = −1.

We shall need also the following
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Lemma 3.5.10. Let A be an open subset of C, f : A→ C holomorphic, α a piecewise C1 path
with support in A. Suppose that thre exists F : A → C holomorphic, such that F ′(z) = f(z)
∀z ∈ A. Then ∫

α
f(z)dz = 0.

Incomplete proof Suppose that α is of class C1. Then, if α : [a, b]→ C,∫
α
f(z)dz =

∫ b

a
f(α(t))α′(t)dt =

(applying the fundamental theorem of integral calculus)

= [F (α(t)]t=bt=a = 0,

because α(a) = α(b).
�
We pass to the main result of this section, providing (as will be clear in the following) an

important tool for computation:

Theorem 3.5.11. (The residue theorem) Let A be a simply connected open subset of C, let
z1,...,zn be elements of A, f : A \ {z1, ..., zn} → C holomorphic, α a closed, piecewise C1 path,
with support in A \ {z1, ..., zn}. Then∫

α
f(z)dz = 2πi

n∑
i=1

Res(f, zi)ind(α, zi). (3.5.2)

Incomplete proof We consider, for i = 1, ..., n, the Laurent expansion of f around zi. If this
expansion is

∑+∞
n=−∞ ai,n(z − zi)n, we set

Si(z) :=
−1∑

n=−∞
ai,n(z − zi)n =

+∞∑
n=1

ai,−n(z − zi)−n.

We have already observed (see Remark 3.4.6) that Si is holomorphic in C\{zi}. Let us consider
now the function z → f(z)−S1(z)− ...−Sn(z), holomorphic in A\{z1, ..., zn}. We observe that
each of the points z1, ..., zn is a removable singularity for this function. To see this, let us take
(for example) i = 1. Then f(z)− S1(z) =

∑+∞
n=0 ai,n(z − zi)n for z sufficiently close to z1,while

S2, ..., Sn are regular in z1. So, applying Corollary 3.2.20, we have∫
α
f(z)dz =

=

∫
α
(f(z)− S1(z)− ...− Sn(z))dz +

∫
α
(S1(z) + ...+ Sn(z))dz

=

∫
α
(S1(z) + ...+ Sn(z))dz.

For i = 1, ..., n, one has ∫
α
Si(z)dz =

∫
α

+∞∑
n=1

ai,−n(z − zi)−ndz
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=
+∞∑
n=1

ai,−n

∫
α
(z − zi)−ndz

(we do not justify this passage). Now let us consider, for n ∈ N, the integral
∫
α(z − zi)−ndz. If

n 6= 1, we have

(z − zi)−n = F ′(z),

with F (z) = (1 − n)−1(z − zi)1−n. Applying Lemma 3.5.3, we conclude that, if n 6= 1,
∫
α(z −

zi)
−ndz = 0. So we have that∫

α
Si(z)dz = ai,−1

∫
α
(z − zi)−1dz =

= 2πiRes(f, zi)ind(α, zi).

�

Example 3.5.12. Let α = C2(2i). We want to compute∫
α

1

z4 − 8z2 − 9
dz. (3.5.3)

The complex zeros of the polynomial P (z) := z4 − 8z2 − 9 are 3, −3, i e −i. So we set
f : C\{3,−3, i,−i} → C, f(z) = 1

z4−8z2−9
. f is holomorphic and, applying the residue theorem,

we deduce that the integral in (3.5.3) coincides with

2πi[Res(f, 3)ind(α, 3) +Res(f,−3)ind(α,−3)+

+Res(f, i)ind(α, i) +Res(f,−i)ind(α,−i)].

Now we observe that |3− 2i| = | − 3− 2i| =
√

13 > 2 and | − i− 2i| = 3 > 2. So, by Theorem
3.5.7(III), we have

ind(C2(2i), 3) = ind(C2(2i),−3) = ind(C2(2i),−i) = 0.

On account of Remark 3.5.8, we can also write

ind(C2(2i), i) = 1.

So the integral in (3.5.3) coincides with 2πiRes(f, i). In order to compute Res(f, i), we observe
that P ′(i) = −20i 6= 0, so that P has in i a simple zero. It follows from Lemma 3.5.4 that f has
a simple pole in i. So

Res(f, i) = lim
z→i

(z − i)f(z) = lim
z→i

1

4z3 − 16z
=

i

20
.

We conclude that the integral in (3.5.3) equals 2πi i20 = − π
10 .

Example 3.5.13. We employ the residue theorem to compute∫
R

1

x4 + 1
dx. (3.5.4)
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First of all, we observe that the function we want to integrate is continuous and so measurable
in R. Moreover, it is positive. So the integral exists in the sense of Definition 1.2.6. We can also
apply the monotone convergence theorem to deduce that (3.5.4) coincides with

lim
n→+∞

∫ n

−n

1

x4 + 1
dx.

In fact, ∫ n

−n

1

x4 + 1
dx =

∫
R

χn(x)

x4 + 1
dx,

where we have indicated with χn the characteristic function of the interval [−n, n], and for each
n ∈ N and ∀x ∈ R,

χn(x)

x4 + 1
≤ χn+1(x)

x4 + 1

and

lim
n→+∞

χn(x)

x4 + 1
=

1

x4 + 1
.

Now we consider the closed, piecewise C1 path, obtained describing firstly the interval [−n, n],
then the semi-circumference {neit : t ∈ [0, π]}. The function z → 1

z4+1
is holomorphic in

C \ {ei
(2k+1)π

4 : 0 ≤ k ≤ 3, k ∈ Z}. If n > 1, none of the complex numbers of the form ei
(2k+1)π

4

belongs to the support of αn. It is also clear that

ind(αn, e
iπ
4 ) = ind(αn, e

i 3π
4 ) = 1,

while
ind(αn, e

i 5π
4 ) = ind(αn, e

i 7π
4 ) = 0.

So, it follows from the residue theorem that∫
αn

1

z4 + 1
dz = 2πi[Res(f, ei

π
4 ) +Res(f, ei

3π
4 )],

with f(z) = 1
z4+1

. It is not difficult to check that f has in ei
π
4 a pole of order 1. So, applying

Lemmata 3.5.2 and 3.5.3, we can write

Res(f, ei
π
4 ) = lim

z→ei
π
4

z − ei
π
4

z4 + 1

= lim
z→ei

π
4

1

4z3
=
e−i

3π
4

4
.

In the same way,

Res(f, ei
3π
4 ) = lim

z→ei
3π
4

z − ei
3π
4

z4 + 1

= lim
z→ei

3π
4

1

4z3
=
e−i

9π
4

4
.

So ∫
αn

1

z4 + 1
dz = 2πi(

e−i
3π
4

4
+
e−i

9π
4

4
) =

π√
2
.
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On the other hand, ∫
αn

1

z4 + 1
dz =

=

∫ n

−n

1

x4 + 1
dx+

∫
C+
n (0)

1

z4 + 1
dz,

with {
C+
n (0) : [0, π]→ C,
C+
n (0)(t) = neit.

(3.5.5)

If |z| = n e n > 1, one has, applying the result of Exercise 2.1.14,

|z4 + 1| ≥ ||z4| − 1|| = n4 − 1 > 0,

so that

|f(z)| ≤ 1

n4 − 1

if |z| = n > 1. So, applying Theorem 3.2.12, we have

|
∫
C+
n (0)

1

z4 + 1
dz| ≤ nπ

n4 − 1
→ 0(n→ +∞).

Summing up, we have, for n ≥ 2,∫ n

−n

1

x4 + 1
dx+

∫
C+
n (0)

1

z4 + 1
dz =

π√
2
,

so that, at the limit for n→ +∞, ∫
R

1

x4 + 1
dx =

π√
2
.

Example 3.5.14. We want to compute∫
R+

xα

1 + x2
dx, (3.5.6)

with α ∈ R.

Whatever α is, if we set f : R+ → R, f(x) = xα

1+x2
, f is measurable, because it is continuous,

and nonnegative. So the integral is always defined. We would like to know, first of all, for which
values of α it is a real number. One has∫

R+

f(x)dx =

∫
]0,1]

f(x)dx+

∫
]1,+∞[

f(x)dx. (3.5.7)

The function g(x) := xβ is summable in ]0, 1] if and only if β > −1. If 0 < x ≤ 1, we have

f(x) ≤ xα ≤ 2f(x).

So the first integral in (3.5.7) is finite if and only if α > −1. Moreover, the function g(x) := xβ

is summable in [1,+∞[ if and only if β < −1. If x ≥ 1, we have

f(x) ≤ xα−2
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and

xα−2 = f(x)(1 +
1

x2
) ≤ 2f(x).

So the second integral in (3.5.7) is finite if and only if α− 2 < −1, that is, α < 1. We conclude
that the integral in (3.5.6) si finite if and only if

−1 < α < 1. (3.5.8)

From now on, we shall assume that condition (3.5.8) is satisfied.

Now we consider, for a certain n ∈ N, the closed, piecewise C1 path αn obtained describing
once, in counterclockwise sense, first the interval [ 1

n , n], then, in the order, the semi-circumference
{z ∈ C : |z| = n, Im(z) ≥ 0}, [−n,− 1

n ], the semi-circumference {z ∈ C : |z| = 1
n , Im(z) ≥ 0}.

We prolounge the function f as a holomorphic function in a proper open subset of C. To this
aim, we start by considering the logarithm function log defined in A := C \ {iy : y ∈ R, y ≤ 0}
in the following way:

log(z) = ln(|z|) + iθ, θ ∈ arg(z)∩]− π

2
,
3π

2
[. (3.5.9)

Next, we set, for each β ∈ R (recalling Example 3.1.12)

zβ := eβlog(z) (3.5.10)

Now we consider the function {
g : A \ {i} → C,
g(z) = zα

1+z2
.

g is holomorphic and its restriction to R+ is f . Applying now the residue theorem, we have, for
n ≥ 2, ∫

αn

g(z)dz = 2πiRes(g, i).

We can easily check that g has a simple pole in i. So, applying again Lemma 3.5.3 and recalling
Example 3.1.12, we have

Res(g, i) = lim
z→i

(z − i)g(z)

= lim
z→i

zα + (z − i)αzα−1

2z
=
iα

2i
=
eαlog(i)

2i

=
eiα

π
2

2i
,

hence ∫
αn

g(z)dz = πeiα
π
2 .

On the other hand, ∫
αn

g(z)dz =

=

∫ n

1
n

xα

1 + x2
dx+

∫
C+
n (0)

zα

1 + z2
dz +

∫ − 1
n

−n

xα

1 + x2
dx−

∫
C+

1
n

(0)

zα

1 + z2
dz.

If x < 0, one has

xα = eαlog(x) = eα(ln(−x)+iπ) = (−x)αeiαπ,
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hence ∫ − 1
n

−n

xα

1 + x2
dx = eiαπ

∫ − 1
n

−n

(−x)α

1 + x2
dx = eiαπ

∫ n

1
n

xα

1 + x2
dx.

Moreover, if |z| = R, one has

|zα| = |eαlog(z)| = eRe(αlog(z)) = eαln(R) = Rα.

If R > 1, we have also

|1 + z2| = |z2 − (−1)| ≥ ||z2| − 1| = R2 − 1,

while, if R < 1,

|1 + z2| = |1− (−z2)| ≥ |1− | − z2|| = 1−R2.

Applying again Theorem 3.2.12, we obtain

|
∫
C+
n (0)

zα

1 + z2
dz| ≤ nα

n2 − 1
πn→ 0(n→ +∞)

and

|
∫
C+

1
n

(0)

zα

1 + z2
dz| ≤ n−α

1− n−2
πn−1 → 0(n→ +∞),

on account of (3.5.8). We conclude, letting n go to +∞, that

(1 + eiαπ)

∫
R+

xα

1 + x2
dx = πeiα

π
2 ,

hence ∫
R+

xα

1 + x2
dx =

πeiα
π
2

1 + eiαπ
=

π

2 cos(απ2 )
.

We examine another example, which will be useful in the following.

Example 3.5.15. Given ξ ∈ R, we compute∫
R
e−x

2−ixξdx. (3.5.11)

First of all, we observe that

|e−x2−ixξ| = e−x
2

One has e−x
2

= o(x−2) for x→ ±∞. So, there exists M ∈ R+ such that, if |x| > M , e−x
2
< x−2.

Hence, ∫
R
e−x

2
dx ≤

∫ M

−M
e−x

2
dx+

∫
{|x|>M}

x−2dx < +∞.

Therefore, on account of the result of Exercise 1.2.16, the integrand function in (3.5.11) is
summable for every ξ ∈ R. We start by considering the case ξ = 0. We set, by convenience,

I :=

∫
R
e−x

2
dx.
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Applying Theorem 1.3.8 with T : R+×]0, 2π[→ R2, T (ρ, θ) = (ρ cos(θ), ρ sin(θ)), one has∫
R2

e−x
2−y2dxdy =

∫
R+×]0,2π[

e−ρ
2
ρdρdθ

= 2π

∫
R+

e−ρ
2
ρdρ = 2π lim

c→+∞

∫ c

0
e−ρ

2
ρdρ

= 2π lim
c→+∞

1

2
(1− e−c2) = π.

On the other hand, by the theorem of Tonelli,∫
R2

e−x
2−y2dxdy = I2.

As I > 0, necessarily I =
√
π. Next, we consider the case ξ 6= 0. We start by observing that

x2 + ixξ = (x2 + 2x
iξ

2
− ξ2

4
) +

ξ2

4

= (x+
iξ

2
)2 +

ξ2

4
.

It follows that ∫
R
e−x

2−ixξdx = e−
ξ2

4

∫
R
e−(x+ iξ

2
)2dx.

Suppose now, for example, ξ > 0. We consider, given n ∈ N, a closed, piecewise C1 path αn,
clockwise oriented, having as support the boundary of the rectangle with vertexes−n+ iξ

2 , n+ iξ
2 ,

n, −n. On account of Corollary 3.2.20, one has∫
αn

e−z
2
dz = 0.

On the other hand, ∫
αn

e−z
2
dz =

=

∫ n

−n
e−(x+ iξ

2
)2dx−

∫ n

−n
e−x

2
dx−

∫ ξ

0
e−(n+iy)2idy +

∫ ξ

0
e−(−n+iy)2idy

If y ∈ [0, ξ], we have

|e−(n+iy)2 | = ey
2−n2 ≤ eξ2−n2

.

It follows that

|
∫ ξ

0
e−(n+iy)2idy| ≤ ξeξ2−n2 → 0(n→ +∞).

Arguing in a similar way, we see also that

lim
n→+∞

∫ ξ

0
e−(−n+iy)2idy = 0.

So, letting n go to +∞, we obtain

0 =

∫
R
e−(x+ iξ

2
)2dx−

√
π,
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hence ∫
R
e−(x+ iξ

2
)2dx =

√
π.

With analogous arguments, one can see that this formula holds even if ξ < 0. So, we can

conclude that for every ξ ∈ R the integral in (3.5.11) is
√
πe−

ξ2

4 .

Exercise 3.5.16. Compute the residues of the following functions in the specified point z0:

(I) sin(z)
z3

, z0 = 0;

(II) (2− z)−1e
1
z , z0 = 2;

(III) sin(z)
cos(z) , z0 = π

2 ;

(IV) zα

(zβ−1)2
, z0 = 1, con zα = fα(z) e zβ = fβ(z) (see Example 3.1.12), taking, as logarithm

function, g(z) = ln(|z|) + iArg(z) for Re(z) > 0, where Arg(z) is the element of the argument
of z in ]− π, π[;

(V) z3

sin5(z)
, z0 = 0.

Exercise 3.5.17. Compute

(I)
∫ 2π

0
1

cos(x)+2dx;

(II)
∫ 2π

0
1

cos(x)+sin(x)+2dx;

(III)
∫ 2π

0
1

cos2(x)+1
dx;

(IV)
∫ 2π

0
cos(x)

cos(x)+sin(x)+2dx.

(Hint: employ Euler’s formulas and transform the given integrals into complex integrals in
C1(0)).

Exercise 3.5.18. Compute

(I)
∫
R

1
x2+2x+2

dx;

(II)
∫
R

1
(x2+1)2

dx;

(III)
∫
R

1
x6+1

dx;

(IV)
∫
R

1
x8+1

dx;

(V)
∫
R+

x2

x4+1
dx.

Exercise 3.5.19. Compute, given α ∈]− 1, 1[,

∫
R+

xα ln(x)

1 + x2
dx. (3.5.12)

Start by showing that the integrand function is summable in R+, employing the fact that
ln(x) = o(xε) for x→ +∞ and ln(x) = o(x−ε) for x→ 0, for every ε > 0.

Exercise 3.5.20. Computing, checking preliminarily their existence,

(I)
∫
R+

ln(x)
x4+1

dx;

(II)
∫
R+

ln2(x)
x2+1

dx;

(III)
∫
R+

xα

x4+1
dx (−1 < α < 3).
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3.6 Holomorphic functions and harmonic functions

We start by introducing, in Rn(n ∈ N) the Laplace operator ∆:

∆ :=
n∑
j=1

∂2

∂x2
j

=
∂2

∂x2
1

+ ...
∂2

∂x2
n

. (3.6.1)

The differential operator ∆ plays a remarkable role in mathematical physics.

Definition 3.6.1. Let A be an open subset of Rn, u ∈ C2(A). We shall say that u is harmonic
in A if

∆u(x) = 0 ∀x ∈ A.

Remark 3.6.2. Examples of harmonic functions are polynomial functions of degree less or equal
to one. Other examples are u : R2 → R, u(x, y) = ex cos(y) and v : R2 → R, v(x, y) = x2 − y2,
as one can easily check.

In case n = 2, there exists a remarkable connection between harmonic and holomorphic
functions:

Theorem 3.6.3. Let A be an open subset in C, f A → C holomorphic, u : A → R, u(z) =
u(x, y) = Re(f(z)). Then u is harmonic in A.

On the other hand, let A be a simply connected open subset of R2 (which we identify with C)
and let u : A→ R be harmonic. Then there exists f : A→ C holomorphic, such that u = Re(f).

Proof Let f : A→ C be holomorphic, u = Re(f). We recall (see Remark 3.3.19) that u is of
class C∞, as f has complex derivatives of any order, which are all holomorphic. We check that
∆u(x, y) = 0 ∀(x, y) ∈ A. Let v := Im(f). Then, applying the Cauchy-Riemann conditions and
the theorem of Schwarz, we have, ∀(x, y) ∈ A,

∆u(x, y) =
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)

=
∂2v

∂x∂y
(x, y)− ∂2v

∂y∂x
(x, y) = 0.

On the other hand, let A be an open simply connected subset of R2 and let u : A → R be
harmonic. We want to construct f : A → C holomorphic, such that u = Re(f). To this aim,
owing to Theorem 3.1.8, it suffices to determine v ∈ C1(A) such that

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(3.6.2)

and set {
f : A→ C,
f(z) = u(z) + iv(z), z ∈ A.

Let us consider the vector field F : A→ R2,

F (x, y) := (−∂u
∂y

(x, y),
∂u

∂x
(x, y)).

As u is harmonic, F is closed and so it has a potential, because A is simply conncected. Therefore,
there exists v ∈ C1(A) fulfilling (3.6.2). With this, the result is completely proved.

�
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Remark 3.6.4. If f : A→ C is holomorphic, (A open subset of C), as Im(f) = Re(−if), even
Im(f) is harmonic in A.

Remark 3.6.5. We have already observed that the real and the imaginary part of a holomorphic
function are of class C∞. So, on account of the fact that open balls are simply connected, in
force of Theorem 3.6.3, given u : A→ R harmonic in A open subset of R2, we can construct in
every open ball in A a holomorphic function, the real part of which is u. So we can conclude
that, at least in the case n = 2, harmonic functions are of class C∞. In fact, it is possible to
show that this is true in any dimension.

3.7 Maximum principle and Dirichlet problem for the Laplace
equation in the standard circle of R2

In this section we illustrate some results concerning the Dirichlet problem for the Laplace equa-
tion. Such problem can be formulated as follows: let A be an open subset in Rn (n ∈ N) and
let g : ∂A → R be continuous. We look for functions u : A → R, continuous in A and of class
C2 in A, such that {

∆u(x) = 0, ∀x ∈ A,
u(x′) = g(x′), ∀x′ ∈ ∂A. (3.7.1)

We begin with a first important result, the so called maximum principle.

Theorem 3.7.1. (Maximum principle) Let A be an open bounded subset of Rn, u ∈ C(A) ∩
C2(A) real valued, such that

∆u(x) ≥ 0 ∀x ∈ A. (3.7.2)

Then
max
A

u = max
∂A

u. (3.7.3)

Proof First of all, we observe that, as A is bounded, A and ∂A are closed and bounded
(see Exercises 3.7.4 and 3.7.5). So, by the theorem of Weierstrass, max

A
u and max

∂A
u exist. As

∂A ⊆ A, we can certainly say that
max
∂A

u ≤ max
A

u. (3.7.4)

We want to reverse inequality (3.7.4). To this aim, we start by considering the less general case

∆u(x) > 0 ∀x ∈ A. (3.7.5)

We show that, in this case, u cannot have points of maximum in A, so that it follows that
its points of maximum are necessarily in ∂A and so (3.7.3) holds. We argue by contradiction,
assuming that (3.7.5) holds and there exists x0 ∈ A, which is a point of maximum for u. Let us
consider the quadratic form

Q(h) :=
n∑
i=1

n∑
j=1

∂2u

∂xixj
(x0)hihj , h = (h1, ..., hn) ∈ Rn. (3.7.6)

We recall that Q is negative semidefinite (see D. Guidetti, ”Analisi Matematica B”, Teorema
2.5.2). It follows that, if k ∈ {1, ..., n} and ek is the k−th element of the standard basis of Rn,

0 ≥ Q(ek) =
∂2u

∂x2
k

(x0).
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So ∆u(x0) ≤ 0, in contradiction with (3.7.5).

Let us consider now the general case (3.7.2). We fix v ∈ C2(Rn), real valued, such that
∆v(x) > 0 ∀x ∈ Rn. A suitable choice is (for example), v : Rn → R, v(x1, ..., xn) = x2

1, verifying
∆v(x) = 2 ∀x ∈ Rn. Given ε > 0, we set

uε := u+ εv. (3.7.7)

We have

∆uε(x) = ∆u(x) + ε∆v(x) > 0 ∀x ∈ A.

So, employing the particular case already treated, we get

max
A

uε = max
Fr(A)

uε.

This identity implies that, whatever is x ∈ A, we have

u(x) + εv(x) ≤ max
∂A

(u+ εv). (3.7.8)

If x′ ∈ ∂A, it holds

u(x′) + εv(x′) ≤ max
∂A

u+ εmax
∂A

v,

hence, whatever x ∈ A is,

u(x) + εv(x) ≤ max
∂A

u+ εmax
∂A

v. (3.7.9)

Passing to the limit for ε→ 0+ in (3.7.9), we obtain that, whatever x ∈ A is, we have

u(x) ≤ max
∂A

u. (3.7.10)

This implies the conclusion. �
From Theorem 3.7.1 the following uniqueness result can be easily obtained:

Corollary 3.7.2. Let A be an open, bounded subset in Rn, u0, u1 ∈ C(A) ∩ C2(A) real valued,
such that ∆u0(x) = ∆u1(x) ∀x ∈ A, u0(x′) = u1(x′) ∀x′ ∈ ∂A. Then u0(x) = u1(x) ∀x ∈ A.

Proof We set u : A → R, u(x) = u0(x) − u1(x). Then u ∈ C(A) ∩ C2(A), it is real valued,
∆u(x) = 0 ∀x ∈ A, u(x′) = 0 ∀x′ ∈ Fr(A). Owing to the maximum principle, one has

u(x) ≤ 0 ∀x ∈ A. (3.7.11)

On the other hand, ∆(−u)(x) = 0 ∀x ∈ A, −u(x′) = 0 ∀x′ ∈ Fr(A) hold also. So, again by the
maximum principle, we have −u(x) ≤ 0 ∀x ∈ A, that is,

u(x) ≥ 0 ∀x ∈ A. (3.7.12)

From (3.7.11) and (3.7.12) we obtain the conclusion. �
Let us consider now problem (3.7.1) in case A = {z ∈ C : |z| < 1} = {(x, y) ∈ R2 : x2 + y2 <

1} (the ”standard circle”).

Theorem 3.7.3. Let A = {z ∈ C : |z| < 1}, g ∈ C(∂A;R). Then there exists a unique
u ∈ C(A;R) ∩ C2(A) solving (3.7.1).
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Partial proof The uniqueness follows from Corollary 3.7.2.

Concerning the existence, we shall construct heuristically a certain solution of the problem.
We shall not verify in all the details that the function we are going to construct is really a
solution.

So, let us suppose that a solution u with the required properties exists. By Theorem 3.6.3,
there exists a holomorphic function f : A→ C, such that u = Re(f). Applying Theorem 3.3.17
and Remark 3.3.18, we may say that, for every z ∈ C, with |z| < 1, we have

f(z) =
∞∑
n=0

αnz
n, (3.7.13)

with the radius of convergence of the power series
∞∑
n=0

αnz
n at least equal to 1. So, if r ∈ [0, 1[

and θ ∈]− π, π], we have

u(reiθ) = Re(f(reiθ))
= Re(

∑∞
n=0 αnr

neinθ)
=

∑∞
n=0 anr

n cos(nθ) +
∑∞

n=1 bnr
n sin(nθ),

(3.7.14)

where we have put

an := Re(αn), n ∈ N0, (3.7.15)

bn := −Im(αn), n ∈ N. (3.7.16)

Now we have to determine the coefficients (an)n∈N0 and (bn)n∈N. Arguing formally, for r = 1,
we get:

g(eiθ) = u(cos(θ), sin(θ))
=

∑∞
n=0 an cos(nθ) +

∑∞
n=1 bn sin(nθ)

= a0 +
∑∞

n=1
an−ibn

2 einθ +
∑∞

n=1
an+ibn

2 e−inθ.

(3.7.17)

The last expression in (3.7.17) is the Fourier series expansion of θ → g(eiθ). So

a0 =
1

2π

∫ π

−π
g(eit)dt, (3.7.18)

and, for each n ∈ N,

an + ibn =
1

π

∫ π

−π
eintg(eit)dt,

hence

an =
1

π

∫ π

−π
cos(nt)g(eit)dt, (3.7.19)

bn =
1

π

∫ π

−π
sin(nt)g(eit)dt, (3.7.20)

From (3.7.14), (3.7.18), (3.7.19), (3.7.20), we obtain that, for every r ∈ [0, 1[ and θ ∈] − π, π],
carrying the series inside the integral

u(reiθ) = 1
π

∫ π
−π{

1
2 +

∑∞
n=1 r

n[cos(nθ) cos(nt) + sin(nθ) sin(nt)]g(eit)dt

= 1
π

∫ π
−π[1

2 +
∑∞

n=1 r
n cos(n(θ − t))]g(eit)dt

(3.7.21)
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If r ∈ [0, 1[, s ∈ R, one has

1
2 +

∑∞
n=1 r

n cos(ns) = 1
2 +Re{

∑∞
n=1 r

neins}
= 1

2 + rRe{ eis

1−reis }
= 1

2 + r cos(s)−r
1−2r cos(s)+r2

= 1−r2
2(1−2r cos(s)+r2)

.

So we have obtained the following classical formula:

u(reiθ) =
1− r2

2π

∫ π

−π

1

1− 2r cos(θ − t) + r2
g(eit)dt. (3.7.22)

Now, it would be possible to show that the function u : A→ R, such that

u(reiθ) =

{
1−r2

2π

∫ π
−π

1
1−2r cos(θ−t)+r2 g(eit)dt se 0 ≤ r < 1,

g(eiθ) se r = 1

belongs to C(A;R) ∩ C2(A) and is harmonic in A. Here we shall limit ourselves ti verify that

lim
r→1

u(r, 0) = g(1, 0). (3.7.23)

To this aim, let us observe preliminarly that, for every r ∈ [0, 1[, one has

1− r2

2π

∫ π

−π

1

1− 2r cos(s) + r2
ds = 1. (3.7.24)

In fact, assuming that it is possible to invert the series with the integral, we get

1− r2

2π

∫ π

−π

1

1− 2r cos(s) + r2
ds

=
1

π

∫ π

−π
(
1

2
+

∞∑
n=1

rn cos(ns))ds

=
1

π
(π +

∞∑
n=1

rn
∫ π

−π
cos(ns))ds)

= 1.

Moreover,
1− r2

2π(1− 2r cos(s) + r2)
> 0 ∀r ∈ [0, 1[, s ∈]− π, π],

being
1− 2r cos(s) + r2 ≥ 1− 2r + r2 = (1− r)2.

So,

|u(r, 0)− g(1, 0)| = |1−r22π

∫ π
−π

1
1−2r cos(t)+r2

(g(eit)− g(1, 0))dt|
≤ 1−r2

2π

∫ π
−π

1
1−2r cos(t)+r2

|g(eit)− g(1, 0)|dt.
(3.7.25)

Let us fix ε ∈ R+. As g is continuous, there exists δ ∈]0, π2 [, such that, if |t| < δ, one has

|g(eit)− g(1, 0)| < ε

2
.
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From (3.7.25), it follows

|u(r, 0)− g(1, 0)| ≤ ε
2

1−r2
2π

∫ δ
−δ

1
1−2r cos(t)+r2

dt

+2max
∂A
|g|1−r22π (

∫ −δ
−π

1
1−2r cos(t)+r2

dt

+
∫ π
δ

1
1−2r cos(t)+r2

dt).

(3.7.26)

We have

1− r2

2π

∫ δ

−δ

1

1− 2r cos(t) + r2
dt ≤ 1− r2

2π

∫ π

−π

1

1− 2r cos(t) + r2
dt = 1.

Moreover, if |t| ≥ δ, cos(t) ≤ cos(δ) < 1 holds. It follows that

1− 2r cos(t) + r2 ≥ 1− 2r cos(δ) + r2

With elementary methods, one can show that

min
[0,1]

(1− 2r cos(δ) + r2) = sin2(δ) > 0.

So

2max
∂A
|g|1− r

2

2π
(

∫ −δ
−π

1

1− 2r cos(t) + r2
dt+

∫ π

δ

1

1− 2r cos(t) + r2
dt)

= 2max
∂A
|g|1− r

2

π

∫ π

δ

1

1− 2r cos(t) + r2
dt

≤ 2max
∂A
|g|1− r

2

π

π − δ
sin2(δ)

,

converging to 0 as r → 1.

We conclude that there exists r(ε) ∈ [0, 1[, such that, if r(ε) < r < 1, one has

2max
∂A
|g|1− r

2

2π
(

∫ −δ
−π

1

1− 2r cos(t) + r2
dt+

∫ π

δ

1

1− 2r cos(t) + r2
dt) <

ε

2
,

and so, if r(ε) < r < 1,

|u(r, 0)− g(1, 0)| < ε

2
+
ε

2
= ε.

�

Exercise 3.7.4. Let A ⊆ Rn , A bounded. Show that A and ∂A are bounded.

Exercise 3.7.5. Let A ⊆ Rn. Show that ∂A is closed.

3.8 Conformal mappings and the Dirichlet problem for the Laplace
equation in R2

Now we want to extend Theorem 3.7.3 to more general open sets. To this aim, we shall employ
certain changes of variables, known in literature as ”conformal mappings”.
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Definition 3.8.1. Let A and B be open subsets of C. A conformal mapping from B to A is
a function φ : B → A such that:

(a) φ is a bijection between B e A;

(b) φ is holomorphic;

(c) φ′(z) 6= 0 ∀z ∈ B.

We shall say that B is conformally equivalent to A if there exists a conformal mapping from
B to A.

The following result, which we shall not prove, holds:

Theorem 3.8.2. Let A and B be open subsets of C and let φ be a conformal mapping from B
to A. Then the inverse mapping φ−1 is conformal from A to B.

Remark 3.8.3. The only item which is not obvious, in the proof of Theorem 3.8.2, is that
φ−1 is holomorphic. Supposing that this is true, the derivative of φ−1 can be easily computed:
it suffices to observe that φ−1(φ(z)) = z ∀z ∈ B. So, applying the rule of differentiation of
composed functions, we obtain

(φ−1)′(φ(z))φ′(z) = 1 ∀z ∈ B,

hence

(φ−1)′(φ(z)) =
1

φ′(z)
∀z ∈ B, (3.8.1)

which is a natural extension of the formula of differentiation of inverse functions seen in Analisis
A.

Remark 3.8.4. The term ”conformal mapping” refers to the fact that these mappings ”preserve
the angles between curves”. To give a precise meaning to this statement, let us consider two
paths of class C1 α and β, with domain [−δ, δ] (δ > 0) and support in R2. Suppose that
α(0) = β(0) and the vectors α′(0) and β′(0) are both nonzero. So we can define the ”angle
between α and β relative to t = 0” as the angle of measure θ ∈ [0, π] lying between the tangent
vectors α′(0) and β′(0). Recalling the geometric interpretation of the scalar product in R2, we
have

θ = arccos(
α′(0) · β′(0)

‖α′(0)‖‖β′(0)‖
),

where we have indicated with ‖.‖ the Euclidean norm in R2, coinciding with the absolute value
in C. We observe that, if z = (z1, z2) and v = (v1, v2) are both elements of R2, if we indicate
with zv their product in C, we have

z · v = z1v1 + z2v2 = Re(zv).

So,

θ = arccos(
Re(α′(0)β′(0))

|α′(0)||β′(0)|
).

Let now B be an open subset of C, containing the supports of α and β and let φ : B → A be a
conformal mapping, with A open in C. We consider the paths φ ◦ α and φ ◦ β and the angle θ′

between them, relative to t = 0. As (φ ◦ α)′(0) = φ′(α(0))α′(0) and

(φ ◦ β)′(0) = φ′(β(0))β′(0) = φ′(α(0))β′(0),



82 FUNCTIONS OF ONE COMPLEX VARIABLE

we have

θ′ = arccos(Re(φ
′(α(0))α′(0)φ′(α(0))β′(0))
|φ′(α(0)|2|α′(0)||β′(0)| )

= arccos(Re(α
′(0)β′(0))

|α′(0)||β′(0)| )

= θ.

Example 3.8.5. Let B := {z ∈ C : |z| < 1}, φ : B → C, φ(z) = 1+z
1−z . φ is holomorphic and, for

every z ∈ B,

φ′(z) =
2

(1− z)2
6= 0.

Let v ∈ C. Let us consider the equation

φ(z) = v, z ∈ B. (3.8.2)

If v 6= −1, the equation (3.8.2) has in C the unique solution z = v−1
v+1 . Such solution belongs to

B if and only if

|v − 1| < |v + 1|,

which is equivalent ro Re(v) > 0. So φ is a conformal mapping between B and {v ∈ C : Re(v) >
0}.

Remark 3.8.6. It is not difficult to verify that the relation ”being conformally equivalent” is
of equivalence between open subsets of C (Exercise 3.8.16).

At this point it is natural to wonder whether, given two open subsets of C, they are confor-
mally equivalent. A first famous step in this direction is the following classical theorem, due to
Riemann:

Theorem 3.8.7. Let A be a nonempty open subset of C. Then A is conformally equivalent to
{z ∈ C : |z| < 1} if and only if it is simply connected and does not coincide with C.

For a proof, see W. Rudin ”Real and complex analysis”, Chapter 14.

Theorem 3.8.7 tells us that, if A is a proper simply connected open subset of C, there exists
a conformal mapping φ from A to {z ∈ C : |z| < 1}, but says nothing about a continuous
extension of φ to A. So, we introduce the two following definitions:

Definition 3.8.8. Let E ⊆ C and F ⊆ C. A homeomorphism from E to F is a function
φ : E → F , injective and surjective, continuous, with inverse φ−1 continuous.

If there exists a homeomorphism from E to F , we shall say that E is homeomorphic to F .

Remark 3.8.9. It is easy to see that the relation ”being homeomorphic to” is of equivalence
between subsets of C. (Exercise 3.8.16). Moreover, it is obvious that conformal mappings are
homeomorphisms.

Definition 3.8.10. Let A be an open subset of C, β ∈ ∂A. We shall say that it is a simple
point of ∂A if it enjoys the following property: for an arbitrary sequence (αn) in A, converging
to β, it is possible to construct a continuous path γ : [0, 1] → C and a sequence (tn)n∈N, with
0 ≤ t1 < t2 < ..., tn → 1, such that γ(tn) = αn ∀n ∈ N, γ([0, 1[) ⊆ A e γ(1) = β.

Remark 3.8.11. It is easy to check that, if A is a convex open subset of C, every point of ∂A
is simple for ∂A (see Exercise 3.8.18)). On the contrary, let us give an example of a point of the
boundary which is not simple.
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Let

A := {z ∈ C : |z| < 1} \ {z ∈ R : z ∈ [0, 1[}.

We set β = 1/2 and, for n ∈ N,

αn :=

{
1/2 + i/n if n is odd,
1/2− i/n if n is even.

Let γ : [0, 1[→ C be continuous and let (tn)n∈N be a sequence satisfying 0 ≤ t1 < t2 < ..., tn → 1,
such that γ(tn) = αn ∀n ∈ N, γ([0, 1[) ⊆ A. Then, necessarily, for each n ∈ N, there exists τn
between tn and tn+1, such that

γ1(τn) ≤ 0. (3.8.3)

This implies that the condition lim
t→1

γ(t) = β cannot hold. In fact, in this case, there would exist

δ > 0, such that, for every t ∈ [0, 1[ satisying t > 1 − δ, it would be |γ(t) − 1/2| < 1/2, which
implies γ1(t) > 0. As the sequence (tn)n∈N converges to 1, for every δ ∈]0, 1[, for n sufficiently
large, it would hold τn > 1− δ, and so γ1(τn) > 0, in contradiction with (3.8.3).

Now we are able to state the following result (for a proof, see Rudin, ”Real and complex
analysis”, Theorem 14.19):

Theorem 3.8.12. Let A be an open, bounded, simply connected subset of C, whose boundary
points are all simple, let φ be a conformal mapping from A to {z ∈ C : |z| < 1}. Then φ is
extensible to a homeomorphism between A and {z ∈ C : |z| ≤ 1}, the restriction of which to ∂A
is a homeomorphism between ∂A and {z ∈ C : |z| = 1}.

Now we come back to Dirichlet’s problem for the Laplace equation. The following lemma
explains our interest for conformal mappings:

Lemma 3.8.13. Let B and A be open subsets of C, let u ∈ C2(A;R), let φ : B → C be
holomorphic, with φ(B) ⊆ A. Then, for every z ∈ A,

∆(u ◦ φ)(z) = ∆u(φ(z))|φ′(z)|2.

In particular, if u is harmonic, even u ◦ φ is harmonic.

Proof The proof is an exercise of differentiation.

Let us indicate with φ1 and φ2 the components of φ. Then, for every z ∈ B, we have

∂(u ◦ φ)

∂x
(z) = D1u(φ(z))

∂φ1

∂x
(z) +D2u(φ(z))

∂φ2

∂x
(z),

∂2(u◦φ)
∂x2

(z) = D2
1u(φ(z))∂φ1∂x (z)2 + 2D12u(φ(z))∂φ1∂x (z)∂φ2∂x (z)

+D2
2u(φ(z))∂φ2∂x (z)2 +D1u(φ(z))∂

2φ1
∂x2

(z)

+D2u(φ(z))∂
2φ2
∂x2

(z).

(3.8.4)

Analogously, we have

∂2(u◦φ)
∂y2

(z) = D2
1u(φ(z))∂φ1∂y (z)2 + 2D12u(φ(z))∂φ1∂y (z)∂φ2∂y (z)

+D2
2u(φ(z))∂φ2∂y (z)2 +D1u(φ(z))∂

2φ1
∂y2

(z)

+D2u(φ(z))∂
2φ2
∂y2

(z).

(3.8.5)
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From the Cauchy Riemann conditions, we obtain

∂φ1

∂x
(z)2 +

∂φ1

∂y
(z)2 =

∂φ1

∂x
(z)2 +

∂φ2

∂x
(z)2 = |φ′(z)|2,

∂φ1

∂x
(z)

∂φ2

∂x
(z) +

∂φ1

∂y
(z)

∂φ2

∂y
(z) = 0,

∂φ2

∂x
(z)2 +

∂φ2

∂y
(z)2 =

∂φ1

∂y
(z)2 +

∂φ1

∂x
(z)2 = |φ′(z)|2.

Moreover, φ1 e φ2 are harmonic by Theorem 3.6.3 and Remark 3.6.4. So. summing (3.8.4) and
(3.8.5), we obtain the conclusion. �

Now we are able to state and prove the following

Theorem 3.8.14. Let A be a bounded, simply connected, open subset of R2, whose boundary
points are all simple, in the sense of Definition 3.8.10. Let g ∈ C(∂A,R). Then the Dirichlet
problem for the Laplace equation (3.7.1) has a unique solution u ∈ C(A;R) ∩ C2(A).

Proof The uniqueness follows from Corollary 3.7.2.
Let us prove the existence. We indicate with B {z ∈ C : |z| < 1}. By Theorem 3.8.12,

there exists a conformal mapping φ between A and B, which is extensible to a homeomorphism
between A and B, which we continue to indicate with φ. Let h : ∂B → R, h(z) = g(φ−1(z)),
z ∈ ∂B. h ∈ C(∂B,R), as it is the composition of continuous functions. Let us consider the
problem {

∆v(z) = 0, z ∈ B,
v(z′) = h(z′), z′ ∈ Fr(B).

By Theorem 3.7.3, such problem has a unique solution v ∈ C(B,R) ∩ C2(B). We define u :
A → R, u(z) = v(φ(z)). Then u ∈ C(A,R) ∩ C2(A). By Lemma 3.8.13, u is harmonic in A.
Moreover, if z ∈ ∂A, as φ(z) ∈ ∂B, we have

u(z) = v(φ(z)) = h(φ(z)) = g(z).

The proof is complete. �

Remark 3.8.15. Apart very simple cases (see, for example, Exercises 3.8.19 and 3.8.20), we are
not able to write down an explicit expression of a conformal mapping betweenB := {z ∈ C : |z| <
1} and A, simply connected open subset of C, not coinciding with it. A particularly important
case, for applications, is that A is a bounded polygon. Employing the result of Exercise 3.8.19,
we can replace B with the halfspace {z ∈ C : Im(z) > 0}. In this case, conformal mappings
between {z ∈ C : Im(z) > 0} and A can be explicitly exibited, in the form of complex primitives
of certain holomorphic functions. These mappings are called ”Schwarz-Christoffel” mappings
(see, for example, T. W. Gamelin ”Complex Analysis” (Springer) Chapter XI.

Exercise 3.8.16. 1) Check that the relation”being homeomorphic” is of equivalence between
subsets of C.

2) Check that the relation ”being conformally equivalent to” is of equivalence between open
subsets of C.

Exercise 3.8.17. Let E and F be homeomorphic subsets of C. Check that:
1) if E is closed and bounded, F is closed and bounded;
2) if E is arcwise connected, F is arcwise connected;
3) if E is simply connected, F is simply connected.
Check (constructing a counterexample) that, if E is bounded, F is not necessarily bounded.
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Exercise 3.8.18. Check that, if A is a convex open subset of C, all points of ∂A are simple.
(Hint.: let β ∈ ∂A and let (αn)n∈N be a sequence with values in A, converging to β. Set, for

n ∈ N, tn = 1− 2−n and, if t ∈ [1− 2−n, 1− 2−n−1],

γ(t) = αn +
αn+1 − αn
tn+1 − tn

(t− tn).

Observe that, in the interval [tn, tn+1], γ describes the segment with endpoints αn and αn+1.
Check, using the fact that lim

n→+∞
αn = β, that lim

t→1
γ(t) = β.)

Exercise 3.8.19. Construct, starting from Example 3.8.5, a conformal mapping between {z ∈
C : |z| < 1} and {z ∈ C : Im(z) > 0}. Write down also the expression of the inverse mapping.
(Hint: construct preliminarly a conformal mapping between {z ∈ C : Re(z) > 0} and {z ∈ C :
Im(z) > 0})

Exercise 3.8.20. Let z0 ∈ C and r > 0. Then the mapping φ(z) := z−z0
r is conformal between

{z ∈ C : |z − z0| < r} e {z ∈ C : |z| < 1}. Use this fact to write an explicit expression for the
solution the Dirichlet’s problem {

∆u(z) = 0, |z − z0| < r,
u(z) = g(z), |z − z0| = r,

with g ∈ C({z ∈ C : |z − z0| = r},R).
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Chapter 4

The Fourier transform

4.1 The Fourier transform in L1(Rn)

We recall (see Example 2.1.10) that L1(Rn) is the linear space of equivalence classes of summable
functions. It is a Banach space with the norm (2.1.9). In the following, for simplicity, given
f ∈ L1(Rn), we shall write f instead of [f ] and we shall think of the elements of L1(Rn) as
summable functions, identifying elements coinciding almost everywhere. Of course, case by
case, the several results we are going to illustrate shall have to be invariant with respect to the
equivalence relation.

We pass to introduce the definition of the Fourier transform of f ∈ L1(Rn).

Definition 4.1.1. Let f ∈ L1(Rn). We shall call Fourier transform of f and we shall indicate
with the notation f̂ or Ff the function{

f̂ : Rn → C,
f̂(ξ) =

∫
Rn e

−i<x,ξ>f(x)dx,
(4.1.1)

with < ., . > ”standard” inner product in Rn (see Example 2.4.3).

Remark 4.1.2. For every ξ ∈ Rn we have |e−i<x,ξ>f(x)| = |f(x)|. It follows that the integral
in (4.1.1) is well defined.

Definition 4.1.3. Let A ⊆ Rn. We indicate with BC(A) the linear space of functions f : A→ C
which are continuous and bounded. We introduce in BC(A) the norm ‖.‖∞, defined as follows:

‖f‖∞ := sup{|f(a)| : a ∈ A}. (4.1.2)

Remark 4.1.4. One can check, arguing as in the case of BC(A,R), that, with the norm ‖.‖∞,
BC(A) is a Banach space (see Exercise 4.1.18).

Theorem 4.1.5. (Riemann-Lebesgue’s theorem) For every f ∈ L1(Rn) the Fourier transform
f̂ belongs to BC(Rn). Moreover, we have

lim
‖ξ‖→+∞

f̂(ξ) = 0, (4.1.3)

in the sense that ∀ε > 0 there exists δ(ε) > 0 such that, if ξ ∈ Rn and ‖ξ‖ > δ(ε), |f̂(ξ)| < ε
holds.

87
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Incomplete proof From Theorem 1.2.12(IV ) it follows that

|f̂(ξ)| ≤
∫
Rn
|f(x)|dx = ‖f‖1. (4.1.4)

So f̂ is bounded. To show that it is continuous, we can apply Theorem 2.3.12.
Let (ξk)k∈N be a sequence in Rn such that lim

k→+∞
ξk = ξ0 ∈ Rn. For every k ∈ N, we have

|e−i<x,ξk>f(x)| = |f(x)| ∀x ∈ Rn.

So we can apply the dominated convergence theorem, to conclude that

lim
k→+∞

f̂(ξk) = lim
k→+∞

∫
Rn
e−i<x,ξ

k>f(x)dx =

∫
Rn
e−i<x,ξ

0>f(x)dx = f̂(ξ0).

Hence f̂ is continuous.
We do not prove (4.1.3). �

Corollary 4.1.6. We indicate with F the mapping{
F : L1(Rn)→ BC(Rn),

Ff = f̂ .
(4.1.5)

Then F is linear and continuous from L1(Rn) to BC(Rn).

Proof We leave to the reader the trivial proof of linearity (Exercise 4.1.19). We show that
F is continuous. Let (fk)k∈N be a sequence in L1(Rn) such that lim

k→+∞
fk = f in L1(Rn). We

have to show that lim
k→+∞

Ffk = Ff in BC(Rn). From (4.1.4) it follows that ‖Fg‖∞ ≤ ‖g‖1
∀g ∈ L1(Rn). This implies that

‖Ff −Ffk‖∞ = ‖F(f − fk)‖∞ ≤ ‖f − fk‖1 → 0

for k → +∞. �

Example 4.1.7. A consequence of Example 3.5.15 is that, if f(x) = e−x
2
, then

f̂(ξ) =
√
πe−

ξ2

4 .

Example 4.1.8. Let f : R → R, f(x) = 1
1+x2

. f ∈ L1(R). We compute its Fourier transform.
We have to calculate ∫

R

e−ixξ

1 + x2
dx (4.1.6)

with ξ varying in R. We start by observing that, if z ∈ C,

|e−izξ| = eξIm(z).

So, if ξ ≥ 0, we have |e−izξ| ≤ 1 if Im(z) ≤ 0, if ξ ≤ 0, we have |e−izξ| ≤ 1 if Im(z) ≥ 0.
Suppose that ξ ≥ 0. Given n ∈ N, n ≥ 2, we consider the closed path αn oriented in clockwise
sense, describing once, first [−n, n], then the semicircumference {z ∈ C : |z| = n, Im(z) ≤ 0}.As

the function f(z) := e−izξ

1+z2
is holomorphic in C \ {i,−i}, we have∫

αn

f(z)dz = 2πiRes(f,−i)Ind(αn,−i) = −2πiRes(f,−i).
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It is easy to verify that −i is a simple pole for f . So

Res(f,−i) = lim
z→−i

(z + i)f(z) = lim
z→−i

e−izξ

z − i
= i

e−ξ

2
.

It follows ∫
αn

f(z)dz = πe−ξ.

On the other hand, ∫
αn

f(z)dz =

∫ n

−n

e−ixξ

1 + x2
dx−

∫
C−r (0)

f(z)dz,

with {
C−r (0) : [π, 2π]→ C,
C−r (0)(t) = reit,

(4.1.7)

for r > 0. From the usual Theorem 3.2.12 and from the previous remarks, we obtain

|
∫
C0
r (0)

f(z)dz| ≤ 1

n2 − 1
πn→ 0 (n→ +∞).

So, passing to the limit with n→ +∞, we obtain∫
R

e−ixξ

1 + x2
dx = πe−ξ

if ξ ≥ 0.
The case ξ < 0 can be treated analogously, integrating on a path describing, in counter-

clockwise sense, [−n, n] and the semi circumference {z ∈ C : |z| = n, Im(z) ≥ 0}, in order to
take advantage of the boundedness of e−izξ in {z ∈ C : Im(z) ≥ 0}. We leave to the reader the
completion of the computation. We limit ourselves to say that the following formula holds:∫

R

e−ixξ

x2 + 1
dx = πe−|ξ| ∀ξ ∈ R. (4.1.8)

Example 4.1.9. Let f : R→ R, f(x) = χ+(x)e−x, with χ+ characteristic function of R+. We
have to calculate ∫

R+

e−x(1+iξ)dx (4.1.9)

with ξ ∈ R. Applying Theorem 1.3.4, we obtain∫
R+

e−x(1+iξ)dx = lim
c→+∞

∫ c

0
e−x(1+iξ)dx = lim

c→+∞

1− e−c(1+iξ)

1 + iξ
.

From |e−c(1+iξ)| = e−c → 0 for c→ +∞, we obtain

f̂(ξ) =
1

1 + iξ
∀ξ ∈ R.

If ξ ≥ 1, we have

|f̂(ξ)| = 1√
1 + ξ2

=
1

ξ

1√
1 + 1

ξ2

≥ 1√
2ξ
.

As
∫

[1,+∞[
1√
2ξ
dξ = +∞, f̂ is not summable.

This example shows that, given f ∈ L1(Rn), f̂ ∈ L1(Rn) does not necessarily hold.
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Now we examine the interaction between the Fourier transform and derivatives. We start
by precising the following convention: given f ∈ L1(Rn), we shall say that f is continuous if
there exists g continuous such that g ∼ f . This means that the equivalence class [f ] contains a
necessarily unique continuous function (remember Exercise 2.7.2 in the one-dimensional case).
Analogous conventions will be supposed to hold when we write that f is of class C1, etc..

Proposition 4.1.10. Let f ∈ L1(Rn) and of class C1. Suppose that, for some j ∈ {1, ..., n},
Djf ∈ L1(Rn). Then ∀ξ ∈ Rn

F(Djf)(ξ) = iξj f̂(ξ).

Incomplete proof We prove the result in case n = 1, supposing also that lim
x→±∞

f(x) = 0.

Integrating by parts, we have ∀ξ ∈ R,

f̂ ′(ξ) =

∫
R
e−ixξf ′(x)dx = lim

n→+∞

∫ n

−n
e−ixξf ′(x)dx =

= lim
n→+∞

(e−inξf(n)− einξf(−n) + iξ

∫ n

−n
e−ixξf(x)dx) = iξf̂(ξ).

�

Proposition 4.1.11. Let f ∈ L1(Rn), be such that, for some j ∈ {1, ..., n}, xjf ∈ L1(Rn).

Then f̂ has the partial derivative Dj f̂(ξ) in every point ξ ∈ Rn; moreover, ∀ξ ∈ Rn,

Dj f̂(ξ) = −iF(xjf)(ξ).

Sketch of the proof Differentiating formally with respect to ξj , we have

Dj f̂(ξ) =

∫
Rn
e−i<x,ξ>(−ixj)f(x)dx.

�
Now we introduce some extremely useful notations.
We shall call multiindex any element of Nn0 , with N0 := {0} ∪ N. If α := (α1, ..., αn) and

β := (β1, ..., βn), we set

α+ β := (α1 + β1, ..., αn + βn). (4.1.10)

We shall write
α ≤ β (4.1.11)

to indicate that αj ≤ βj ∀j ∈ {1, ..., n} and

|α| := α1 + ...+ αn. (4.1.12)

We shall call |α| the weight of the multiindex α.
If x = (x1, ..., xn) ∈ Cn and α = (α1, ..., αn) is a multiindex, we set

xα := xα1
1 ...xαnn , (4.1.13)

with the convention that 00 := 1. For example, if x = (0, 2i) and α = (0, 3), we have

xα = (2i)3 = −8i.
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Finally, if A is an open subset of Rn, f ∈ Cm(A), for some m ∈ N and |α| ≤ m, we set

Dαf := Dα1
1 ...Dαn

n f, (4.1.14)

where Dj indicates the partial derivative with respect to the variable xj . We recall that, as a
consequence of the theorem of Schwarz, the derivatives with respect to the single variables in
(4.1.14) can be mixed without changing the final result. For example, for n = 3, if α = (1, 2, 0),
we have

Dαf = D1D
2
2f.

Observe that, if β is another multiindex such that|α+ β| ≤ m, the formula

Dα(Dβf) = Dα+βf (4.1.15)

holds. Now we examine generalizations of Propositions 4.1.10 and 4.1.11.

Corollary 4.1.12. (I) Let f ∈ L1(Rn) and of class Cm (m ∈ N). Suppose that, for every
multiindex α, with |α| ≤ m, Dαf ∈ L1(Rn). Then ∀ξ ∈ Rn

F(Dαf)(ξ) = (iξ)αf̂(ξ).

(II) Let f ∈ L1(Rn) be such that, for some m ∈ N, ‖x‖mf ∈ L1(Rn), with ‖.‖ Euclidean
norm. Then f̂ ∈ Cm(Rn); moreover, for every multiindex α, such that |α| ≤ m, one has
(−ix)αf ∈ L1(Rn) and ∀ξ ∈ Rn,

Dαf̂(ξ) = F((−ix)αf)(ξ).

Proof The result follows applying several times Propositions 4.1.10 e 4.1.11.
Concerning (II), observe that, if |α| ≤ m, then (−ix)αf ∈ L1(Rn). In fact, ∀x ∈ Rn,

∀j ∈ {1, ..., n}, |xj | ≤ ‖x‖, hence |(−ix)αf(x)| ≤ ‖x‖|α||f(x)|. If ‖x‖ ≤ 1, one has ‖x‖|α||f(x)| ≤
|f(x)|. If ‖x‖ ≥ 1, ‖x‖|α||f(x)| ≤ ‖x‖m|f(x)| holds. So, in any case

|(−ix)αf(x)| ≤ (1 + ‖x‖m)|f(x)|.

�

Remark 4.1.13. In force of Riemann-Lebesgue’s theorem, with the assumptions of Corollary
4.1.12(II), if |α| ≤ m, one has that Dαf̂ ∈ BC(Rn) and satisfies the condition (4.1.3).

We conclude this section with the fundamental inversion formula.

Theorem 4.1.14. Let f ∈ L1(Rn) be such that f̂ ∈ L1(Rn). Then

f(x) =
1

(2π)n

∫
Rn
ei<x,ξ>f̂(ξ)dξ =

1

(2π)n
ˆ̂
f(−x) a.e. in Rn. (4.1.16)

Incomplete proof We show the theorem with the further assumption that f ∈ BC(Rn).
From the dominated convergence theorem, we have

1

(2π)n

∫
Rn
ei<x,ξ>f̂(ξ)dξ =

lim
k→+∞

1

(2π)n

∫
Rn
ei<x,ξ>−

‖ξ‖2
k f̂(ξ)dξ =
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= lim
k→+∞

1

(2π)n

∫
Rn
ei<x,ξ>−

‖ξ‖2
k (

∫
Rn
e−i<y,ξ>f(y)dy)dξ.

As

|ei<x,ξ>−
‖ξ‖2
k e−i<y,ξ>f(y)| = e−

‖ξ‖2
k |f(y)|

and, applying the theorem of Tonelli,∫
Rn×Rn

e−
‖ξ‖2
k |f(y)|dξdy = (

∫
R
e−

t2

2 dt)n
∫
Rn
|f(y)|dy < +∞,

it follows from the theorem of Fubini

1

(2π)n

∫
Rn
ei<x,ξ>−

‖ξ‖2
k (

∫
Rn
e−i<y,ξ>f(y)dy)dξ =

=
1

(2π)n

∫
Rn

(

∫
Rn
ei<x−y,ξ>−

‖ξ‖2
k dξ)f(y)dy

Again by the theorem of Fubini, we have∫
Rn
ei<x−y,ξ>−

‖ξ‖2
k dξ =

n∏
j=1

∫
R
ei(xj−yj)ξj−

ξ2j
k dξj =

= k
n
2

n∏
j=1

∫
R
ei(xj−yj)

√
kt−t2dt = (kπ)

n
2 e−

k‖x−y‖2
4 ,

applying the result of Example 3.5.15. So

1

(2π)n

∫
Rn

(

∫
Rn
ei<x−y,ξ>−

‖ξ‖2
k dξ)f(y)dy =

= (
k

4π
)
n
2

∫
Rn
e−

k‖x−y‖2
4 f(y)dy = π−

n
2

∫
Rn
e−‖z‖

2
f(x− 2z√

k
)dz.

Now, we pass to the limit, letting k go to +∞. As f is continuous, we have that, ∀z ∈ Rn,

lim
k→+∞

e−‖z‖
2
f(x− 2z√

k
) = e−‖z‖

2
f(x).

Moreover, for every k ∈ N and whatever is the choice of x and z in Rn, we have

|e−‖z‖2f(x− 2z√
k

)| ≤ g(z) := sup
Rn
|f |e−‖z‖2 .

As g is summable, we can (applying the dominated convergence theorem ), pass to the limit in
the integral,, to conclude that

1

(2π)n

∫
Rn
ei<x,ξ>f̂(ξ)dξ = π−

n
2

∫
Rn
e−‖z‖

2
dzf(x) =

= f(x).

With this the proof is complete. �
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Corollary 4.1.15. The mapping F , defined in (4.1.5), is injective.

Proof As F is linear, it suffices to show that its kernel has only the element 0 of the linear
space L1(Rn). This follows immediately from the inversion formula (4.1.16).

�

Remark 4.1.16. Suppose that the assumptions of Theorem 4.1.14 are fulfilled. Then

f(x) =
1

(2π)n

∫
Rn
ei<x,ξ>f̂(ξ)dξ =

1

(2π)n

∫
Rn
e−i<x,ξ>f̂(−ξ)dξ,

which means that f = Ĝf , with Gf(ξ) = 1
(2π)n f̂(−ξ).

The following result will be useful in the sequel.

Theorem 4.1.17. Let f and g be elements of L1(Rn). Then∫
Rn
f̂(ξ)g(ξ)dξ =

∫
Rn
f(x)ĝ(x)dx. (4.1.17)

Proof First of all, the integrals in (4.1.17) are defined. In fact, for example, f̂ is bounded.
So, ∀ξ ∈ Rn,

|f̂(ξ)g(ξ)| ≤ ‖f̂‖∞|g(ξ)|.

Moreover, as (x, ξ) → e−i<x,ξ>f(x)g(ξ) is summable in Rn × Rn, by the theorem of Fubini, we
have ∫

Rn
f̂(ξ)g(ξ)dξ =∫

Rn
(

∫
Rn
e−i<x,ξ>f(x)dx)g(ξ)dξ =

∫
Rn×Rn

e−i<x,ξ>f(x)g(ξ)dxdξ =

=

∫
Rn
f(x)(

∫
Rn
e−i<x,ξ>g(ξ)dξ)dx

=

∫
Rn
f(x)ĝ(x)dx.

�

Exercise 4.1.18. Check that the normed space BC(A) of Definition 4.1.3 is a Banach space.

Exercise 4.1.19. Check that F is linear from L1(Rn) to BC(Rn).

Exercise 4.1.20. Let X be Y normed spaces on the same field. with norms (respectively) ‖.‖X
and ‖.‖Y . Let T : X → Y be linear and such that there exists L ≥ 0 so that

‖Tx‖Y ≤ L‖x‖X ∀x ∈ X. (4.1.18)

Show that T is continuous.

Exercise 4.1.21. Let X and Y be normed spaces on the same field, with norms (respectively)
‖.‖X and ‖.‖Y . Let T : X → Y be linear. Show that T is continuous if and only if it is continuous
in 0.
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Exercise 4.1.22. Let f ∈ L1(Rn). Prove what follows, applying the change of variable theorem:

(I) let A : Rn → Rn be linear and invertible; then f ◦A ∈ L1(Rn) and, ∀ξ ∈ Rn,

F(f ◦A)(ξ) =
f̂((A−1)T ξ)

|det(A)|

holds, where we have indicated with BT the transpose of the matrix B;

(II) if f(−x) = −f(x) a. e. in Rn, then f̂(−ξ) = −f̂(ξ) ∀ξ ∈ Rn;

(III) if f(−x) = f(x) a. e. in Rn, then f̂(−ξ) = f̂(ξ) ∀ξ ∈ Rn;

(IV) if x0 ∈ Rn and g(x) = f(x− x0) a. e. in Rn, then g ∈ L1(Rn) and ĝ(ξ) = e−i<x
0,ξ>f̂(ξ)

∀ξ ∈ Rn.

Exercise 4.1.23. Compute the Fourier transforms of the following functions:

(I) f(x) = 1
x2+2x+2

;

(II) f(x) = 1
(x2+1)2

;

(III) f(x) = 1
x4+1

;

(IV) f(x) = x
(x2+1)2

;

(V) f(x, y) = 1
(x2+1)(y2+1)

.

Exercise 4.1.24. Let f ∈ L1(Rn) and g(x) = f(x) a. e. Check that, ∀ξ ∈ Rn,

ĝ(ξ) = f̂(−ξ).

4.2 The class D(Ω)

Now we digress a little, in order to introduce a class of functions which will play an auxiliary,
but rather important role.

So we start by specifying that, if Ω is an open subset of Rn, we shall indicate with C∞(Ω)
the class of complex valued functions with domain Ω, which are equipped of all the derivatives
of any order and such derivatives are continuous in Ω.

Definition 4.2.1. Let Ω be an open subset of Rn. Let f ∈ C∞(Ω). We shall write that f ∈ D(Ω)
if there exists K ⊆ Ω, closed and bounded, such that f(x) = 0 if x ∈ Ω \K.

It is easy to check that, if f ∈ D(Ω), all its derivatives Dαf ∈ D(Ω), for any multiindex α.
Moreover, it is easy to verify that, if f and g are elements of D(Ω), even f + g ∈ D(Ω). This
follows from the fact that, if K and L are closed and bounded subsets of Ω, if f vanished outside
K and g vanishes outside L, then f +g vanishes outside K∪L. It is possible to show that K∪L
is closed and bounded. Finally, it is clear that, if f ∈ D(Ω) and α ∈ C, then αf ∈ D(Ω). So
D(Ω) is a linear space of functions, with the usual operations of sum and product by a scalar.

The construction of explicit nontrivial elements of D(Ω) is not obvious. To this aim, we
begin with the following

Lemma 4.2.2. Let g : R→ R be defined as follows:

g(x) =

{
e−

1
x if x > 0,

0 se x ≤ 0.
(4.2.1)

Then g ∈ C∞(R).
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Incomplete proof It is immediately seen that g is continuous, as lim
x→0+

e−
1
x = lim

y→+∞
e−y = 0.

Moreover, we have g′(x) = 0 if x < 0 and D−g(0) = 0. If x > 0, g′(x) = e−
1
xx−2 holds, while

D+g(0) = lim
x→0+

g(x)

x
= lim

x→0+
e−

1
xx−1 = lim

y→+∞
e−yy = 0.

So g is differentiable in every point of R. g is of class C1, as

lim
x→0+

g′(x) = lim
x→0+

e−
1
xx−2 = 0.

The argument can be iterated, using the fact that, for every n ∈ N, if x > 0, g(n)(x) has the

form e−
1
xPn( 1

x), with Pn polynomial function. �

Example 4.2.3. We construct a first example of element of D(R) which is not identically zero.
Let ε > 0. We set {

fε : R→ R,
fε(x) = g(ε2 − x2),

(4.2.2)

with g defined in (4.2.1). fε is of class C∞, as composition of functions of class C∞, and fε(x) > 0
if x ∈] − ε, ε[, while fε(x) = 0 if |x| ≥ ε. Referring to Definition 4.2.1, we can take K = [−ε, ε].
Clearly, fε is summable and∫

R fε(x)dx ∈ R+. Setting

φε(x) :=
fε(x)∫

R fε(y)dy
, (4.2.3)

we obtain an example of element of di D(R) which is zero outside [−ε, ε] and with integral 1.

Example 4.2.4. Let a, b, c, d be real numbers, with a < c < d < b. Next, let ε > 0 be such
that a < c− 2ε and d+ 2ε < b. We consider the function f :]a, b[→ R,

f(x) :=

∫ d+ε

c−ε
φε(y − x)dy,

with φε defined in (4.2.3). One can check that it is possible to differentiate under the sign of
integral and that f ∈ C∞(]a, b[). Now we observe that, if x ∈ [c, d], as φε is zero outside [−ε, ε],
we have that φ(y − x) is zero outside [c− ε, d+ ε]. So

f(x) =

∫ d+ε

c−ε
φε(y − x)dy =

∫
R
φε(y − x)dy =

∫
R
φε(y)dy = 1.

If, alternatively, x < c − 2ε, φε(y − x) = 0 ∀y ∈ [c − ε, d + ε]. So, in this case, f(x) = 0.
Analogously, one can see that f(x) = 0 if x > d+ 2ε. Therefore, summing up, f ∈ D(]a, b[), as
it is identically zero outside [c− 2ε, d+ 2ε] and identically 1 in [c, d].

It is clear that D(Ω) ⊆ L1(Ω) ∩ L2(Ω), as, if f ∈ D(Ω) and f is zero outside K closed and
bounded, ∫

Ω
|f(x)|dx ≤ max

K
|f |Ln(K) < +∞

holds, because every bounded and measurable set has finite Lebesgue measure (see Exercise
4.2.7). Finally, it is useful to know that D(Ω) is dense in Lp(Ω), for p ∈ {1, 2}:
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Theorem 4.2.5. Let Ω be an open subset of Rn. Then D(Ω) is dense in both the spaces L1(Ω)
and L2(Ω).

Exercise 4.2.6. Verify that, if A and B are bounded and closed subset of Rn, A ∪B is closed
and bounded (Hint: show that ∂(A ∪B) ⊆ ∂A ∪ ∂B).

Exercise 4.2.7. Verify that every bounded and measurable subset A of Rn has finite measure.
(Hint.: verify preliminarily that there exists L > 0 such that A ⊆ [−L,L]n)

Exercise 4.2.8. Let, for n ∈ N and j ∈ {1, ..., n}, aj < cj < dj < bj . Construct f ∈
D(
∏n
j=1]aj , bj [) identically equal to 1 in

∏n
j=1[cj , dj ].

4.3 The Fourier transform in L2(Rn)

We have seen in Section 4.1 that the Fourier transform in the space L1(Rn) can be directly
defined by integration. Nevertheless, in this space it does not enjoy optimal properties. For
example, we have seen that it does not map L1(Rn) into itself, (see Example 4.1.9), while the
inversion formula (Theorem 4.1.14) holds under somewhat complicated assumptions. Now we
want to extend the Fourier transform to L2(Rn). If, on one side, the definition is less direct, on
the other side we shall see that in this space it enjoys much better properties.

We begin with the following

Lemma 4.3.1. Let f, g ∈ D(Rn). Then:
(I) f̂ ∈ L1(Rn);
(II) ∫

Rn
f(x)g(x)dx =

1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dx; (4.3.1)

(Parseval identity);
(III) f̂ ∈ L2(Rn) and

‖f̂‖2 = (2π)
n
2 ‖f‖2, (4.3.2)

where we indicate with ‖.‖2 the norm in L2(Rn).

Proof We set
∆f := D2

1f + ...+D2
nf.

(we recall that ∆ is the Laplace operator, see Section 3.6). For every m ∈ N ∆mf ∈ D(Rn). By
Corollary 4.1.12 (I), we have, if ξ ∈ Rn,

F(∆mf)(ξ) = (−1)m‖ξ‖2mf̂(ξ).

This implies that ∀m ∈ N there exists C(m) ≥ 0 such that

|f̂(ξ)| ≤ C(m)‖ξ‖−m

∀ξ ∈ Rn \ {0}. From this it follows that f̂ is summable in {ξ ∈ Rn : ‖ξ‖ ≥ 1}. As it is clearly
summable in {ξ ∈ Rn : ‖ξ‖ ≤ 1}, we can conclude that f̂ is summable and so the inversion
formula (4.1.16) holds. So we have ∫

Rn
f(x)g(x)dx =
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=
1

(2π)n

∫
Rn

ˆ̂
f(−x)g(x)dx =

1

(2π)n

∫
Rn

ˆ̂
f(x)g(−x)dx.

We set h(x) := g(−x). For ξ ∈ Rn, one has

ĥ(ξ) =

∫
Rn
e−i<x,ξ>g(−x)dx =

=

∫
Rn
e−i<x,ξ>g(x)dx = ĝ(ξ).

Therefore, it follows from Theorem 4.1.17 that

1

(2π)n

∫
Rn

ˆ̂
f(x)g(−x)dx =

1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ.

In conclusion, we have proved Parseval identity (4.3.1).
(III) follows immediately from (II), taking g = f .
�
Now we are able to prove the following

Lemma 4.3.2. Let f ∈ L2(Rn). Let us consider a sequence (fk)k∈N in D(Rn) such that lim
k→∞

fk =

f in L2(Rn). Then the sequence (f̂k)k∈N converges in L2(Rn) and the limit does not depend on
the chosen sequence (obviously if it is convergent to f).

Proof By Theorem 4.2.5, there exists a sequence (fk)k∈N in D(Rn), such that lim
k→∞

fk = f

in L2(Rn). We consider the sequence (f̂k)k∈N. As L2(Rn) is complete, in order to verify that
it is convergent, it suffices to check that it is a Cauchy sequence. So, let ε > 0; as (fk)k∈N is
a Cauchy sequence, there exists n(ε) ∈ N such that, if j and k are integers larger than n(ε),
‖fj − fk‖2 < ε

(2π)
n
2

holds. So it follows from Lemma 4.3.1 (III) that

‖f̂k − f̂j‖2 = ‖F(fk − fj)‖2 < ε.

Now we verify that the limit of the sequence (f̂k)k∈N does not depend on the choice of (fk)k∈N.
Let (gk)k∈N be another sequence in D(Rn) such that lim

k→∞
gk = f in L2(Rn). We indicate, for

the moment, with l1 and l2 the limits of the sequences (f̂k)k∈N and (ĝk)k∈N, respectively. From
the continuity of the norm (Exercise 2.2.10) it follows that

‖l1 − l2‖2 = lim
k→∞
‖f̂k − ĝk‖2

= lim
k→∞
‖F(fk − gk)‖2 = (2π)

n
2 lim
k→∞
‖fk − gk‖2 = (2π)

n
2 ‖f − f‖2 = 0.

So l1 = l2.
�
Now we are able to define the Fourier transform of f ∈ L2(Rn):

Definition 4.3.3. Let f ∈ L2(Rn). We set

Ff = f̂ := lim
k→∞
Ffk,

where (fk)k∈N is an arbitrary sequence in D(Rn), converging to f in L2(Rn).
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In the next statement, we list the main properties of the Fourier transform in L2(Rn).

Theorem 4.3.4. (I) The mapping F : f → Ff in Definition 4.3.3 is linear from L2(Rn) into
itself;

(II) for f and g in L2(Rn), Parseval identity (4.3.1) holds;

(III) ∀f ∈ L2(Rn) the identity (4.3.2) holds;

(IV) F is continuous from L2(Rn) into itself;

(V) if f ∈ L1(Rn)∩L2(Rn), the Fourier transform in the sense of L2(Rn) coincides with the
Fourier transform in the sense of L1(Rn);

(VI) F is a bijection from L2(Rn) to itself; the inverse mapping F−1 fulfills the formula

F−1f(ξ) =
1

(2π)n
f̂(−ξ) q.d.. (4.3.3)

�

Incomplete proof We leave to the reader the proof of (I) (remember the result in Exercise
2.3.19).

(II) follows easily from the result in Exercise 4.3.7. In fact, if f and g are elements of
L2(Rn), there exist sequences (fk)k∈N and (gk)k∈N in D(Rn), such that we have lim

k→+∞
fk = f

and lim
k→+∞

gk = g in L2(Rn). So

∫
Rn
f(x)g(x)dx =< f, g >=

= lim
k→+∞

< fk, gk >= lim
k→+∞

∫
Rn
fk(x)gk(x)dx =

= lim
k→+∞

1

(2π)n

∫
Rn
f̂k(ξ)ĝk(ξ)dξ =

= lim
k→+∞

1

(2π)n
< f̂k, ĝk >=

1

(2π)n
< f̂, ĝ >=

=
1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ.

(III) follows immediately from (II).

(IV ) follows from (III) and the result of Exercise 4.1.20.

We do not prove (V).

(VI) The injectivity of F follows from (III): if Ff = 0, by (III) f = 0. In order to show the
subjectivity, we introduce the operator

Gf(ξ) := (2π)−nFf(−ξ), f ∈ L2(Rn).

As F maps L2(Rn) into itself linearly and continuously, it is readily seen that the same happens
for G (as the mapping g → g(−·) maps L2(Rn) into itself linearly and continuously). Moreover,
as we already know that, if f ∈ D(Rn), Ff ∈ L1(Rn)∩L2(Rn), it follows from (V) and Remark
4.1.16 that

F(Gf) = f, ∀f ∈ D(Rn). (4.3.4)
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With the usual argument we can extend (4.3.4) to any element f in L2(Rn) and get the subjec-
tivity of F . Moreover, as we already know that F is injective, we deduce that

G = F−1.

�

Remark 4.3.5. As G = F−1, we have also that

GFf = f ∀f ∈ L2(Rn),

so that
f = (2π)−nF2f(−·), ∀f ∈ L2(Rn).

Example 4.3.6. From Example 4.1.9, if f(x) = χ+(x)e−x, we have f̂(ξ) = g(ξ) = 1
1+iξ . It is

easy to check that f and g belong to L2(R). So g = Ff . It follows from Remark 5.5.10 that

Fg = F2f = 2πf(−·)

or

Fg(x) =

{
2πex if x ≤ 0,

0 if x > 0.

Exercise 4.3.7. Let H be a Hilbert space with inner product < ., . >. Next, let (xn)n∈N and
(yn)n∈N be sequences in H, such that lim

n→+∞
xn = x, lim

n→+∞
yn = y. Prove that

lim
n→+∞

< xn, yn >=< x, y > .

Exercise 4.3.8. Prove that F [g(−·)] = (Fg)(−·) ∀g ∈ L2(Rn).

4.4 Weak derivatives, convolution and Fourier transform

We begin with some results and preliminary definitions.

Definition 4.4.1. Let Ω be an open subset of Rn and let f : Ω → C be measurable. We shall
say that [f ] ∈ L1

loc(Ω) (or that [f ] is locally summable in Ω), if, for every H ⊆ Ω, with H
closed and bounded, f|H is summable in H.

Remark 4.4.2. Concerning Definition 4.4.1, we shall, as usual, say that ”f is locally summable”,
in alternative to ”[f ] is locally summable”. It is not difficult to check that this definition is
invariant with respect to modifications of f in subsets of measure zero.

Remark 4.4.3. It is almost obvious that L1(Ω) ⊆ L1
loc(Ω). In addition, it is not difficult to

check that, if f ∈ L2(Ω), then f ∈ L1
loc(Ω). In fact, owing to the usual inequality (2.4.3), we

have

|f(x)| = |f(x)| · 1 ≤ 1

2
(|f(x)|2 + 1) ∀x ∈ Ω.

So, if H ⊆ Ω, with H closed and bounded, one has∫
H
|f(x)|dx ≤ 1

2

∫
H

(|f(x)|2 + 1)dx
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≤ 1

2
(

∫
Ω
|f(x)|2dx+ Ln(H)) < +∞.

It is also easy to see that, if f ∈ C(Ω), then [f ] ∈ L1
loc(Ω) (here it is convenient to distinguish f

from [f ]). In fact, if H ⊆ Ω, with H closed and bounded, we have∫
H
|f(x)|dx ≤ max

H
|f | · Ln(H) < +∞.

Now we state (without proof) an extremely useful result.

Theorem 4.4.4. Let Ω be an open subset of Rn, let [f ] and [g] be locally summable in Ω. Then
the following facts are equivalent:

(a) [f ] = [g] (that is, f(x) = g(x) a.e.);
(b) ∀v ∈ D(Ω) one has ∫

Ω
f(x)v(x)dx =

∫
Ω
g(x)v(x)dx.

After these preparations, we are ready to introduce the definition of weak derivative.

Definition 4.4.5. Let Ω be an open subset of Rn, let f ∈ L1
loc(Ω) and let α be a multiindex. We

shall denominate α−weak derivative of f a locally summable function g such that ∀v ∈ D(Ω)∫
Ω
g(x)v(x)dx = (−1)|α|

∫
Ω
f(x)Dαv(x)dx (4.4.1)

holds.

Remark 4.4.6. An immediate consequence of Theorem 4.4.4 is that, if f has a α−weak deriva-
tive, this is uniquely determined a.e.. We shall indicate it with ∂αf .

Definition 4.4.5 is motivated by the following

Theorem 4.4.7. Let Ω be an open subset of Rn and let f ∈ Cm(Ω). Then, if α ∈ Nn0 and
|α| ≤ m, f has a weak derivative ∂αf and ∂αf(x) = Dαf(x) a. e.

Incomplete proof We consider the case that Ω is a regular open subset of R3. We assume
that ∂Ω = S1 ∪ . . . Sp, with S1, . . . , Sp, regular surfaces with corresponding normal unit outer
vectors ν1, . . . , νp. We consider first the case m = 1 and α = ej . Then, if v ∈ D(Ω), we can
extend it to an element of C∞(R3), just putting v(x) = 0 if x 6∈ Ω. From

Djf · v = Dj(fv)− f ·Djv,

employing Gauss-Green’s formula, we get∫
ΩDjf(x)v(x)dx =

∫
ΩDjf(x)v(x)dx =

∫
ΩDj(fv)(x)dx−

∫
Ω f(x)Djv(x)dx

=
∑p

i=1

∫
Si
f(x)v(x)νji (x)dσ −

∫
Ω f(x)Djv(x)dx

= −
∫

Ω f(x)Djv(x)dx.

In general, we can iterate the foregoing argument: if f ∈ Cm(Ω), α = (α1, α2, α3), with |α| ≤ m,
and v ∈ D(Ω), we have∫

ΩD
αf(x)v(x)dx =

∫
ΩD1(Dα1−1

1 Dα2
2 Dα3

3 f)(x)v(x)dx

= −
∫

Ω(Dα1−1
1 Dα2

2 Dα3
3 f)(x)D1v(x)dx = (−1)α1

∫
Ω(Dα2

2 Dα3
3 f)(x)Dα1

1 v(x)dx

= (−1)α1+α2+α3
∫

Ω f(x)(Dα1
1 Dα2

2 Dα3
3 v)(x)dx.
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�
We illustrate an example of existence of the weak derivative, in a case where the function is

not everywhere differentiable.

Example 4.4.8. Let f : R → R, f(x) = |x|. f is not differentiable in a classical sense in 0.
However it has a weak (first order) derivative ∂f . Such derivative coincides almost everywhere
with the function ”sign” (sgn). In fact, let v ∈ D(R). Suppose that v(x) = 0 if x 6∈ [c, d], for
certain c and d in R. We may assume c < 0 < d. Then

−
∫
R
|x|v′(x)dx = −

∫ d

c
|x|v′(x)dx =

=

∫ 0

c
xv′(x)dx−

∫ d

0
xv′(x)dx

= [xv(x)]x=0
x=c −

∫ 0

c
v(x)dx− [xv(x)]x=d

x=0 +

∫ d

0
v(x)dx =

= −
∫

[c,0[
v(x)dx+

∫
]0,d]

v(x)dx =

=

∫
R
sgn(x)v(x)dx.

We examine the interaction between weak derivatives and Fourier transform. On account of
Corollary 4.1.12(I), the following result is quite natural:

Theorem 4.4.9. Let f ∈ L2(Rn) and α ∈ Nn0 . Then, if f has the weak derivative ∂αf and such
derivative belongs to L2(Rn), one has F(∂αu) = (iξ)αFf .

On the other hand, suppose that (iξ)αf̂ ∈ L2(Rn). Then f has the weak derivative ∂αf .
Moreover, ∂αf ∈ L2(Rn) and ∂αf = F−1((iξ)αf̂).

Incomplete proof We prove only the second statement. We put g := F−1((iξ)αf̂). Next, let
v ∈ D(Rn). If we employ the identity of Parseval and the result of Exercise 4.1.24, we obtain∫

Rn
g(x)v(x)dx =

∫
Rn
g(x)v(x)dx =

=
1

(2π)n

∫
Rn

(iξ)αf̂(ξ)v̂(−ξ)dξ =

= (−1)|α|
1

(2π)n

∫
Rn
f̂(ξ)(−iξ)αv̂(−ξ)dξ =

= (−1)|α|
1

(2π)n

∫
Rn
f̂(ξ)F(Dαv)(−ξ)dξ,

using Corollary 4.1.12(I). Again employing the result of Exercise 4.1.24 and the identity of
Parseval, we can see that the latest integral coincides with

(−1)|α|
∫
Rn
f(x)Dαv(x)dx,

hence we get the conclusion. �
We pass to the notion of convolution.
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Definition 4.4.10. Let f and g be elements of L1
loc(Rn). We shall say that f and g are con-

volvable if for almost every x ∈ Rn the function y → f(x− y)g(y) is summable in Rn. In this
case, we denominate convolution of f and g and indicate with the symbol f ∗ g, the function

f ∗ g : Rn → C,

(f ∗ g)(x) =


∫
Rn f(x− y)g(y)dy

if y → f(x− y)g(y) is summable ,
0 otherwise.

(4.4.2)

The following result holds:

Theorem 4.4.11. (I) Let f and g be elements of L1(Rn). Then they are convolvable and the
convolution f ∗ g belongs to L1(Rn). Moreover,

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (4.4.3)

(II) Let f ∈ L1(Rn) and let g ∈ L2(Rn). Then they are convolvable and the convolution f ∗ g
belongs to L2(Rn). Moreover,

‖f ∗ g‖2 ≤ ‖f‖1‖g‖2. (4.4.4)

(III) In each of the cases (I) and (II), the formula

F(f ∗ g) = FfFg. (4.4.5)

holds.

Incomplete proof Let f and g belong to L1(Rn). Supposing that they are convolvable, and
that the convolution is measurable, we have, applying the theorem of Tonelli,∫

Rn
|(f ∗ g)(x)|dx ≤

∫
Rn

(

∫
Rn
|f(x− y)||g(y)|dy)dx =

=

∫
Rn
|g(y)|(

∫
Rn
|f(x− y)|dx)dy =

∫
Rn
|g(y)|(

∫
Rn
|f(z)|dz)dy =

= ‖f‖1‖g‖1.

Moreover, for every ξ ∈ Rn,

F(f ∗ g)(ξ) =

∫
Rn
e−i<x,ξ>(

∫
Rn
f(x− y)g(y)dy)dx =

=

∫
Rn

(

∫
Rn
e−i<x−y,ξ>f(x− y)e−i<y,ξ>g(y)dy)dx =

=

∫
Rn

(

∫
Rn
e−i<x−y,ξ>f(x− y)dx)e−i<y,ξ>g(y)dy =

=

∫
Rn

(

∫
Rn
e−i<z,ξ>f(z)dz)e−i<y,ξ>g(y)dy =

Ff(ξ)Fg(ξ).

We omit the case g ∈ L2(Rn). �
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Exercise 4.4.12. Let Ω be an open subset of Rn and let α and β be multiindexes. We suppose
that there exist in L1

loc(Ω) the weak derivatives ∂αf and ∂β(∂αf). Check that f has the weak
derivative ∂α+βf and

∂α+βf = ∂β(∂αf).

holds.

Exercise 4.4.13. Prove that the convolution in L1(Rn) enjoys the commutative and associative
properties. These property allow, given f1,...,fm in L1(Rn), to consider the convolution f1∗...∗fm,
where the order of application of the single operations has no influence on the final result.

(Hint: employ the fact that the Fourier transform of the convolution is the product of the
Fourier transforms, together with the injectivity of F .)

4.5 Some applications of the Fourier transform to problems of
differential equations

The Fourier transform is useful to study a lot of problems in the fields (of example) of partial
differential equations and probability. Here we illustrate some simple applications to the first of
these subjects.

Example 4.5.1. (The Helmoltz equation in Rn) Let λ ∈ C. We consider the problem

(λ−∆)u(x) = f(x), x ∈ Rn, (4.5.1)

where we indicate (as usual) with ∆ the Laplace operator

∆ :=
n∑
j=1

D2
j = D2

1 + ...+D2
n. (4.5.2)

We assume that λ ∈ R+. We introduce some notable classes of (classes of equivalence of)
functions:

Definition 4.5.2. Let m ∈ N. We indicate with Hm(Rn) the set of elements f in L2(Rn)
equipped with weak derivatives ∂αf belonging to L2(Rn) for every multiindex α such that |α| ≤ m.

These classes of functions are a particular case of the so called ”Sobolev spaces”, of great
importance in modern analysis.

The following statement holds:

Theorem 4.5.3. Let λ ∈ R+. Then, for every f ∈ L2(Rn) problem (4.5.1) has a unique solution
u in the class H2(Rn). u solves the problem, in the sense that

λu−
∑
j=1

∂2
j u = f,

where we have indicated with ∂2
j u the corresponding weak derivative of u.

Proof By Theorem 4.4.9, if a solution u exists in H2(Rn), it must hold

(λ+ ‖ξ‖2)F(u) = F(f),

hence
u = F−1((λ+ ‖ξ‖2)−1F(f)). (4.5.3)
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We observe that u defined in (4.5.3) is an element of L2(Rn). In fact,∫
Rn
|((λ+ ‖ξ‖2)−1F(f)(ξ)|2dξ

≤ λ−2

∫
Rn
|F(f)(ξ)|2dξ =

(2π)n

λ2

∫
Rn
|f(x)|2dx < +∞

by Theorem 4.3.4(III).
Moreover, u ∈ H2(Rn). To see this, it suffices to apply Theorem 4.4.9. In fact, let α ∈ Nn0 ,

with |α| ≤ 2. Then

(iξ)αFu(ξ) =
(iξ)α

λ+ ‖ξ‖2
Ff(ξ).

The function ξ → (iξ)α

λ+‖ξ‖2Ff(ξ) belongs to L2(Rn), as

| (iξ)α

λ+ ‖ξ‖2
Ff(ξ)| ≤ ‖ξ‖|α|

λ+ ‖ξ‖2
|Ff(ξ)|. (4.5.4)

The first factor in the second term of (4.5.4) is bounded as a function of ξ, because |α| ≤ 2. So

‖ξ‖|α|

λ+ ‖ξ‖2
|Ff(ξ)| ≤ C|Ff(ξ)|,

for some C positive.
So, if |α| ≤ 2, u has the weak derivative ∂αu in L2(Rn); hence, it belongs to H2(Rn).

Example 4.5.4. (Cauchy problem for the heat (diffusion) equation) We look for a
function u of the variables (t, x), with t ≥ 0, x ∈ Rn, satisfying the following conditions:{

Dtu(t, x) = ∆xu(t, x), t > 0, x ∈ Rn,
u(0, x) = f(x), x ∈ Rn. (4.5.5)

where we have indicated with ∆x the Laplace operator with respect to the (space) variables
x = (x1, ..., xn).

We argue formally, setting

U(t, ξ) :=

∫
Rn
e−i<x,ξ>u(t, x)dx,

for t > 0 and ξ ∈ Rn. In essence, we apply (formally) the Fourier tranform with respect to
x to u(t, .) for every t ≥ 0. Changing the order of application of the transform and the time
derivative Dt, we obtain {

DtU(t, ξ) = −‖ξ‖2U(t, ξ), t > 0, ξ ∈ Rn,
U(0, ξ) = f̂(ξ), ξ ∈ Rn, (4.5.6)

hence

U(t, ξ) = e−t‖ξ‖
2
f̂(ξ), t ≥ 0, ξ ∈ Rn. (4.5.7)

Proceeding formally, we recall that, owing to Theorem 4.4.11(III), the product of the Fourier
transforms is the Fourier transform of the convolution. So we compute the inverse Fourier
transform of ξ → e−t‖ξ‖

2
, per t > 0. We have, if x ∈ Rn,
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1

(2π)n

∫
Rn
ei<x,ξ>e−t‖ξ‖

2
dξ =

=
1

(2π)n

n∏
j=1

∫
R
eixjξje−tξ

2
j dξj =

1

(4π2t)
n
2

n∏
j=1

∫
R
e
i
xjηj√
t e−η

2
j dηj =

=
1

(4πt)
n
2

e−
‖x‖2
4t ,

applying the result of Example 3.5.15.

So we have obtained the following ”formal” solution of problem (4.5.5):

u(t, x) =

 1

(4πt)
n
2

∫
Rn e

− ‖x−y‖
2

4t f(y)dy if t > 0,

f(x) if t = 0.
(4.5.8)

Now we state a precise result. We need the definition of ”classical solution”:

Definition 4.5.5. Let f ∈ C(Rn). A classical solution of (4.5.5) is a function u with domain
[0,+∞[×Rn, continuous, equipped in ]0,+∞[×Rn of the derivatives Dtu, and Dα

xu for |α| ≤ 2,
continuous in ]0,+∞[×Rn.

The following fact holds:

Theorem 4.5.6. Let f ∈ BC(Rn). Then problem (4.5.5) has a unique classical solution u such
that u(t, .) is bounded in Rn ∀t ≥ 0. Such solution u can be represented in the form (4.5.8).

We limit ourselves to remark that, if f ∈ BC(Rn), the function in (4.5.8) is well defined, as,

for every t > 0 and for every x ∈ Rn the function y → e−
‖x−y‖2

4t f(y) is summable in Rn.

Example 4.5.7. (Cauchy problem for the wave equation in space dimension 1 ) We
look for a function u of the variables (t, x), with t ≥ 0, x ∈ R, satisfying the following conditions:

D2
t u(t, x) = D2

xu(t, x), t > 0, x ∈ R,
u(0, x) = f(x), x ∈ R,
Dtu(0, x) = g(x), x ∈ R.

(4.5.9)

We operate formally, putting, as usual,

U(t, ξ) :=

∫
R
e−ixξu(t, x)dx,

for t > 0 and ξ ∈ R. Applying the Fourier transform with respect to x to u(t, .) for every t ≥ 0,
reversing the order of application between the transform and the time derivatives, we obtain

D2
tU(t, ξ) = −ξ2U(t, ξ), t > 0, ξ ∈ R,
U(0, ξ) = f̂(ξ), ξ ∈ R,
DtU(0, ξ) = ĝ(ξ), ξ ∈ R,

(4.5.10)

hence, at least for ξ 6= 0,

U(t, ξ) = cos(tξ)f̂(ξ) +
sin(tξ)

ξ
ĝ(ξ). (4.5.11)
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Now we want to apply the inverse Fourier transform. Always proceeding formally, we have

1

2π

∫
R
eixξ cos(tξ)f̂(ξ)dξ

=
1

2
(

1

2π

∫
R
ei(x+t)ξ f̂(ξ)dξ +

1

2π

∫
R
ei(x−t)ξ f̂(ξ)dξ) =

=
f(x+ t) + f(x− t)

2
.

Concerning the second summand in (4.5.11), it is easy to check that, if a > 0 and χa is the
characteristic function of [−a, a], we have, for ξ 6= 0,

χ̂a(ξ) = 2
sin(aξ)

ξ
.

So, at least formally, the inverse Fourier transform of sin(tξ)
ξ ĝ(ξ) is

1

2
(χt ∗ g)(x) =

1

2

∫ x+t

x−t
g(y)dy.

In conclusion, we have obtained

u(t, x) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(y)dy. (4.5.12)

Formula (4.5.12) is known as formula of D’Alembert . We proceed as in the case of the heat
equation.

Definition 4.5.8. Let f, g ∈ C(Rn). A classical solution of (4.5.9) is a function u in
C([0,+∞[×R) , equipped in ]0,+∞[×R with the continuous derivatives Dtu,D2

t u e Dα
xu for

|α| ≤ 2, with Dtu continuously extensible to [0,+∞[×Rn.

The following result holds:

Theorem 4.5.9. Let f ∈ C2(R), g ∈ C1(R). Then problem (4.5.9) has a unique classical
solution. u. Such solution can be represented in the form (4.5.12).

Remark 4.5.10. Differently from the case of the heat equation (see Theorem 4.5.6), for the
wave equation a result of existence and uniqueness holds without assumptions of boundedness
of the data or the solution.

Remark 4.5.11. In the case of the heat equation, the information given by the initial condition
has infinite speed of propagation: in fact, assume, for example, that the datum f in (4.5.5) is
such that f(x) > 0 if ‖x‖ < δ, f(x) = 0 if ‖x‖ ≥ δ, for some δ ∈ R+. From (4.5.8) we deduce
that, for every t ∈ R+, u(t, x) > 0 ∀x ∈ Rn.

On the contrary,in the case of the wave equation the information given by the initial condi-
tions has finite speed of propagation: assume, for example, that f(x) 6= 0 only if |x| < δ, while

(for simplicity) g = 0. Let x > δ. Then, if t ∈ R+, u(t, x) = f(x−t)
2 . So, in order that u(t, x) 6= 0,

it is necessary that x− t ∈ (−δ, δ), which implies x− t < δ or t > x− δ.

Exercise 4.5.12. Write explicitly in integral form the solution of problem (4.5.1) in space
dimension one. Observe that the solution is not unique, if we do not require the belonging to
L2(R).
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Exercise 4.5.13. Study the nonhomogeneous heat equation{
Dtu(t, x) = ∆xu(t, x) + f(t, x), t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn. (4.5.13)

Applying formally the Fourier transform with respect to the space variables x, deduce the
following expression of the solution:

u(t, x) =

1

(4πt)
n
2

∫
Rn e

− ‖x−y‖
2

4t u0(y)dy +
∫ t

0
1

(4π(t−s))
n
2

(
∫
Rn e

− ‖x−y‖
2

4(t−s) f(s, y)dy)ds.
(4.5.14)

It would be possible to prove that, if u0 ∈ BC(Rn), f ∈ BC([0,+∞[×Rn) and has the derivative
Dtf ∈ BC([0,+∞[×Rn), then (4.5.14) is the unique classical solution to (4.5.13) (in the sense
of Definition 4.5.5) such that for every t ≥ 0 u(t, .) is bounded in Rn.

Exercise 4.5.14. Check that, if f ∈ C2(R) and g ∈ C1(R), then (4.5.12) is really a classical
solution of (4.5.9).
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Chapter 5

Elements of calculus of probability

5.1 Probability spaces

In the study of several phenomena in natural sciences, physics, sociology, medicine, etc., one
often encounters situations in which it is practically impossible to predict (in deterministic way)
how a certain process is going to evolve. However, in many of these situations, the researcher
is able to evaluate what is the development which seems the most plausible to expect. In these
cases, we have to deal with phenomena which are usually defined as random.

In order to construct mathematical models in this context, the method we are going to
describe has proved to be convenient: one starts by introducing a certain set Ω, representing
all possible outcomes which could occur, or all possible results of a certain experiment (here
the world ”experiment” is intended in a generalized sense). One associates with any element
of a certain class of concrete situations a suitable subset of Ω. In such a way, it is determined
a certain family A of subsets of Ω. Then, we assign to any element A of this family a real
number P (A) between 0 and 1, called the ”probability of A”, indicating to what extent we are
expecting the concrete situation corresponding to A is going to occur. Of course, the different
situations are related. This suggests to require that the probability measure P should satisfty
some general properties. Moreover, the classical operations among sets in the class A have
natural interpretations as corresponding concrete situations. For example, intersection in A
represents the contemporary happening of these situations, while union stands for the fact that,
at least, one of them occurs. Let us examine some examples.

Example 5.1.1. Let us suppose that we want to construct a model of the experiment formed
by the launch of a dice with the faces numbered from one to six and perfectly balanced. The
set of all possible results is

Ω := {1, 2, 3, 4, 5, 6}.
Then, we can identify, for example, the concrete situation ”the result is even” with the set
A := {2, 4, 6} and the situation ”the result is less or equal to 4” with B = {1, 2, 3, 4}. A ∪B =
{1, 2, 3, 4, 6} corresponds to ”the result is even or less or equal to 4”, while A∩B = {2, 4} stands
for ”the result is even and less or equal to 4”.

Example 5.1.2. We suppose of having at disposal a device (for example, an electronic one)
and of considering the time when it stops working, if we switch it on at time t = 0. Then, we
represent such time by a nonnegative real number, employing an appropriate unit of measure.
We indicate with Ω the set of all possible results, that is, the interval [0,+∞[. Then its subset
[1, 2] can be identified with the concrete situation that the device stops working in some instant
between 1 and 2.

109
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We have mentioned the fact that the main operations in sets have a natural interpretation
as concrete situations. Then, if we indicate with A the class of subsets of Ω of which we want
to define a probability, we shall require that A is closed with respect to such operations. The
assumption that is usually made is that A is a σ−algebra. In the following, it will be convenient
to put, given A ⊆ Ω, with Ω ”sample space”,

Ac := Ω \A. (5.1.1)

We shall call Ac complement of A in Ω.

Definition 5.1.3. Let Ω be a set. We indicate with P(Ω) the power set of Ω, that is , the
set of subsets of Ω. Let A ⊆ P(Ω). We shall say that A is a σ−algebra if it fulfills the following
conditions:

(I) Ω ∈ A;

(II) if An ∈ A ∀n ∈ N, then
⋃
n∈N

An ∈ A;

(III) if A ∈ A, then Ac ∈ A.

From the definition, it follows that a σ−algebra is closed with respect to the main operations
in sets:

Theorem 5.1.4. Let A be a σ−algebra in the set Ω. Then:
(I) ∅ ∈ A;

(II) if n ∈ N and Ai ∈ A for i = 1, ..., n,

n⋃
i=1

Ai ∈ A;

(III) if I = N, or I = {1, ..., n}, for some n ∈ N, and Ai ∈ A ∀i ∈ I, then
⋂
i∈I
Ai ∈ A;

(IV) if A and B are elements of A, A \B ∈ A.

Incomplete proof (I) It suffices to observe that ∅ = Ωc and to employ (I) and (III) in
Definition 5.1.3.

(II) follows from (II) of Definition 5.1.3 and from (I), observing that, if we put Ai := ∅ for
each i ∈ N with i > n, we have

n⋃
i=1

Ai =
⋃
i∈N

Ai.

We omit the proof of (III) (see Exercise 5.1.11).
(IV ) follows from the fact that

A \B = A ∩Bc

and from (III).
�
Now we consider the number P (A), which should express the probability of the concrete

situation corresponding to A ∈ A. P is clearly a function from A to [0, 1]. We shall require that
P is a probability measure, in the following sense:

Definition 5.1.5. Let Ω be a nonempty set and let A be a σ−algebra in Ω. A probability
measure in A is a function P : A → [0, 1], such that

(I) P (Ω) = 1;
(II) if An ∈ A ∀n ∈ N and the sets An are pairwise disjoint for different values of n, then

P (
⋃
n∈N

An) =

∞∑
n=1

P (An).



PROBABILITY SPACES 111

Here also, we can draw from the definition further properties of probability measures:

Theorem 5.1.6. Let Ω be a nonempty set, let A be a σ−algebra in Ω and P a probability
measure in A. Then:

(I) P (∅) = 0;
(II) if n ∈ N, Ai ∈ A for i = 1, ..., n and the sets Ai are pairwise disjoint,

P (
n⋃
i=1

Ai) =
n∑
i=1

P (Ai);

(III) if A and B are elements of A and A ⊆ B, we have

P (B \A) = P (B)− P (A).

Proof (I) Applying property (II) in Definition 5.1.5 with An = ∅ ∀n ∈ N, we obtain
immediately that, from P (∅) > 0, it follows P (∅) = +∞. This is incompatible with the definition
of probability measure.

(II) follows from (I) and (II) in Definition 5.1.5, observing (as we have already done) that,

if we put Ai = ∅ for i > n, we have
⋃
i∈N

Ai =

n⋃
i=1

Ai.

(III) One has B = A ∪ (B \A) and A ∩ (B \A) = ∅. It follows from (II) that

P (B) = P (A) + P (B \A),

hence we get the conclusion.
�

Remark 5.1.7. From (III) of Theorem 5.1.6, it follows that, if A ⊆ B, then P (A) ≤ P (B).

Now we are able to introduce the definition of probability space:

Definition 5.1.8. A probability space is a triple (Ω,A, P ), where Ω is a nonempty set, A
is a σ−algebra in Ω, P is a probability measure, with domain A.

The elements of A will be called events.

We pass to some concrete examples.

Example 5.1.9. (Finite probability spaces) Let Ω be a set with a finite number (n ∈ N) of
elements. We assume that they are {ω1, ..., ωn}. We take the σ-algebra P (Ω) of all subsets of
Ω. We want to define a probability measure in P (Ω). So we start by considering the singletons
{ω1}, ...,{ωn}. If we assign to {ωj} (1 ≤ j ≤ n) the probability pj ∈ [0, 1], the property (II) of
Theorem 5.1.6 imposes that

1 = P (Ω) = p1 + ...+ pn. (5.1.2)

On the other hand, if the condition (5.1.2) is satisfied, it is not difficult to prove that there exists
a unique probability measure in P (Ω) such that P ({ωj}) = pj per j = 1, ..., n. Evidently, it will
hold, if A ⊆ Ω,

P (A) =
∑
ωj∈A

pj . (5.1.3)

So, we reexamine Example 5.1.1. We deal with the fact that we have to assign a probability pj
to the fact that the outcome of the launch is j, with 1 ≤ j ≤ 6. The conditions which should be
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satisfied are pj ∈ [0, 1] for 1 ≤ j ≤ n, and
∑6

j=1 pj = 1. Then, it is clear that, if we think that the
dice is well balanced, in such a way that it guarantees the equiprobability of the single results,
the only possibility is to put pj = 1

6 for each j = 1, ..., 6. On the contrary, if we think that
this equiprobability does not hold, we shoud assign values pj , possibly different from each other,
but preserving the condition (5.1.2). In the case of a balanced dice, for every A ⊆ {1, ..., 6} the
condition (5.1.3) imposes that

P (A) =
](A)

6
,

where ](A) indicates the cardinality (number of elements) of the set A.
Another example in the same order if ideas is the following: we consider the result of the

launch of two balanced dice. We can take as sample space Ω the set of ordered pairs {(i, j) : 1 ≤
i, j ≤ 6}, which is made of 36 elements. We obtain a probability space, setting, for each A ⊆ Ω,

P (A) :=
](A)

36
.

For example, we consider the event ”the total outcome is 2”. Then we identify it with A =
{(1, 1)}, hence P (A) = 1

36 . On the other hand, if we indicate with B the event ”the total
outcome is 7”, we have B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, hence P (B) = 6

36 = 1
6 .

Example 5.1.10. Now we construct a probabilistic model related to Example 5.1.2. We set
Ω := R+ and indicate with A the class of subsets of Ω which are measurable in the sense of
Lebesgue. From Theorem 1.1.5, it immediately follows that A is a σ−algebra. Concerning the
probability measure, we fix g : R+ → [0,+∞[ measurable, such that∫

R+

g(t)dt = 1 (5.1.4)

and set, given A ∈ A,

P (A) :=

∫
A
g(t)dt. (5.1.5)

It is not difficult to check that P is a probability measure, Here we limit ourselves to prove
property (II) in Definition 5.1.5. Let (An)n∈N be a sequence of pairwise disjoint elements in A.

We indicate with χn the characteristic function of An. Evidently, if A :=
⋃
n∈N

An, we have that,

for every x ∈ Ω the characteristic function χA of A satisfies

χA(x) =
∞∑
n=1

χn(x).

So

P (A) =

∫
A
g(t)dt =

∫
R+

g(t)χA(t)dt =

=

∫
R+

∞∑
n=1

g(t)χn(t)dt =

(applying the result of Exercise 1.5.6)

=

∞∑
n=1

∫
R+

g(t)χn(t)dt =

∞∑
n=1

∫
An

g(t)dt =
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=
∞∑
n=1

P (An).

For example, let λ > 0. We take g(t) := λe−λt. With this choice, if A stands for the event ”the
device stops working in some instant between 1 e 2” (in the fixed time unit) , we shall identify
it with the interval ]1, 2[. So

P (A) =

∫
]1,2[

λe−λtdt = e−λ − e−2λ.

Exercise 5.1.11. Prove (III) in Theorem 5.1.4. The crucial point is the formula⋂
i∈I
Ai = (

⋃
i∈I

Aci )
c. (5.1.6)

Exercise 5.1.12. Construct a probabilistic model of the double launch of a balanced dice.
Calculate the probability of obtaining at least one six.

Exercise 5.1.13. Let A and B be events in the probability space (Ω, A, P ). Check that

P (A ∪B) = P (A) + P (B)− P (A ∩B).

5.2 Elements of combinatorics

In this section we introduce some simple elements of combinatorics, allowing to determine the
cardinality of certain finite sets, in order to compute the probability of some events in case of
finite probability spaces.

The main result is the following

Theorem 5.2.1. Let N and K be finite sets, with (respectively) n and k elements. Here n and
k are natural numbers and k ≤ n. Then:

(I) the number of injective mappings from K to N is n!
(n−k)! ;

(II) the number of subsets of N with k elements is
(
n
k

)
, with(

n

k

)
:=

n!

k!(n− k)!
.

Proof Concerning (I), let K = {a1, ..., ak}. If we want to list all the injective mappings
f : K → N , we can choose f(a1) in n different ways, f(a2) in n−1 different ways (f(a2) may be
any elemet distinct from f(a1)), ..., f(ak) in n−k+ 1 different ways. So the number of injective
mappings from K to N is n(n− 1)...(n− k + 1) = n!

(n−k)! .

Concerning (II), let K ′ be a generic subset of N with k elements. The injective mappings
from K to N the range of which is K ′ are evidently the bijections from K to K ′. Applying (I),
we can say that there are k!. So, multiplying k! by the number of subsets of N with k elements,
we obtain the cardinality of the set of injective mappings from K to N , that is n!

(n−k)! . Hence
we get the conclusion.

�
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Example 5.2.2. What is the probability of getting a winning triplet at lottery, with a single
bet?

In each single lottery drum five numbers between one and ninety are weekly drawn. The
number of subsets of five elements in a set with ninety elements is

(
90
5

)
. So the probability that

a single family of five elements coincides with the family of drawn elements is 1

(905 )
. Lets fix

a certain triplet. The number of subsets of five elements containing this triplet is clearly
(

87
2

)
(there remain to be fixed two elements, which can be chosen in a set of 87 elements). So the
probability that the triplet is contained in the set of drawn numbers is(

87
2

)(
90
5

) =
87!

85!2

85!5!

90!
∼= 8, 5× 10−5.

Example 5.2.3. A box contains five red balls and ten white balls. Five of them are drawn at
random (each drawn ball is kept outside the box). What is the probability of drawing exactly
three red balls?

Let Ω be the family of subsets with five elements in the set of 10 + 5 = 15 balls. We have
](Ω) =

(
15
5

)
. The number of elemets of Ω with three red balls and two white balls is

(
5
3

)(
10
2

)
. So

the probability we are trying to compute is(
5
3

)(
10
2

)(
15
5

) ∼= 0, 15.

We conclude this section with a well known formula:

Corollary 5.2.4. (Newton’s binomial theorem) Let a and b be complex numbers and n ∈ N.
Then

(a+ b)n =
n∑
j=0

(
n

j

)
an−jbj .

Proof Expanding the product (a+ b) · ... · (a+ b) (n factors) taking one of the summands a
or b in each factor, we obtain a sum with terms of the form cja

n−jbj , with 0 ≤ j ≤ n. cj stands
for the number of possible choices, obtained taking n − j times a and j times b. Now, we can
associate with each choice where we have taken b j times the family of factors where we have
taken b, forming a subset of j elements in a set of n elements. We conclude, applying Theorem
5.2.1(II), that cj =

(
n
j

)
.

�

Exercise 5.2.5. Compute the probability that, taking n persons at random, (2 ≤ n ≤ 365) at
least two have the same birthday.

(Hint: neglect people who were born of February 29th in a leap year. Try to compute the
probability of the complementing event. Quite surprisingly, one can see that already with only
23 persons the searched probability is larger than 1

2 !)

5.3 Conditional probability and independence

Definition 5.3.1. Let (Ω,A, P ) be a probability space, and let A and B be elements of A, with
P (A) > 0. We define the conditional probability P (B|A) of B given A as follows:

P (B|A) :=
P (B ∩A)

P (A)
.
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Remark 5.3.2. Intuitively, P (B|A) is a measure of the probability that B occurs, in the case
that A occurs. Observe that, if A and B are incompatible (that is, A ∩ B = ∅), we have
P (B|A) = 0. Moreover, P (A|A) = 1.

Example 5.3.3. The forty per cent of a certain population is made of smokers (S), the sixty
per cent is made of nonsmokers (N). It is known that the twentyfive per cent of the smokers is
affected by a certain chronic disease of the respiratory system; on the other hand, only the seven
per cent of nonsmokers is affected by this disease. What is the probability that an individual,
who is affected by the disease, is a smoker?

We have to compute P (S|M) = P (S∩M)
P (M) . We know that P (M |S) = 1

4 . We have

P (M) = P (S ∩M) + P (N ∩M) =

= P (M |S)P (S) + P (M |N)P (N) =
1

4
· 2

5
+

7

100
· 3

5
=

71

500
.

Moreover,

P (S ∩M) = P (M |S)P (S) =
1

4
· 2

5
=

1

10
.

It follows that

P (S|M) =
1
10
71
500

=
50

71
∼= 0, 70.

Remark 5.3.4. Let A1,..., An and B be events with positive probability in (Ω,A, P ). Suppose
that A1,...,An make a partition of Ω, in the sense that they are pairwise disjoint and their union
is Ω. Let j ∈ {1, ..., n}. Observe that B is the disjoint union of the events B ∩ Ak (1 ≤ k ≤ n).
Then

P (Aj |B) =

=
P (Aj∩B)
P (B) =

P (Aj∩B)
P (Aj)

P (Aj)
P (B) = P (B|Aj) P (Aj)∑n

k=1 P (B∩Ak)
=

=
P (B|Aj)P (Aj)∑n
k=1 P (B|Ak)P (Ak)

.

(5.3.1)

The identity we have drawn in (5.3.1) is the so called Bayes’ formula. Employing this formula,
we can obtain more quickly the result in Example 5.3.3. In fact, we have

P (S|M) =

=
P (M |S)P (S)

P (M |S)P (S) + P (M |N)P (N)
=

=
1
4 ·

2
5

1
4 ·

2
5 + 7

100
3̇
5

=
50

71
.

Bayes’ formula is known also as the formula of the probability of causes, because in applications
the events Aj are potential causes of B and we want to evaluate which is the most probable one.

Definition 5.3.5. Let A and B be events in the probability space (Ω,A, P ). We shall say that
A and B are independent if P (A ∩B) = P (A)P (B).

Remark 5.3.6. If P (A) > 0, the independence between A and B is equivalent to

P (B|A) = P (B).

The sense of Definition 5.3.5 is the following: the probability of the occurrence of A does not
change if B occurs. The inverse is also true, in case P (B) > 0.
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Example 5.3.7. We consider a deck of 40 cards, with the usual four suits. We draw one card
at random. Let A be the event ”the drawn card is an ace”, B the event ”the drawn card is a
heart”. We check that A and B are independent.

One has P (A) = 4
40 = 1

10 , P (B) = 10
40 = 1

4 . A ∩ B is the event ”the ace of hearts is drawn”.
So

P (A ∩B) =
1

40
=

1

10
· 1

4
= P (A)P (B).

Therefore, A and B are independent.

Example 5.3.8. Consider the launch of three balanced dice. So

Ω = {(i, j, k) : i, j, k ∈ {1, 2, 3, 4, 5, 6}}.

Any single ordered triplet has probability 1
63

= 1
216 . Let A be the event ”the sum i+j+k equals

6”. A is identifiable with the set of triplets

{(1, 1, 4), (1, 2, 3), (1, 3, 2), (1, 4, 1), (2, 1, 3), (2, 2, 2),
(2, 3, 1), (3, 1, 2), (3, 2, 1), (4, 1, 1)}.

So

P (A) =
10

216
=

5

108
∼= 0, 046.

Let B be the event ”i,j,k are pairwise distinct”. The cardinality of B coincides with the number
of injective functions from a set of 3 elements to a set of 6 elements, and equals, on account of
Theorem 5.2.1,

6!

(6− 3)!
=

6!

3!
= 120.

So

P (B) =
120

216
=

5

9
∼= 0, 56.

We have

A ∩B = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

From this,

P (A ∩B) =
6

63
=

1

36
∼= 0, 028.

On the other hand,

P (A)P (B) =
5

108
· 5

9
=

25

972
∼= 0, 026.

So, A and B are not independent. From P (A)P (B) < P (A ∩ B), we draw P (B) < P (B|A).
This means that the occurrence of A makes the occurrence of B more probable.

It is of interest to define the independence of families made of more than two events:

Definition 5.3.9. Let {Ai : i ∈ I} be a family of events in the probability space (Ω,A, P ),
depending on the parameter i in I. We shall say that the events Ai are independent if, whatever
is the choice of i1, ..., in (n ∈ N) in I, pairwise distinct, one has

P (Ai1 ∩ ... ∩Ain) = P (Ai1) · ... · P (Ain).
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Example 5.3.10. ( Bernoulli processes) Now we want to describe a simple mathematical model,
which is applicable in many concrete situations.

Suppose of repeating n times a certain experiment, always with the same conditions. We
introduce the assumption that results in different tests have no influence to each other. We are
interested only in two complementary aspects of the experiment, which we call ”success” (S) and
”failure” (F ). Let p (∈ [0, 1]) the probability of S in each test. Consequently, the probability of
F will be q := 1− p. So we set

Ω := {ω = {ω1, ..., ωn) : ω1, ..., ωn ∈ {S, I}}. (5.3.2)

We observe that Ω is finite and made of 2n elements. Following the general scheme in Example
5.1.9 and so posing A = P(Ω), we have to assign a probability pω to each n−tuple ω0 =

(ω0
1, ..., ω

0
n), in such a way that

∑
ω∈Ω

pω = 1. For each j = 1, ..., n, we set

Aj := {ω ∈ Ω : ωj = ω0
j }. (5.3.3)

It is natural to put

P (Aj) =

{
p se ω0

j = S,

q se ω0
j = I.

(5.3.4)

Observing that
{ω0} = A1 ∩ ... ∩An

and on account of the fact that different tests have no influence to each other, we assume that
A1,...,An are independent, so that

pω0 := P (A1) · ... · P (An) = pmqn−m, (5.3.5)

where m stands for the number of successes in the sequence ω0
1, ..., ω

0
n.

Now we check that the condition
∑
ω∈Ω

pω = 1 holds. To this aim, we observe, firstly, that the

n−tuples containing exactly m successes (0 ≤ m ≤ n) can be associated with the subsets of m
elements of a set with n elements (we associate with each sequence ω the set {i1, ..., im}, with
1 ≤ i1 < ... < im ≤ n such that ωj = S if j ∈ {i1, ..., im}). So, in force of Theorem 5.2.1 (II), the
n−tuples containing exactly m successes are

(
n
m

)
. It follows, applying Newton’s formula, that

∑
ω∈Ω

pω =

n∑
m=0

(
n

m

)
pmqn−m = (q + p)n = 1n = 1.

In conclusion, we have, for A ⊆ Ω,

P (A) =
∑
ω∈A

pω. (5.3.6)

With position (5.3.6), we could also verify that (5.3.4) holds and that the sets Aj (1 ≤ j ≤ n)
defined in (5.3.3) are independent (see Exercises 5.3.13 and 5.3.14).

Remark 5.3.11. We consider again the scheme described in Example 5.3.10. For 0 ≤ m ≤ n,
we indicate with Bm the event ”we have exactly m successes”. From what we have seen, we
have

P (Bm) =

(
n

m

)
pmqn−m. (5.3.7)
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We wonder: which is the most probable number of successes, or, in different words, for which
m P (Bm) is maximum ? To answer this question, we consider the inequality

P (Bm) ≤ P (Bm+1), 0 ≤ m ≤ n− 1. (5.3.8)

Applying formula (5.3.7), it is easy to check that (5.3.8) is equivalent to

m ≤ np− q, (5.3.9)

and the strict inequality holds if m < np − q. We observe preliminarly that, as 0 ≤ p ≤ 1 and
q = 1− p, np− q ≤ n and np− q = n if and only if p = 1 and q = 0. Moreover:

(I) if np− q < 0, we have P (B0) > P (B1) > ... > P (Bn); the most probable result is m = 0;
(II) suppose that 0 ≤ np − q < n and np − q 6∈ Z; we indicate with m0 the integer part of

np− q (0 ≤ m0 < n); then P (B0) < ... < P (Bm0) < P (Bm0+1) > ... > P (Bn); in this case, the
most probable result is m0 + 1;

(III) suppose that 0 ≤ np − q < n and np − q = m0 ∈ Z; then P (B0) < ... < P (Bm0) =
P (Bm0+1) > ... > P (Bn); in this case, the most probable results are (with the same probability)
m0 and m0 + 1;

(IV) suppose that np− q = n; as already observed, this is equivalent to p = 1 and q = 0; in
this case, P (B0) = ... = P (Bn−1) = 0, while P (Bn) = 1; evidently, the most probable result is
m = n.

Example 5.3.12. We introduce a first example of Bernoulli process. Suppose of throwing 50
times a perfectly balanced coin. We consider ”success” the result ”head” (H), ”failure” the
result ”tail” (T). Then we have n = 50, p = q = 1

2 . If 0 ≤ m ≤ 50, the probability of obtaining

exactly m heads (in 50 launches) is
(

50
m

)
2−50. In this case,

np− q = 50 · 1

2
− 1

2
=

49

2
= 24, 5.

Following the arguments in Remark 5.3.11, the most probable number of heads is 25. The
probability of obtaining exactly 25 heads is(

50

25

)
2−50 ∼= 0, 11.

Exercise 5.3.13. Prove that (5.3.5) and (5.3.6) imply (5.3.4).
(Hint: suppose that, for example, ω0

j = S. For each i = 1, ..., n, let us indicate with Ci the
subset of elements ω such that ωj = S and ωk = S for i elements k in the sequence 1, ..., n. If
ω ∈ Ci, one has pω = piqn−i. One can verify that Ci has

(
n−1
i−1

)
elements. Consequently

P (Aj) =
∑n

i=1

(
n−1
i−1

)
piqn−i =

∑n−1
k=0

(
n−1
k

)
pk+1qn−1−k

= p(q + p)n−1 = p.

Exercise 5.3.14. Prove that the events A1, ..., An defined in (5.3.3) are independent.
(Hint: we have to show that, if 1 ≤ j1 < ... < jr ≤ n (2 ≤ r ≤ n), one has

P (Aj1 ∩ ... ∩Ajr) = P (Aj1) · ... · P (Ajr) = psqr−s,

where s indicates the cardinality of {j ∈ {j1, ..., jr} : ω0
j = S}. For each i = s, ..., n− (r − s) =

n−r+s, we indicate with Ci the subset of the elements ω ∈ Ω such that ωj = ω0
j if j ∈ {j1, ..., jr}
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and ωj = S for i elements j of the sequence 1, ..., n. If ω ∈ Ci, one has pω = piqn−i. One can
verify that Ci has

(
n−r
i−s
)

elements. Consequently,

P (Aj1 ∩ ... ∩Ajr) =
∑n−r+s

i=s

(
n−r
i−s
)
piqn−i =

∑n−r
k=0

(
n−r
k

)
pk+sqn−s−k

= psqr−s(q + p)n−r = psqr−s.

Exercise 5.3.15. At the roulette we gamble on the numbers 3, 13, 22. Suppose that we know
that the game has been stacked in such a way that only odd numbers may occur. What is the
probability that one of the three numbers comes out? Remember that the possible results (apart
the cheat) are the integers from 0 to 36.

Exercise 5.3.16. Five false coins are mixed with nine genuine. One of the coins is drawn at
random.

(I) Compute the probability that a false coin is drawn.
If we draw two coins (keeping an already drawn one outside of the box), compute the prob-

ability that
(II) one is false and one is genuine;
(III) they are both false;
(IV) they are both genuine.

Exercise 5.3.17. A box contains A white stones and B black stones. A second box contains
C white stones and D black stones (A,B,C,D ∈ N). A stone is drawn from the first box
and is transferred into the second one. Then a stone is drawn from the second. Calculate the
probability of the following events:

(I) the first drawn stone is white;
(II) the first drawn stone is black;
(III) the second drawn stone is white, in case the first drawn stone is white;
(IV) the second drawn stone is white, in case the first drawn stone is black.

Exercise 5.3.18. Two stones are drawn from a box, containing four red and two white. The
first drawn stone is kept outside the box. Compute the probability of the following events:

(I) both the drawn stones are white;
(II) both the drawn stones are red;
(III) the drawn stones have the same colour;
(IV) at least one of the drawn stones is red.

Exercise 5.3.19. The american senate consists of two senators for each of the fifty states. A
committee of fifty senators is drawn at random. What is the probability that it contains both
the senators of Alaska? Compute the probability that it contains both the senators of Alaska
under the assumption that it contains at least one.

Exercise 5.3.20. We launch a balanced dice twice. Let A, B, C be the events:
A:”the result in the first launch is odd”;
B: ”the result in the second launch is odd”;
C: ”the sum of the two results is odd”.
Check that A, B, C are pairwise independent, but A, B, C are not.

Exercise 5.3.21. A draft corrector examines a manuscript, containing twenty mistakes: the
probability that it recognizes one of them, when he meets it, is 3

4 . Compute that most probable
number of uncorrected mistakes after one reading. Compute the same number after two readings.
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Exercise 5.3.22. The bolts produced by a factory are defective with probability 1/10. They
are sold in boxes containing four pieces each. What is the probability that a box contains more
than two defective bolts?

Exercise 5.3.23. It is known that the 20 per cent of travellers who have booked a place in a
flight are not present at the departure So an air company accepts up to 55 reservations for a
flight with 50 places. What is the probability at (at least) one traveler who has got a reservation
and is present at the departure, is not able to go? (Assume that the travellers are present or
not at the departure independently of each other).

Exercise 5.3.24. A bag contains nine coins with head and tail and one coin with two heads.
One of these coins is drawn at random. We launch it six times and get six times head. What is
the probability that we have drawn the coin with two heads?

Exercise 5.3.25. A test to single out a certain disease is positive in the 99 per cent of the cases
if it is applied to somebody who is affected, in the 2 per cent of the cases if it is applied to
somebody who is not affected. On account of the fact that the percentage of affected people is
considered as approximately equal to 0, 1, compute the probability that a person with a positive
test is really affected.

5.4 Random variables

Definition 5.4.1. Let (Ω,A, P ) be a probability space, X : Ω → R. We shall say that X is a
simple random variable if there exist A1,...,Am (m ∈ N) elements of A pairwise incompatible,
the union of which is Ω, and real numbers α1, ..., αm so that

X(ω) = αi ∀ω ∈ Ai, 1 ≤ i ≤ m.

We shall say that X is a real random variable (rrv) if there exists a sequence of simple
random variables (Xk)k∈N with domain Ω, such that

lim
k→+∞

Xk(ω) = X(ω) ∀ω ∈ Ω.

Remark 5.4.2. The definitions of simple and real random variables have a strong analogy with
the definitions of simple and measurable functions. As a matter of fact, we can observe that, in
case Ω is a Lebesgue measurable subset of Rn and A is the class of Lebesgue measurable subsets
of Ω, simple random variables are exactly simple functions, real random variables are exactly
measurable functions.

Definition 5.4.3. Let (Ω,A, P ) be a probability space, X : Ω → Rn, with n ∈ N, X(ω) =
(X1(ω), . . . , Xn(ω)). We shall say that X is a n−dimensional random variable if X1, . . . , Xn

are rrv.

Example 5.4.4. Let us consider the launch of a balanced dice with six faces. Let Ω :=
{1, 2, 3, 4, 5, 6}, A = P(Ω), P (A) := ](A)/6, ∀A ∈ A. We set

X : Ω→ R,

X(ω) =

{
0 if ω is even,
1 if ω is odd

X is a simple random variable, as, if we set A1 := {2, 4, 6} and A2 = {1, 3, 5}, A1 and A2 are
incompatible events with union Ω, X(ω) = 1 if ω ∈ A1, X(ω) = 0 if ω ∈ A2.



RANDOM VARIABLES 121

Example 5.4.5. We launch a dart against a round target, with radius r (r ∈ R+). We schema-
tize the experiment, setting

Ω := {(x, y) ∈ R2 : x2 + y2 ≤ r2},

A := {A ⊆ Ω : A ∈M2},

P (A) := L2(A)
πr2

, A ∈ A.

(5.4.1)

This choice of P means, evidently, that we think that the probability that the dart touches A is
proportional to its area L2(A).

It is easy to see that (Ω,A, P ) is a probability space. Given ω ∈ Ω, we indicate with X(ω)
the distance of ω from the origin (0, 0). Obviously, X(ω) = ‖ω‖, where we have indicated with
‖.‖ the euclidean norm. By virtue of Remark 5.4.2 and Theorem 1.2.4, X is a rrv.

Another example of rrv connected with the same experiment is

Y : Ω→ R,
Y (ω1, ω2) = |ω1|,

(5.4.2)

measuring the distance of the point ω centered by the dart from the axis ω1.
Finally, if we set

Z : Ω→ R2,
Z(ω) = (X(ω), Y (ω)),

(5.4.3)

we obtain a bidimensional random variable.

We introduce now some notations: let Ω, R, be sets, X : Ω→ R; if B ⊆ R, we set

{X ∈ B} := {ω ∈ Ω : X(ω) ∈ B}. (5.4.4)

In case R = R, we set, given a ∈ R,

{X < a} := {ω ∈ Ω : X(ω) < a}. (5.4.5)

Analogous notations will be employed for other kinds of inequality.
The next theorem, of relevant importance, has purely set-theoretical contents:

Theorem 5.4.6. Let Ω, R be sets, , X : Ω→ R, {Bi : i ∈ I} a family of subsets of R, depending
on the parameter i ∈ I, B ⊆ R. Then:

(I) {X ∈ ∪i∈IBi} = ∪i∈I{X ∈ Bi};
(II) {X ∈ ∩i∈IBi} = ∩i∈I{X ∈ Bi};
(III) {X ∈ Bc} = {X ∈ B}c = Ω \ {X ∈ B}, Bc := R \B.

Proof (I) Saying that ω ∈ {X ∈ ∪i∈IBi} means that X(ω) ∈ ∪i∈IBi and so that there
exists i0 in I such that X(ω) ∈ Bi0 . Therefore, ω ∈ {X ∈ Bi0} ⊆ ∪i∈I{X ∈ Bi}. On the other
hand, if ω ∈ ∪i∈I{X ∈ Bi}, there exists i0 ∈ I such that ω ∈ {X ∈ Bi0}. So X(ω) ∈ Bi0 , hence
X(ω) ∈ ∪i∈IBi, and we get the conclusion.

(II) Saying that ω ∈ {X ∈ ∩i∈IBi} means that X(ω) ∈ ∩i∈IBi. This is equivalent to
X(ω) ∈ Bi for every i ∈ I, to ω ∈ {X ∈ Bi} for every i and so to ω ∈ ∩i∈I{X ∈ Bi}.

(III) ω ∈ {X ∈ Bc} if and only if X(ω) ∈ Bc. This is equivalent to ω ∈ Ω and X(ω) 6∈ B,
which is the same as {X ∈ B}c.

�
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Given an n−dimensional random variable X and B ⊆ Rn, we wonder whether the probability
of {X ∈ B} is defined. Here we are going to face the following problem: under what conditions,
given B ⊆ Rn, {X ∈ B} is an event, that is, {X ∈ B} belongs to the σ−algebra A ? We
shall see that there exists a large class of subsets of Rn for which this holds: the so called Borel
subsets of Rn.

We begin with a preliminary result:

Theorem 5.4.7. Let Ω and I be sets, I 6= ∅ and ∀i ∈ I let Ai be a σ−algebra in Ω. Then
∩i∈IAi is a σ−algebra in Ω.

Proof The proof is really trivial. Here we limit ourselves to prove that, if An ∈ ∩i∈IAi for
every n ∈ N, then ∪n∈NAn ∈ ∩i∈IAi. Let i ∈ I. Then, for every n ∈ N, An ∈ Ai. As Ai is a
σ−algebra, ∪n∈NAn ∈ Ai. This holds for every i. So ∪n∈NAn ∈ ∩i∈IAi.

�

Definition 5.4.8. Let n ∈ N; we indicate with B(Rn) the intersection of all σ−algebras in Rn
containing the class of open subsets.

Remark 5.4.9. By virtue of Theorem 5.4.7, B(Rn) is a σ−algebra in Rn and may be thought
as the smallest σ−algebra in Rn, containing all open subsets. The elements of B(Rn) are called
Borel subsets of Rn. It is possible to prove that, in any normed space, closed subsets are exactly
the complements of open subsets. So even closed subsets are Borel, by virtue of properties of
σ−algebras (see Theorem 5.1.4).

Observe that Mn is a σ−algebra containing open subsets. So Borel subsets are measurable
in the sense of Lebesgue. In fact, B(Rn) is strictly contained in Mn. However, even in the case
of B(Rn) we can say that it contains all subsets of Rn appearing in applications.

The following result holds:

Theorem 5.4.10. Let (Ω,A, P ) be a probability space and let X : Ω → Rn (n ∈ N) be an
n−dimensional randon variable. Then, ∀B ∈ B(Rn), {X ∈ B} is an event, that is, {X ∈ B} ∈
A.

Definition 5.4.11. Let (Ω,A, P ) be a probability space, X : Ω → R a rrv. The distribution
function FX of X is the following{

FX : R→ R,
FX(t) = P (X ≤ t), t ∈ R. (5.4.6)

Remark 5.4.12. In Definition 5.4.11 we have written P (X ≤ t) instead of P ({X ≤ t}), or
P ({ω ∈ Ω : X(ω) ≤ t}). In general, we shall employ the notations P (X ∈ B), P (X ≥ t), etc.
in alternative to P ({X ∈ B}), P ({X ≥ t}), etc., whenever this simplification does not seem to
cause confusion. We observe that {x ∈ R : x ≤ t} is a Borel subset of R, because it is closed.
So, in force of Theorem 5.4.10, Definition 5.4.11 is well posed.

Example 5.4.13. Consider Example 5.4.4. It is easy to verify that

{X ≤ t} =


∅ if t < 0,
{2, 4, 6} if 0 ≤ t < 1,
Ω if t ≥ 1.

So

FX(t) =


0 if t < 0,
1/2 if 0 ≤ t < 1,
1 if t ≥ 1.

(5.4.7)
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Example 5.4.14. We determine the distribution function of the rrv in Example 5.4.5. Let
t ∈ R. We have

{X ≤ t} =


∅ if t < 0,
{ω ∈ Ω : ‖ω‖ ≤ t} if 0 ≤ t ≤ r,
Ω if t > r.

So

FX(t) =


0 if t < 0,
(t/r)2 if 0 ≤ t < r,
1 if t ≥ r.

(5.4.8)

Before stating, and at least partially, showing the main properties of the distribution function
of a rrv, we introduce without proof two important properties of probability measures.

Theorem 5.4.15. Let (Ω,A, P ) be a probability space. Next, let (An)n∈N be a sequence of
events. Then.

(I) if An ⊆ An+1 ∀n ∈ N and A = ∪n∈NAn, then

P (A) = lim
n→+∞

P (An);

(II) if An+1 ⊆ An ∀n ∈ N and A = ∩n∈NAn, then

P (A) = lim
n→+∞

P (An).

Remark 5.4.16. In each of the two cases of Theorem 5.4.15, lim
n→+∞

P (An) exists because the

sequence (P (An))n∈N is monotonic (nondecreasing in the first case, non increasing in the second).

Theorem 5.4.17. Let (Ω,A, P ) be a probability space, X : Ω→ R a rrv. Then:
(I) ∀t ∈ R, 0 ≤ FX(t) ≤ 1;
(II) ∀a, b ∈ R, con a < b,

P (a < X ≤ b) = FX(b)− FX(a);

(III) FX is monotonic nondecreasing;
(IV) FX is right continuous, that is, ∀t ∈ R, lim

s→t+
FX(s) = FX(t);

(V) lim
t→−∞

FX(t) = 0 and lim
t→+∞

FX(t) = 1.

Proof (I) is obvious.
(II) One has {X ≤ a} ⊆ {X ≤ b} and {X ≤ b} \ {X ≤ a} = {a < X ≤ b}. So (II) follows

from Theorem 5.1.6(III).
(III) If a < b, from (II) we have FX(b)− FX(a) ≥ 0.
(IV) Let t ∈ R. Then {X ≤ t} = ∩n∈N{X ≤ t + 1/n}. In fact, if ω ∈ Ω and X(ω) ≤ t,

then X(ω) ≤ t + 1/n ∀n ∈ N. On the other hand, from X(ω) ≤ t + 1/n ∀n ∈ N, it follows
X(ω) ≤ t. In fact, if X(ω) > t, taking n sufficiently large, we get t + 1/n < X(ω). As ∀n ∈ N
{X ≤ t+ 1/(n+ 1)} ⊆ {X ≤ t+ 1/n}, from Theorem 5.4.17(II) we obtain

FX(t) = P (X ≤ t) = lim
n→+∞

P (X ≤ t+ 1/n) = lim
n→+∞

FX(t+ 1/n). (5.4.9)

Let now ε ∈ R+. By (5.4.9), there exists n0 ∈ N, such that FX(t + 1/n0) < FX(t) + ε. So, if
0 < s < 1/n0, from (III), we have

FX(t)− ε < FX(t) ≤ FX(s) ≤ FX(t+ 1/n0) < FX(t) + ε.
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(V) For every n ∈ N, {X ≤ −n − 1} ⊆ {X ≤ −n}. As ∩n∈N{X ≤ −n} = ∅, one has,
applying again Theorem 5.4.15(II),

lim
n→+∞

FX(−n) = lim
n→+∞

P (X ≤ −n) = 0. (5.4.10)

Then the first limit in (V) follows from (5.4.10) and (III).
Moreover, for every n ∈ N, {X ≤ n} ⊆ {X ≤ n + 1}. As ∪n∈N{X ≤ n} = Ω, one has,

applying Theorem 5.4.15(I),

lim
n→+∞

FX(n) = lim
n→+∞

P (X ≤ n) = 1. (5.4.11)

So the second limit in (V) follows from (5.4.11) and (III).
�

Remark 5.4.18. Example 5.4.13 shows that the distribution function, which is always right
continuous, may be discontinuous. In that case, one has, for example,

lim
s→0−

FX(s) = 0 6= FX(0) = 1/2.

See, concerning this, also Exercise 5.4.53.

The distribution function is defined only for rrv-s. Concerning n−dimensional random vari-
ables (n ∈ N), we introduce the notion of distribution law:

Definition 5.4.19. Let (Ω,A, P ) be a probability space, X : Ω→ Rn a n−dimensional random
variable. We define distribution law of X the function{

QX : B(Rn)→ R,
QX(B) = P (X ∈ B), B ∈ B(Rn).

(5.4.12)

Theorem 5.4.20. The distribution law of a n−dimensional random variable X is a probability
measure in the σ−algebra B(Rn).

Proof First of all, it is clear from (5.4.12) that QX(B) ∈ [0, 1] ∀B ∈ B(Rn). Moreover,

QX(Rn) = P (X ∈ Rn) = P (Ω) = 1.

Finally, let {Bk : k ∈ N} be a sequence of pairwise disjoint Borel subsets of Rn . It is clear that
the events {X ∈ Bk} (k ∈ N) are pairwise incompatible. So, by virtue of Theorem 5.4.6(I), one
has

QX(∪k∈NBk) = P (X ∈ ∪k∈NBk)
= P (∪k∈N{X ∈ Bk}) =

∑∞
k=1 P (X ∈ Bk)

=
∑∞

k=1QX(Bk).

�

Example 5.4.21. If X : Ω → Rn is a random variable with finite range {α1, ..., αr}, we have,
for each B ∈ B(Rn),

QX(B) = P (X ∈ B) =
∑
αj∈B

P (X = αj). (5.4.13)

The result of Example 5.4.21 can be generalized, introducing the notion of discrete random
variable:
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Definition 5.4.22. Let X be a n−dimensional random variable. We shall say that X is di-
screte if its range is finite or countable.

If X is a discrete random variable, with range {αj : j ∈ N}, one can easily check that, for
every B ∈ B(Rn), formula (5.4.13) holds. In the second term of (5.4.13), we shall have a finite
sum or a series, in dependence of the fact that the range is finite or countable.

Example 5.4.23. Suppose of throwing a balanced dice, until we get a ”head”. Suppose also
that results in different launches are independent. We indicate with H the single result ”head”,
with T the single result ”tail”. We set

Ω := {H,TH, TTH, TTTH, ...}. (5.4.14)

Ω is the set whose elements are all possible finite sequences TT...T︸ ︷︷ ︸
n

H, with n ∈ N, to which we

add the sequence with the only term H and the infinite sequence TTTTTT.... Let ω ∈ Ω. We
put:

pω :=


2−n−1 if ω = TT...T︸ ︷︷ ︸

n

H,

1/2 if ω = H,
0 if ω and the sequence identically equal to T.

(5.4.15)

We put also A = P(Ω) and, if A ∈ A,

P (A) :=
∑
ω∈A

pω. (5.4.16)

We observe that

P (Ω) =
∞∑
n=0

2−n−1 =
∞∑
n=1

2−n =
1
2

1− 1
2

= 1

and it is not difficult to check that P is a probability measure. We indicate with X the rrv
assigning to each sequence its number of launches. So X(H) = 1, X(TH) = 2, etc.. If ω is the
sequence identically equal to T , we set X(ω) = +∞. With a small abuse of language, (X has
+∞ in its range; however, the event {X = +∞} has probability zero), we shall say that X is a
rrv. Let now B =]10,+∞[. Evidently,

QX(B) = P (X ∈]10,+∞[) = P (X > 10) =
∑∞

j=11 2−j

=
∑∞

i=1 2−(10+i) = 2−10.

We calculate the probability that X is odd. In this case, B = {1, 3, 5, ...}. Then

QX(B) = P (X ∈ {1, 3, 5, ...}) =
∑

j∈{1,3,5,...}

2−j

=
∑∞

i=0 2−(2i+1) = 1
2

∑∞
i=0 4−i

= 1
2

1
1− 1

4

= 2
3 .

Definition 5.4.24. Let X be a n−dimensional random variable, f ∈ L1(Rn), almost everywhere
nonnegative. We shall say that f is a density of X if ∀B ∈ B(Rn)

QX(B) = P (X ∈ B) =

∫
B
f(t)dt.
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Remark 5.4.25. It is possible to check that two densities of the same random variable coincide
almost everywhere. We observe also that, if f is a density of X,∫

Rn
f(t)dt = QX(Rn) = 1.

Moreover, if Ln(B) = 0,

QX(B) =

∫
B
f(t)dt = 0.

In particular, if X has a density, for every α ∈ Rn, P (X = α) = 0.

Remark 5.4.26. Let X be a rrv, with the density f . Then, ∀t ∈ R,

FX(t) = P (X ≤ t) =

∫
]−∞,t]

f(s)ds. (5.4.17)

It is true also the following inverse statement: if there exists f ∈ L1(R), almost everywhere
nonnegative, fulfilling (5.4.17), then f is a density of X. So, if B ∈ B(R), one has

QX(B) = P (X ∈ B) =

∫
B
f(s)ds.

So, we consider Example 5.4.14. We set

f(t) =

{
0 if t ∈]−∞, 0[∪]r,+∞[,
2t
r2

if t ∈ [0, r].

Then it is clear that, for every t ∈ R,

FX(t) =

∫
]−∞,t]

f(s)ds.

Therefore, X has f as a density.

Example 5.4.27. We consider the interval Ω = [0, a[ (a > 0). We choose at random a point ω
in Ω. With this, we mean that the probability that the chosen point belongs to a certain subset
B of Ω, measurable in the sense of Lebesgue, is proportional to L1(B). So we put

A := {A ⊆ Ω : A ∈M1},
P (A) = cL1(A), A ∈ A, (5.4.18)

with c ∈ R+. c must be such that P (Ω) = 1. Therefore,

1 = P (Ω) = P ([0, a[) = ca,

hence c = a−1. So

P (A) =
L1(A)

a

for every A ∈ A.
Let us consider the rrv X, such that ∀ω ∈ Ω X(Ω) is the quotient of the distances of ω from

0 and from a. So {
X : Ω→ R,
X(ω) = ω

a−ω , ω ∈ Ω.
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Let us determine the distribution function FX . If t ∈ R, we have:

{X ≤ t} =

{
∅ if t < 0,
[0, at

1+t ] if t ≥ 0,

hence

FX(t) =

{
0 if t < 0,
t

1+t if t ≥ 0.

We set

f(t) =

{
0 if t < 0,

1
(1+t)2

if t ≥ 0.

We have

FX(t) =

∫
]−∞,t]

f(s)ds

for every t ∈ R, so we can deduce that f is a density of X.

Example 5.4.28. We refer to Examples 5.1.2 e 5.1.10. We set

X(ω) = ω (ω ∈ R+).

X is the rrv, specifying the time duration of the device (or the instant it stops working).
Evidently, for every t ∈ R,

{X ≤ t} =

{
∅ if t ≤ 0,
]0, t] if t > 0,

hence

FX(t) =

{
0 if t ≤ 0,∫

]0,t] g(s)ds if t > 0.

So, if we set 
g̃ : R→ R,

g̃(t) =

{
g(t) if t > 0,
0 if t ≤ 0,

we have that g̃ is a density of X. In case g(t) = λe−λt (λ ∈ R+), it is said that X has an
exponential distribution. Let us justify this choice of g. It is a consequence of the following
assumption: that the probability that the device stops working in the time interval ]t, t + h]
(t, h ∈ R+) if it is still working at time t depends only on h. Precisely,

P ({t < X ≤ t+ h}|{X > t}) = φ(h), (5.4.19)

with φ : R+ → R. One has

P ({t < X ≤ t+ h}|{X > t}) =
P (t < X ≤ X + h)

P (X > t)
=
FX(t+ h)− FX(t)

1− FX(t)
,

hence
FX(t+ h)− FX(t)

h
=
φ(h)

h
[1− FX(t)]. (5.4.20)

Suppose now that FX is differentiable in R+ and that lim
h→0

φ(h)
h = λ ∈ R+. Passing to the limit

as h→ 0 in (5.4.20), we obtain that FX satisfies in R+ the ordinary differential equation

F ′X(t) = λ[1− FX(t)]. (5.4.21)
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It easily follows that FX has the form

FX(t) = Ce−λt + 1,

for some C ∈ R, C < 0. From the fact that FX(0) = 0 and assuming that FX is continuous in
R, we obtain C = −1. So

FX(t) =

{
0 if t < 0,
1− e−λt if t ≥ 0.

(5.4.22)

From (5.4.22) it is easy to check that X has the following density f :

f(t) =

{
0 if t < 0,
λe−λt if t ≥ 0.

(5.4.23)

To conclude, we might wonder what is the meaning of condition (5.4.19). Intuitively, it is the
following: that, in some sense, the aging of the device is negligible. In fact, this condition
implies, in particular, that the probability that a working device at time t is still working at
time 2t coincides with the probability that a working device at time 2t is still working at time
3t.

Now we pass to the basic notion of expectation of a rrv. We begin with the case of a simple
random variable.

Definition 5.4.29. Let X be a simple random variable in the probability space (Ω,A, P ). Sup-
pose that Ω = A1 ∪ ... ∪ Am, with A1,...,Am pairwise disjoint, and that X(ω) = αj if ω ∈ Aj
(1 ≤ j ≤ m). Then we call expectation (or average) of X and indicate with E(X) the real

number
m∑
j=1

αjP (Aj).

Remark 5.4.30. One can check that the definition of E(X) does not depend on the chosen
decomposition {Aj : 1 ≤ j ≤ m} of Ω. We observe also that, if X(ω) = α ∀α ∈ ω, E(X) = α.

Example 5.4.31. Let X be the rrv introduced in Example 5.4.4. One has

E(X) = P (A2) =
1

2
.

Example 5.4.32. Let us consider a Bernoulli process, with probability of success and failure in
each single test equal to p and q respectively (see Example 5.3.10). Let X be the rrv assigning
to each sequence ω = (ω1, ..., ωn) the number of successes. So, if, for m = 0, ..., n, Bm is the
event introduced in Remark 5.3.11, we have, on the basis of (5.3.7),

E(X) =

n∑
m=1

m

(
n

m

)
pmqn−m.

We pass to the definition of expectation of a rrv.

Definition 5.4.33. Let (Ω,A, P ) be a probability space, X : Ω → R a rrv such that X(ω) ≥ 0
∀ω ∈ Ω. We set

E(X) := sup{E(Y ) : Y : Ω→ [0,+∞[ simple random variable,
0 ≤ Y (ω) ≤ X(ω) ∀ω ∈ Ω}. (5.4.24)
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Finally, let X : Ω→ R be a generic rrv. We set

X+ := φ+ ◦X, X− := φ− ◦X, (5.4.25)

with φ± defined in (1.2.1)-(1.2.2). It is possible to check that X± are nonnegative real random
variables. If E(X+) < +∞ and E(X−) < +∞, we call expectation of X the real number

E(X) := E(X+)− E(X−). (5.4.26)

Remark 5.4.34. Definition 5.4.33 recalls the definitions of integral 1.2.6 and 1.2.9. In fact,
both probability measures and Lebesgue measures can be considered as particular cases in an
abstract theory of integration. So, it will not be surprising to see that expectation and integral
have similar properties.

Theorem 5.4.35. Let (Ω,A, P ) be a probability space , X,Y : Ω → R real random variables
with a well defined expectation. Then:

(I) X + Y has a well defined expectation; moreover, E(X + Y ) = E(X) + E(Y );
(II) if α ∈ R, αX has a well defined expectation and E(αX) = αE(X);
(III) if X(ω) ≤ Y (ω) ∀ω ∈ Ω, E(X) ≤ E(Y );
(IV) in particular, if X(ω) ≥ 0 ∀ω ∈ Ω, E(X) ≥ 0.

In the particular case of simple random variables, we propose the proof of Theorem 5.4.35
as an exercise (see Exercise 5.4.56).

We pass to some useful results for the computation of the expectation of a rrv.

Theorem 5.4.36. Let X be a discrete rrv in the probability space (Ω,A, P ). Suppose that che
Ω = ∪j∈NAj, with Aj pairwise disjoint events and X(ω) = αj ∈ R ∀ω ∈ Aj. Then X has a well

defined expectation if and only if the series

∞∑
j=1

αjP (Aj) is absolutely convergent. In this case,

E(X) =

∞∑
j=1

αjP (Aj).

Example 5.4.37. Let us consider the probability space in Example 5.4.23. Again, let X be
the rrv counting the number of launches, which is necessary to get ”head”. We have already
seen that the range of X is the set of natural numbers plus +∞, with probability 0. Moreover,

we have that, ∀j ∈ N, P (X = j) = 2−j . As the series

∞∑
j=1

j2−j is convergent (this can be seen

employing, for example, the quotient test), X has a well defined expectation and

E(X) =

∞∑
j=1

j2−j . (5.4.27)

Let us compute the sum of the series in (5.4.27). Considering the power series
∞∑
j=0

zj , which has

radius of convergence 1 and is such that, ∀z ∈ C, with |z| < 1,

∞∑
j=0

zj = (1− z)−1. (5.4.28)
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Applying Theorem 3.3.15, we can differentiate in each of the two terms in (5.4.28) and get

∞∑
j=1

jzj−1 = (1− z)−2, (5.4.29)

which is valid if |z| < 1. Multiplying by z, we obtain immediately, if |z| < 1,

∞∑
j=1

jzj = z(1− z)−2. (5.4.30)

Then, taking z = 1/2, we obtain

E(X) =
∞∑
j=1

j2−j = 2.

Concerning random variables with density, the following result holds:

Theorem 5.4.38. Let X be a rrv, with density f . Then expectation is defined for X if and
only if t→ tf(t) is summable in R. In such a case,

E(X) =

∫
R
tf(t)dt.

Example 5.4.39. Let us consider a rrv, with an exponential distribution (see Example 5.4.28).
Suppose that its density is f(t) = λe−λtχ+(t), where we have indicated with χ+ the characteristic
function of [0, +∞[. Applying Theorem 5.4.38, we obtain

E(X) =
∫

[0,+∞[ λte
−λtdt = λ−1.

So the parameter λ stands for the inverse of the expectation of X.

Theorem 5.4.38 has the following important generalization:

Theorem 5.4.40. Let X be a n−dimensional random variable, with density f and let g : Rn →
R be continuous. Then g(X) := g ◦X is a rrv, the expectation of which is defined if and only if
x→ g(x)f(x) is summable in Rn. In such a case,

E(g(X)) =

∫
Rn
g(x)f(x)dx.

Incomplete proof We check only that the conclusion holds, in case g : Rn → R is a simple
function, with g(x) =

∑m
j=1 βjχBj (x), with B1,...,Bm pairwise disjoint Borel subsets of Rn, and

β1,...,βm real numbers. Observe that such a g is not (generally speaking) continuous, but every
continuous function can be suitably approximated with functions of this type.

We set, for j = 1, ...,m,
Aj := {X ∈ Bj}.

We observe that the events Aj are pairwise incompatible. So, clearly, g(X) coincides with the
simple random variable

∑m
j=1 βjχAj . From this, we get

E(g(X)) =
∑m

j=1 βjP (Aj)

=
∑m

j=1 βj
∫
Bj
f(x)dx

=
∫
Rn
∑m

j=1 βjχBj (x)f(x)dx

=
∫
Rn g(x)f(x)dx.

�
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Example 5.4.41. We consider Example 5.4.5. Let X : Ω → R2, X(ω) = ω (We recall that
Ω ⊆ R2). X is a bidimensional random variable. If B ∈ B(R2), we have

{X ∈ B} = Ω ∩B,

hence

P (X ∈ B) = P (Ω ∩B) =
L2(Ω ∩B)

πr2
=

∫
B
f(x)dx,

with

f(x) =

{
(πr2)−1 if x ∈ Ω,
0 if x 6∈ Ω.

Let X1 be the first component of X. Let us observe that X1(ω)2 = g(X(ω)), with g : R2 → R,
g(x1, x2) = x2

1. By Theorem 5.4.40, we have

E(X2
1 ) =

∫
R2 x

2
1f(x1, x2)dx1dx2

= (πr2)−1
∫

Ω x
2
1dx1dx2

= (πr2)−1
∫ r

0 (
∫ 2π

0 (ρ cos(θ))2ρdθ)dρ

= (πr2)−1
∫ r

0 ρ
3dρ

∫ 2π
0 cos2(θ)dθ

= r2

4 .

Definition 5.4.42. Let X be a rrv, such that E(X2) < +∞. We define variance of X the
number σ2(X) defined as

σ2(X) := E((X − E(X))2).

Remark 5.4.43. If E(X2) < +∞, then expectation is defined for X. In fact, from the usual
elementary inequality (2.4.3), we have

|X| = |X| · 1 ≤ 1

2
(X2 + 1),

hence

E(X+) + E(X−) = E(|X|) ≤ 1

2
(E(X2) + 1).

We observe also that
(X − E(X))2 = X2 − 2E(X)X + E(X)2,

from which we draw the useful formula

σ2(X) = E(X2)− 2E(X)2 + E(X)2 = E(X2)− E(X)2. (5.4.31)

Remark 5.4.44. Intuitively, variance indicates how much a random variable is scattered, with
respect to its expectation. For example, it is easy to check that a constant random variable has
variance zero. (see Exercise 5.4.57). On the other hand, if X is a random variable, the range of
which is {c,−c} (c ∈ R+), with P (X = c) = P (X = −c) = 1

2 , one has

σ2(X) = c2.

Example 5.4.45. Let X be a rrv with density f . Then, applying Theorem 5.4.40, we can say
that

E(X2) =

∫
R
t2f(t)dt.

If this expectation is finite, variance is defined for X and

σ2(X) =

∫
R
t2f(t)dt− (

∫
R
tf(t)dt)2.
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Definition 5.4.46. Let (Ω,A, P ) be a probability space, let I be a family of indexes and, for
every i ∈ I, let Xi be a n−dimensional random variable, with domain Ω. We shall say that the
family {Xi : i ∈ I} is independent (or that the random variables {Xi : i ∈ I} are independent)
if, whatever is the choice of i1, ..., im in I pairwise distinct (m ∈ N arbitrary) and of B1,..., Bm
Borel subsets of Rn, one has that the events {Xi1 ∈ B1},...,{Xim ∈ Bm} are independent. In
other words,

P (Xi1 ∈ B1, ..., Xim ∈ Bm) = P (Xi1 ∈ B1) · ... · P (Xim ∈ Bm).

Example 5.4.47. Let us consider a Bernoulli process (see Example 5.3.10). We indicate with
Ω the set of the n−tuples ω = (ω1, ..., ωi, ..., ωn), with ω1, ..., ωn ∈ {S, F}. Let, for i = 1, ..., n,
Xi be a rrv, depending only on the result in the i−th test. In other words, let us assume that

Xi(ω1, ..., ωi, ..., ωn) = fi(ωi),

with fi(S) = αi, fi(I) = βi. For the sake of simplicity, let us suppose that, for each i = 1, ..., n,
αi = 1, βi = 0. Let us check that the rrv-s {Xi : 1 ≤ i ≤ n} are indipendent. We take
(arbitrarily), r ∈ {1, . . . , n} and 1 ≤ j1 < ... < jr ≤ n. For each i ∈ {1, . . . , r}, let Bi ∈ B(R).
We check that

P (Xj1 ∈ B1, ..., Xjr ∈ Br) = P (Xj1 ∈ B1) · ... · P (Xjr ∈ Br). (5.4.32)

Let us observe, first of all, that one has, for each i ∈ {1, ..., r}:

{Xji ∈ Bi} =


∅ if Bi ∩ {0, 1} = ∅,
{ω ∈ Ω : ωji = S} if Bi ∩ {0, 1} = {1},
{ω ∈ Ω : ωji = F} if Bi ∩ {0, 1} = {0},
Ω if {0, 1} ⊆ Bji .

(5.4.33)

So, if, as usual, we indicate with p the probability of S in a single test and with q the probability
of F, we have, for each i = 1, ..., r:

P (Xji ∈ Bi) =


0 if Bi ∩ {0, 1} = ∅,
p if Bi ∩ {0, 1} = {1},
q if Bi ∩ {0, 1} = {0},
1 if {0, 1} ⊆ Bi.

(5.4.34)

Next, we observe that, if, for some i, Bi ∩ {0, 1} = ∅, the second tern in (5.4.32) is zero. In this
case, we have also

{Xj1 ∈ B1} ∩ ... ∩ {Xjr ∈ Br} = ∅,

so that (5.4.32) holds. Let us suppose, on the contrary, that for each i, Bi ∩ {0, 1} 6= ∅. We set:

I1 := {i ∈ {1, ..., r} : Bi ∩ {0, 1} = {1}},

I2 := {i ∈ {1, ..., r} : Bi ∩ {0, 1} = {0}},

I3 := {i ∈ {1, ..., r} : {0, 1} ⊆ Bi}.

The product in the second term of (5.4.32) gives p](I1)q](I2). For convenience, we put

E := {Xj1 ∈ B1} ∩ ... ∩ {Xjr ∈ Br}.
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We observe that E consists of the elements ω = (ω1, . . . , ωn) of Ω such that ωji = S if i ∈ I1,
ωji = F if i ∈ I2. The number of ”successes” in ω is greater of equal to ](I1) and does not exceed
n − ](I2). Moreover, if ](I1) ≤ h ≤ n − ](I2), each element of E with exactly h ”successes”
can be associated to a subset of {1, . . . , n} \ {ji : i ∈ I1 ∪ I2} with h− ](I1) elements, precisely
{j ∈ {1, . . . , n} \ {ji : i ∈ I1 ∪ I2} : ωj = S}. We deduce that

P (E) =
∑n−](I2)

h=](I1)

(n−](I1)−](I2)
h−](I1)

)
phqn−h

=
∑n−](I1)−](I2)

k=0

(n−](I1)−](I2)
k

)
p](I1)+kqn−](I1)−k

= p](I1)q](I2)
∑n−](I1)−](I2)

k=0

(n−](I1)−](I2)
k

)
pkqn−](I1)−](I2)−k

= p](I1)q](I2).

We conclude this section with some important properties of independent families of random
variables.

Theorem 5.4.48. Let X1,..., Xn be independent rrv-s in the probability space (Ω,A, P ), with
densities, respectively, f1,...,fn. Then the n−dimensional random variable X = (X1, ..., Xn) has
the density

(f1 ⊗ ...⊗ fn)(x1, ..., xn) := f1(x1) · ... · fn(xn). (5.4.35)

Incomplete proof We consider only the case n = 2. It is possible to show that f1 ⊗ f2 is
measurable in R2. From the theorem of Tonelli, it immediately follows that its integral is one.
Let B ∈ B(R2). We consider only the case

B = B1 ×B2,

with B1 and B2 Borel subsets of R. Then one has, employing the fact that X1 and X2 are
independent and, again, the theorem of Tonelli,

P (X ∈ B) = P (X1 ∈ B1, X2 ∈ B2) = P (X1 ∈ B1) · P (X2 ∈ B2)
=
∫
B1
f1(x1)dx1 ·

∫
B2
f2(x2)dx2

=
∫
B(f1 ⊗ f2)(x1, x2)dx1dx2.

�

Theorem 5.4.49. Let X1,..., Xn be independent rrv-s in the probability space (Ω,A, P ), with
densities f1,...,fn respectively. Then the rrv X1 + ...+Xn has the density f1∗ ...∗fn (see Exercise
4.4.13 for the convolution of more than two functions).

Incomplete proof We treat only the case n = 2. By virtue of Remark 5.4.26, it suffices to
show that ∀t ∈ R,

P (X1 +X2 ≤ t) =

∫
]−∞,t]

(f1 ∗ f2)(x)dx. (5.4.36)

We set Bt := {(x1, x2) ∈ R2 : x1 + x2 ≤ t}. Bt ∈ B(R2) because it is closed. Then, applying
Theorem 5.4.48 and the theorem ofi Tonelli, we have

P (X1 +X2 ≤ t) = P ((X1, X2) ∈ Bt) =
∫
Bt
f1(x1)f2(x2)dx1dx2

=
∫
R(
∫

]−∞,t−x2] f1(x1)dx1)f2(x2)dx2

=
∫
R(
∫

]−∞,t] f1(x− x2)dx)f2(x2)dx2

=
∫

]−∞,t](
∫
R f1(x− x2)f2(x2)dx2)dx

=
∫

]−∞,t](f1 ∗ f2)(x)dx.
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�

Example 5.4.50. We consider again Example 5.4.28 (which was based on Examples 5.1.2 and
5.1.10). Suppose that, when the device stops working, a second one starts, completely similar to
the first. We indicate with Y the duration of the second device, which is governed by the same
distribution law. Then Y has the density f(t) = λe−λtχ+(t), with χ+ characteristic function of
[0,+∞[. Let us suppose that the durations of the two devices are independent. In this case,
it is natural to assume that X and Y are independent rrv-s. Let us consider the rrv X + Y ,
indicating the total duration of the two devices. Then, by Theorem 5.4.49, X+Y has the density
g := f ∗ f . If t ∈ R,

(f ∗ f)(t) = λ2
∫
R e
−λ(t−s)χ+(t− s)e−λsχ+(s)ds

= λ2te−λtχ+(t).
(5.4.37)

Theorem 5.4.51. Let X and Y be independent rrv-s in the probability space (Ω,A, P ). Let us
suppose that each of them has a defined expectation. Then also XY has a defined expectation
and E(XY ) = E(X)E(Y ).

Incomplete proof Suppose that X e Y have densities, respectively, f and g. The case
of X and Y simple random variables is treated in Exercise 5.4.60. We set Z : Ω → R2,
Z(ω) = (X(ω), Y (ω)). By Theorem 5.4.48, Z has the density f ⊗ g. Then, by the theorem of
Fubini, as XY = F ◦Z, with F : R2 → R, F (x1, x2) = x1x2, one has, applying Theorem 5.4.40,

E(XY ) =
∫
R2 x1x2f(x1)g(x2)dx1dx2

=
∫
R x1f(x1)dx1 ·

∫
R x2g(x2)dx2 = E(X)E(Y ).

�

Theorem 5.4.52. Let X1, ..., Xn be independent rrv-s in the probability space (Ω,A, P ). Suppose
that, for each of them, the variance σ2(Xj) is defined.Then it is also defined the variance of
X1 + ...+Xn and

σ2(X1 + ...+Xn) = σ2(X1) + ...+ σ2(Xn). (5.4.38)

Incomplete proof We check (5.4.38) in case n = 2. One has, employing Theorem 5.4.51,

σ2(X1 +X2) = E((X1 +X2)2)− E(X1 +X2)2

= E(X2
1 + 2X1X2 +X2

2 )− [E(X1) + E(X2)]2

= E(X2
1 ) + 2E(X1)E(X2) + E(X2

2 )− E(X1)2

−2E(X1)E(X2)− E(X2)2

= σ2(X1) + σ2(X2).

�

Exercise 5.4.53. Prove the following further properties of the distribution function FX of a
rrv X: let a and b be real numbers, with a < b; then:

(I) P (a ≤ X ≤ b) = FX(b)− FX(a) + P (X = a);
(II) P (a < X < b) = FX(b)− FX(a)− P (X = b);
(III) P (a ≤ X < b) = FX(b)− FX(a)− P (X = b) + P (X = a);
(IV) there exists lim

t→a−
FX(t) and coincides with P (X < a);

(V) FX(a)− lim
t→a−

FX(t) = P (X = a);

(VI) FX is continuous in a if and only if P (X = a) = 0.
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Exercise 5.4.54. Let us suppose of throwing a balanced dice until we get six, with independent
results in different launches. Construct a probabilist model of this experiment. Let X be the
random variable counting the number of launches. Compute P (X > 10).

Exercise 5.4.55. Let X be a rrv. Check that E(X) is defined in the sense of (5.4.26) if and
only if E(|X|) < +∞.

Exercise 5.4.56. Prove Theorem 5.4.35 in the case that X e Y are simple random variables.
Use the fact that it is always possible to split Ω into a finite number of events {Aj : 1 ≤ j ≤ n},
pairwise incompatible, in such a way that, in each Aj , X and Y are constant.

Exercise 5.4.57. Check that a constant rrv has variance zero.

Exercise 5.4.58. Compute the variance of the rrv in Example 5.4.4.

Exercise 5.4.59. Compute the variance of the rrv X in Example 5.4.37. Draw preliminarily,
using again Theorem 3.3.15, the formula

∞∑
j=1

j2zj =
z + z2

(1− z)3
,

valid for every z ∈ C, with |z| < 1.

Exercise 5.4.60. Let X and Y be simple and independent random variables in the probability
space a (Ω,A, P ). Check that E(XY ) = E(X)E(Y ).

(Hint: suppose that Ω = ∪mj=1Aj , with the events Aj pairwise incompatible, and that X(ω) =
αj if ω ∈ Aj . We may assume that for each j = 1, ...,m, Aj = {X = αj}. We observe that

X =
m∑
j=1

αjχAj . Analogously, let Ω = ∪nk=1Bk, with the events Bk pairwise incompatible and,

for each k = 1, ..., n, Bk = {Y = βk}. Observe that Y =
n∑
k=1

βkχBk . Then one has

XY =

m∑
j=1

n∑
k=1

αjβkχAjχBk =

m∑
j=1

n∑
k=1

αjβkχAj∩Bk .

On account of

P (X = αj , Y = βk) = P (X = αj)P (Y = βk),

because X and Y are independent, one has

E(XY ) =
∑m

j=1

∑n
k=1 αjβkE(χAj∩Bk)

=
∑m

j=1

∑n
k=1 αjβkP (X = αj , Y = βk)

=
∑m

j=1

∑n
k=1 αjβkP (X = αj)P (Y = βk)

=
∑m

j=1 αjP (Aj) ·
∑n

k=1 βkP (Bk)

= E(X) · E(Y ).)

Exercise 5.4.61. Let X and Y be simple and independent random variables in the probability
space (Ω,A, P ). Check that

σ2(X + Y ) = σ2(X) + σ2(Y ).
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Exercise 5.4.62. The final step in a long calculation requires the computation of the sum of
three integers X1, X2, X3. Suppose the following:

(a) the computations of X1, X2, X3 are independent;

(b) in the calculation of each Xi (1 ≤ i ≤ 3), the probability that it is correct is p(∈]0, 1[);

(c) a possible mistake may be only a difference of one in excess or in default;

(d) the probability of a mistake by excess coincides with the probability of a mistake by
default.

Calculate the probability that X1+X2+X3 is correct (on account of possible compensations).

Exercise 5.4.63. A rrv X has a Poisson distribution if it can take only nonnegative integer
values and, ∀k ∈ N0,

P (X = k) = e−λ
λk

k!
,

for some λ ∈ R+. Compute E(X) e σ2(X).

Exercise 5.4.64. A rrv X admits a uniform density in [a, b] (a, b ∈ R, a < b), if such density is
constant in [a, b] and zero outside it. In such a case, compute E(X) and σ2(X).

Exercise 5.4.65. Compute the variance of a rrv with exponential density f(t) = λe−λtχ+(t),
with λ ∈ R+.

Exercise 5.4.66. Let X be a rrv such that E(X2) < +∞, and let a,b ∈ R, Y := aX+ b. Check
that

E(Y ) = aE(X) + b, (5.4.39)

σ2(Y ) = a2σ2(X). (5.4.40)

Exercise 5.4.67. Let m ∈ R and σ ∈ R+. We set{
f : R→ R,
f(t) = e−(t−m)2/(2σ2)

√
2πσ

.
(5.4.41)

Check the following:

(I) ∀m ∈ R, ∀σ ∈ R+,
∫
R f(t)dt = 1;

(II) if X is a rrv, admitting the density f , then E(X) = m and σ2(X) = σ2.

In such a case, we shall say that X is a rrv with normal distribution.

Exercise 5.4.68. Let X be a rrv with uniform density in [0, 1]. Check that the following rrv-s
admit a density and compute it:

(I) 3X + 1;

(II) X2;

(III) eX .

Exercise 5.4.69. Let X and Y be independent rrv-s in the probability space (Ω,A, P ), with
density t→ 2e−2tχR+ . Determine the distribution function of 2X − Y .

(Hint: observe that, for every t ∈ R, {ω ∈ Ω : 2X(ω)−Y (ω) ≤ t} = {ω ∈ Ω : (X(ω), Y (ω)) ∈
{(x1, x2) ∈ R2 : 2x1 − x2 ≤ t}}).
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5.5 Law of large numbers and central limit theorem

In this section we illustrate two important results of asymptotic nature, that is, results describing
what happens when a certain natural parameter n goes to +∞. Their interest and usefulness lies
in the fact that they allow, in presence of a large number of tests, to predict, with a reasonable
margin of error, a certain average behavior.

We begin with a very simple, but often quite useful, inequality.

Theorem 5.5.1. (Chebyscev inequality) Let X be a nonnegative rrv in the probability space
(Ω,A, P ), with E(X) < +∞. Then, ∀ε ∈ R+,

P (X ≥ ε) ≤ E(X)/ε.

Proof Consider the following simple random variable:
Y : Ω→ R,

Y (ω) =

{
ε if X(ω) ≥ ε,
0 otherwise.

ω ∈ Ω.

Then Y (ω) ≤ X(ω) ∀ω ∈ Ω. It follows that

εP (X ≥ ε) = E(Y ) ≤ E(X),

hence we get the conclusion.
�
We pass to the following basic fact:

Lemma 5.5.2. Let X and Y be rrv-s with the same distribution law (not necessarily defined
in the same probability space). Then, if X admits expectation, the same happens for Y and
E(X) = E(Y ). If X admits variance, the same happens for Y and σ2(X) = σ2(Y ).

Incomplete proof We limit ourselves to observe that, in case X (and so Y ) admits a density,
the conclusion follows from Theorem 5.4.38 and from Example 5.4.45.

�
We pass to the first important result of asymptotic nature.

Theorem 5.5.3. (Weak law of large numbers) Let X1,...,Xn be independent rrv-s in the pro-
bability space (Ω,A, P ). Suppose that they admit the same expectation µ and the same variance
σ2. We set

Xn := (X1 + ...+Xn)/n. (5.5.1)

Then, ∀ε > 0,
P (|Xn − µ| ≥ ε) ≤ σ2/(nε2). (5.5.2)

Proof We observe, firstly, that
E(Xn) = µ.

So, by Chebyscev inequality, (Theorem 5.5.1), one has

P (|Xn − µ| ≥ ε) = P ((Xn − µ)2 ≥ ε2) ≤ σ2(Xn)/ε2. (5.5.3)

From the result of Exercise 5.4.66 and from Theorem 5.4.52, we have

σ2(Xn) = σ2(X1 + ...+Xn)/n2 = σ2/n. (5.5.4)

Then the conclusion follows from (5.5.3) and (5.5.4).
�
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Remark 5.5.4. The intuitive meaning of the law of large numbers is the following: the rrv-s Xn

tend to coincide with the expectation µ (which is a real number) as n→ +∞, if the expectations
and the variances of the independent random variables Xn remain unchanged. Observe that Xn

is an ”average” of X1,...,Xn.

Example 5.5.5. Let us consider the repeated launch of a balanced dice. Let, for every n ∈ N, Sn
be the number of times that we get 6 in n launches. We want to estimate P (252 < S1764 < 336).

Let Ω := {(ω1, ..., ω1764) : ωj ∈ {1, 2, 3, 4, 5, 6}}. We indicate, for each j ∈ {1, ..., 1764}, with

Xj the rrv such that Xj(ω) = 1 if ωj = 6, Xj(ω) = 0 otherwise. Evidently, S1764 =

1764∑
j=1

Xj . For

each j = 1, ..., 1764, the Xj − s are independent random variables (by Example 5.4.47) with the
same distribution law. In fact, they are simple, with P (Xj = 1) = 1/6, P (Xj = 0) = 5/6, hence
E(Xj) = 1/6. Moreover

σ2(Xj) = E(X2
j )− (1/6)2 = E(Xj)− 1/36 = 1/6− 1/36 = 5/36.

Employing the notations in Theorem 5.5.3, we have X1764 = S1764/1764. Then, for every ε ∈ R+,
in force of the weak law of large numbers, one has

P (|X1764 − 1/6| ≥ ε) ≤ 5/36

1764ε2
(5.5.5)

Now,

{252 < S1764 < 336} = {1
7 < X1764 <

4
21}

= {− 1
42 < X1764 − 1

6 <
1
42}

So, using (5.5.5) with ε = 1/42, we obtain

P (252 < S1764 < 336) = P (|X1764 − 1
6 | <

1
42)

= 1− P (|X1764 − 1
6 | ≥

1
42)

≥ 1− 422×5/36
1764 = 31

36
∼= 0, 86.

Now we pass to illustrate the second important result of this section, the so called central limit
theorem. We begin with some definitions and remarks.

Definition 5.5.6. Let (Xn)n∈N be a sequence of rrv-s, not necessarily defined in the same
probability space. We indicate with Fn and F respectively the distribution functions of Xn and
X. Then we shall say that the sequence (Xn)n∈N converges in law to X, and we shall write

L
Xn → X

(5.5.6)

if ∀t ∈ R such that F is continuous in t, one has

lim
n→∞

Fn(t) = F (t).
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Remark 5.5.7. As F is nondecreasing (Theorem 5.4.17 (III)), it is possible to prove that the
set of its discontinuity points is, at most, countable. We recall (Exercise 1.1.8) that a countable
set has Lebesgue measure zero. So, convergence in law implies pointwise convergence almost
everywhere of the sequence of the distribution functions (Fn)n∈N.

We observe also that, if X and Y are rrv-s with the same distribution law and

L
Xn → X

,

holds, even

L
Xn → Y

.

is true.

Definition 5.5.8. Let (Ω,A, P ) be a probability space and let X : Ω→ C. We shall say that X
is a complex random variable (crv) if Re(X) and Im(X) are rrv-s.

If E(Re(X)) and E((Im(X)) are well defined and real, we call expectation of X the
complex number

E(X) := E(Re(X)) + iE(Im(X)). (5.5.7)

Definition 5.5.9. Let X be a rrv in the probability space (Ω,A, P ). We define the characte-
ristic function φX of X as {

φX : R→ C,
φX(ξ) = E(eiξX), ξ ∈ R. (5.5.8)

Remark 5.5.10. By virtue of Theorem 5.4.40, for every ξ ∈ R, the function with domain Ω
ω → eiξX(ω) is a crv, because

eiξX(ω) = cos(ξX(ω)) + i sin(ξX(ω)).

Obviously, as sin and cos are bounded, the expectations E(cos(ξX)) and E(sin(ξX)) are well
defined. It follows that any rrv admits its characteristic function.

By the way, the expression ”characteristic function” does not seem particularly appropriate,
as it is also used to indicate the function f(x) such that f(x) = 1 in some subset of the domain,
f(x) = 0 otherwise. However, in probability texts the meaning is as in Definition 5.5.8. In these
texts, characteristic functions in the older sense are named ”indicatrix functions”.

Remark 5.5.11. If X is a rrv admitting the density f , one has, ∀ξ ∈ R, applying Theorem
5.4.40,

φX(ξ) = E(eiξX) = E(cos(ξX)) + iE(sin(ξX))
=
∫
R cos(tξ)f(t)dt+ i

∫
R sin(tξ)f(t)dt =

∫
R e

itξf(t)dt

= f̂(−ξ),

where we have indicated with f̂ the Fourier transform of f .

Here we state, without proof, a very useful result, connecting convergence in law to pointwise
convergence of characteristic functions.
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Theorem 5.5.12. (P. Levy) Let (Xn)n∈N be a sequence of rrv-s, not necessarily defined in the
same probability space, and X a rrv. Then, the following are equivalent:

(I)
L

Xn → X;

(II) ∀ξ ∈ R, one has
lim

n→+∞
φXn(ξ) = φX(ξ).

Definition 5.5.13. A rrv X admits a standard normal distribution if it admits the density
f(t) = e−t

2/2/
√

2π (t ∈ R).

Remark 5.5.14. Applying the result in Exercise 5.4.67, we can say that, if X admits standard
normal distribution, it has expectation zero and variance one.

Now we are able to state and partially prove the following classical result:

Theorem 5.5.15. (Central limit theorem) Let, for n ∈ N, (Ωn,An, Pn) be a sequence of proba-
bility spaces, Xn1,...,Xnn rrv-s with domain Ωn. Suppose that:

(I) for every n ∈ N, k ∈ {1, ..., n}, the rrv-s Xnk have all the same distribution law, with
expectation µ ∈ R and variance σ2 ∈ R+ (independent of n and k, on account of Lemma 5.5.2);

(II) for every n ∈ N, the rrv-s Xn1,...,Xnn are independent.
We set, again for n ∈ N,

S∗n := (Xn1 + ...+Xnn − nµ)/(σ
√
n), (5.5.9)

with σ :=
√
σ2.

Then, the sequence (S∗n)n∈N converges in law to a rrv with standard normal distribution.

Incomplete proof We prove the theorem adding the further (unnecessary) assumption that
the rrv-s Xnk (n ∈ N, k ∈ {1, ..., n}) admit a density f .

We set, for t ∈ R, g(t) := e−t
2/2/
√

2π. It can be easily checked that, for every ξ ∈ R, one
has

ĝ(ξ) = e−ξ
2/2.

Then, on account of the theorem of P. Levy, and of Remark 5.5.11, we can try to show that,
∀ξ ∈ R,

lim
n→+∞

φS∗n(ξ) = e−ξ
2/2. (5.5.10)

holds. We set, for n ∈ N,
Sn := Xn1 + ...+Xnn. (5.5.11)

By Theorem 5.4.49, Sn admits the density

fn := f ∗ ... ∗ f (n factors ). (5.5.12)

We check that S∗n admits the density

f∗n(t) :=
√
nσfn(

√
nσt+ nµ), t ∈ R. (5.5.13)

In fact, for every t ∈ R,

Pn(S∗n ≤ t) = Pn(Sn ≤ nµ+
√
nσt) =

∫
]−∞,nµ+

√
nσt] fn(s)ds

=
∫

]−∞,t]
√
nσfn(

√
nσs+ nµ)ds.
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Therefore, applying again Remark 5.5.11, one has, ∀ξ ∈ R,

φS∗n(ξ) =
√
nσ
∫
R e

itξfn(
√
nσt+ nµ)dt =

∫
R e

i(s−nµ)ξ/(
√
nσ)fn(s)ds

= e−i
√
nµξ/σf̂(−ξ/(

√
nσ))n,

(5.5.14)

where in the final passage we have used Theorem 4.4.11 (III), on account of which, for every
η ∈ R, f̂n(η) = f̂(η)n. So we have to show that, for every ξ ∈ R,

lim
n→+∞

e−i
√
nµξ/σf̂(−ξ/(

√
nσ))n = e−ξ

2/2. (5.5.15)

To this aim, we begin by examining the Fourier transform f̂ . As the rrv-s Xnk admit expectation
and variance, by Theorem 5.4.40, the functions tjf (j ∈ {0, 1, 2}) are summable in R. Then it
follows, by Corollary 4.1.12 (II), that f̂ is of class C2. So we consider the Taylor expansion of f̂
around 0 (in general, f̂ is complex valued, but a result which is analogous to Theorem 3.7.1 in
”Analisi matematica A” holds even in this case). So, we have

f̂(η) = f̂(0) + f̂ ′(0)η + f̂ ′′(0)η2/2 + r(η),

with r(η) = o(η2) as η → 0. As f is a density, we have

f̂(0) =

∫
R
f(t)dt = 1. (5.5.16)

From Corollary 4.1.12 and from Theorem 5.4.40, we obtain also

f̂ ′(0) = −i
∫
R
tf(t)dt = −iµ (5.5.17)

and
f̂ ′′(0) = −

∫
R t

2f(t)dt = −E(X2
nk) = −[E(X2

nk)− µ2]− µ2

−σ2 − µ2.
(5.5.18)

Then, from (5.5.16)-(5.5.18), it follows that

f̂(η) = 1− iµη − (σ2 + µ2)η2/2 + r(η), (5.5.19)

with r(η) = o(η2) as η → 0 and, for a fixed ξ ∈ R,

f̂(−ξ/(
√
nσ)) = 1 + iµξ/(

√
nσ)− (σ2 + µ2)ξ2/(2nσ2) + o(n−1)(n→ +∞). (5.5.20)

Now we indicate with log the logarithm function with domain C\]−∞, 0], such that

log(z) = ln(|z|) + iArg(z),

with Arg(z) ∈]− π, π[∩arg(z). log admits the Taylor expansion

log(1 + z) = z − z2/2 + o(z2)(z → 0). (5.5.21)

So, as lim
n→+∞

f̂(−ξ/(
√
nσ)) = 1, from (5.5.20)-(5.5.21) we obtain, as n→ +∞,

log(f̂(−ξ/(
√
nσ)))

= log(1 + iµξ/(
√
nσ)− (σ2 + µ2)ξ2/(2nσ2) + o(n−1))

= iµξ/(
√
nσ)− (σ2 + µ2)ξ2/(2nσ2)

−[iµξ/(
√
nσ) + o(n−1/2)]2/2 + o(n−1)

= iµξ/(
√
nσ)− ξ2/(2n) + o(n−1).

(5.5.22)
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Therefore,

e−i
√
nµξ/σf̂(−ξ/(

√
nσ))n = e−i

√
nµξ/σen log(f̂(−ξ/(

√
nσ))

= e−ξ
2/2+o(1)

(5.5.23)

which tends to e−ξ
2/2 as n→ +∞.

In this way (5.5.15) is proved. �

Remark 5.5.16. The central limit theorem is, at least at first sight, rather surprising, as the
fact that S∗n converges in law ro a rrv with standard normal distribution is largely independent
of the distribution law of the rrv-s Xnk. As we shall see in the following examples, the interest
of the theorem lies primarely in the fact that it is a rather efficient tool of calculation, thanks to
the tables of the standard normal distribution, which can be found in many books. Such tables
indicate the values of

Φ(t) := (2π)−1/2

∫ t

−∞
e−s

2/2ds (5.5.24)

for t in a discrete subset of R+.

Remark 5.5.17. Under the assumptions of Theorem 5.5.15, it is possible to show that

lim
n→+∞

P (S∗n ≤ t) = Φ(t)

uniformly in t ∈ R.

Example 5.5.18. An insurance company must establish the price X of a certain accident policy.
Let us suppose that the company expects 10.000 customers and that the compensation (in case
the accident really happens) is of 1.000 euros. We know that the estimated probability that a
single customer has an accident is 6 · 10−3. The company wants to fix the price X in such a way
that the probability of making profits of, at least , 10.000 euros is not less than 9/10.

Let k be the number of customers who have an accident. If X is the price of the policy, the
net profit is, evidently,

10.000 ·X − 1.000 · k. (5.5.25)

In order that such profit is what desired, the inequality

10.000 ·X − 1.000 · k ≥ 10.000, (5.5.26)

must hold, that is,
k ≤ 10(X − 1). (5.5.27)

Let k0 (∈ {0, ..., 10.000}). Then the probability that the number of accidents does not overcome
k0 (we assume that accidents for distinct customers happen independently) is, on account of
(5.3.7),

k0∑
k=0

(
10.000

k

)
(6 · 10−3)k(1− 6 · 10−3)10.000−k, (5.5.28)

which is quite difficult to estimate. So we follow another way.
Let, for each j ∈ {1, ..., 10.000}, Xj be the rrv, the value of which is one if the j−th customer

has an accident, zero otherwise. Let us suppose that the rrv-s Xj are independent, and with
the same distribution law. Then, if k indicates the total number of accidents, we shall have

k =
10.000∑
j=1

Xj . (5.5.29)
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So, for every j,
µ := E(Xj) = P (Xj = 1) = 6 · 10−3, (5.5.30)

σ2 := σ2(Xj) = E(X2
j )− E(Xj)

2 = 6 · 10−3 − 3, 6 · 10−5 ∼= 6 · 10−3. (5.5.31)

We set
σ :=

√
σ2 ∼= 7, 7 · 10−2. (5.5.32)

Finally, we set
n := 10.000 (5.5.33)

and
S∗n := (k − nµ)/(

√
nσ). (5.5.34)

Then, if k0 ∈ {0, ..., 10.000},

P (k ≤ k0) = P (S∗n ≤ (k0 − nµ)/(
√
nσ))

∼= P (S∗n ≤ (k0 − 60)/(100 · 7, 7 · 10−2))
= P (S∗n ≤ (k0 − 60)/7, 7)
:= P (S∗n ≤ k1).

(5.5.35)

From the central limit theorem we have that

P (S∗n ≤ k1) ∼= Φ(k1), (5.5.36)

with Φ defined in (5.5.24). k1 should be such that

Φ(k1) ≥ 9/10. (5.5.37)

This happens if
k1 ≥ 1, 29, (5.5.38)

which implies, on account of (5.5.35),

k0 ≥ 1, 29 · 7, 7 + 60 ∼= 69, 9. (5.5.39)

So, it should be, remembering (5.5.27),

10(X − 1) ≥ 69, 9, (5.5.40)

that is,
X ≥ 7, 99. (5.5.41)

Example 5.5.19. We throw a balanced coin 10.000 times. We estimate the probability that
the number of ”heads” is between 4,950 and 5,050.

Let, for each j = 1, ..., 10.000, Xj be a rrv, the value of which is one if the j−th launch
gives ”head”, zero if the j−th launch gives ”tail”. It is reasonable to assume that the rrv-s Xj

are independent. Moreover, they have the same distribution law, with expectation µ = 1/2,
variance σ2 = 1/4. If n = 10.000, Sn :=

∑n
j=1Xj is the total number of ”heads”. We want to

estimate P (4.950 < Sn ≤ 5.050). We set, as usual,

S∗n := (Sn − nµ)/(
√
nσ) = (Sn − 5.000)/50. (5.5.42)

Then, applying the central limit theorem, we have

P (4.950 < Sn ≤ 5.050) = P (−1 < S∗n ≤ 1) = P (S∗n ≤ 1)− P (S∗n ≤ −1)
∼= Φ(1)− Φ(−1).
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From the tables, we get
Φ(1) ∼= 0, 8413.

Moreover, if t ≥ 0, one has

Φ(−t) = (2π)−1/2
∫ −t
−∞ e

−s2/2ds = (2π)−1/2
∫ +∞
t e−s

2/2ds

= 1− Φ(t).

So,
Φ(−1) = 1− Φ(1) ∼= 0, 1587.

We conclude that

P (4.950 < Sn ≤ 5.050) ∼= 0, 8413− 0, 1587 = 0, 6826.

Exercise 5.5.20. A balanced coin is thrown n times. We indicate with Xn the number of
”heads” in these n launches. Determine n such that P (0, 4 < Xn < 0, 6) is larger than 0, 9.

Exercise 5.5.21. Let, for t ∈ R, g(t) = e−t
2/2/
√

2π. Check that, for every ξ ∈ R, one has

ĝ(ξ) = e−ξ
2/2.

5.6 Markov chains

In this section we shall touch on an interesting type of discrete stochastic process: Markov
chains. We could loosely say that a discrete stochastic process is a sequence (Xn)n∈N0 of rrv-s,
defined in some (fixed) probability space (Ω,A, P ). Intuitively, n stands for a discrete time
parameter and (Xn)n∈N0 describes the random evolution in time of a certain process.

We begin with the following

Definition 5.6.1. Let (Ω,A, P ) be a probability space, let (Xn)n∈N0 be a sequence of rrv-s
in (Ω,A, P ) and S := {s1, ..., sm} be a finite subset of R. We shall say that (Xn)n∈N0 is a
stationary Markov chain , with set of the states S, if the following conditions are fulfilled:

(I) for every n ∈ N0 Xn has range in S;
(II) let j1,...,jp integers, with 0 ≤ j1 < ... < jp−1 < jp (p ∈ N, p ≥ 2). If si1,...,sip are

elements of S (not necessarily pairwise distinct) and P (Xj1 = si1 , ..., Xjp−1 = sip−1) > 0, then

P (Xjp = sip |Xj1 = si1 , ..., Xjp−1 = sip−1) = P (Xjp = sip |Xjp−1 = sip−1); (5.6.1)

(III) if si and sj are elements of S (not necessarily distinct), n ∈ N and P (Xn = sj) > 0,

P (Xn+1 = si|Xn = sj) = aij ,

with aij independent of n.

Remark 5.6.2. Concerning Definition 5.6.1, the set S is the set of the states that the system
may take in its time evolution.

Item (II) in Definition 5.6.1 is the so called Markov property, which is the main feature
of these processes. Its intuitive meaning is the following: that the knowledge of the state of the
process in times preceding jp−1 (j1,...,jp−2) does not give more information, concerning the state
of the process at time jp, than the simple knowledge of the state of the process at time jp−1.

Finally, item (III) represents the stationarity of the process, in the sense that the probability
that Xn+1 = si if Xn = sj does not depend on n and so it does not change in time.
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Remark 5.6.3. If the conditions (I)-(III) of Definition 5.6.1 are satisfied, we can associate with
the process the matrix m×m A = (aij)1≤i,j≤m, such that, if, at some time n, P (Xn = sj) > 0,
then

aij = P (Xn+1 = si|Xn = sj). (5.6.2)

A is a stochastic matrix, that is, a matrix with real nonnegative terms, with the some of these
terms in each column equal to one. In fact, if P (Xn = sj) > 0, as

∪1≤i≤m({Xn+1 = si} ∩ {Xn = sj}) = {Xn = sj},

one has ∑m
i=1 aij =

∑m
i=1 P (Xn+1 = si|Xn = sj) =

∑m
i=1

P (Xn+1=si,Xn=sj)
P (Xn=sj)

= 1.

Example 5.6.4. (Player’s ruin) Two guys play a series of games (of any type), in such a way
that the results in the single matches do not influence each other. They are also independent of
the initial situation. Suppose the following:

(I) the probability that the first player wins a single game is p (∈ [0, 1]), the probability that
the second player wins a single game is q = 1− p;

(II) in each game, the prize is one euro: each player puts one euro on the table, and the
winner takes the total sum;

(III) the capitals of the player at the beginning are, respectively, a and b euros (a, b ∈ N0);

(III) the sequence of games stops if one of the two player loses all the money.

Let us indicate with Xn the capital of the first player after n games (n ∈ N0). Xn may take
any value between 0 and a+ b. So we put

S := {0, ..., a+ b}. (5.6.3)

We determine P (X0 = s0, X1 = s1, . . . , Xn = sn), for every n ∈ N0, with s0, . . . , sn ∈ {0, . . . , a+
b}. It is natural to set

P (X0 = s0) =


1 if s0 = a,

0 otherwise .
(5.6.4)

Next, assume that we have determined P (X0 = s0, X1 = s1, . . . , Xn = sn). Then we set

P (X0 = s0, X1 = s1, . . . , Xn = sn, Xn+1 = sn+1)

= P (X0 = s0, X1 = s1, . . . , Xn = sn) · asn+1,sn ,
(5.6.5)

with

aij =


1 if i = j = 0,
p if 1 ≤ j ≤ a+ b− 1, i = j + 1,
q if 1 ≤ j ≤ a+ b− 1, i = j − 1,
1 if i = j = a+ b,
0 otherwise.

(5.6.6)

It is intuitively clear that (Xn)n∈N0 is a Markov chain. Here we limit ourselves to check that,
∀n ∈ N, ∀i, j, k in {0, . . . , a+ b}, if P (Xn = i,Xn+1 = j) > 0, then

P (Xn+2 = k|Xn = i,Xn+1 = j) = P (Xn+2 = k|Xn+1 = j) = akj .
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In fact, if P (Xn = i,Xn+1 = j) > 0, we have also P (Xn+1 = j) > 0 and

P (Xn+1 = j) =
∑a+b

j0=0 · · ·
∑a+b

jn=0 P (X0 = j0, . . . , Xn = jn, Xn+1 = j)

=
∑a+b

j0=0 · · ·
∑a+b

jn=0 P (X0 = j0, . . . , Xn = jn)aj,jn .

Analogously,

P (Xn+1 = j,Xn+2 = k) =
∑a+b

j0=0 · · ·
∑a+b

jn=0 P (X0 = j0, . . . , Xn = jn, Xn+1 = j,Xn+2 = k)

=
∑a+b

j0=0 · · ·
∑a+b

jn=0 P (X0 = j0, . . . , Xn = jn)aj,jnakj .

We deduce that

P (Xn+2 = k|Xn+1 = j) =
P (Xn+1 = j,Xn+2 = k)

P (Xn+1 = j)
= akj .

On the other hand,

P (Xn = i,Xn+1 = j) =
∑a+b

j0=0 · · ·
∑a+b

jn−1=0 P (X0 = j0, . . . , Xn−1 = jn−1, Xn = i,Xn+1 = j)

=
∑a+b

j0=0 · · ·
∑a+b

jn−1=0 P (X0 = j0, . . . , Xn−1 = jn−1)ai,jn−1aji ,

P (Xn = i,Xn+1 = j,Xn+2 = k)

=
∑a+b

j0=0 · · ·
∑a+b

jn−1=0 P (X0 = j0, . . . , Xn−1 = jn−1, Xn = i,Xn+1 = j,Xn+2 = k)

=
∑a+b

j0=0 · · ·
∑a+b

jn−1=0 P (X0 = j0, . . . , Xn−1 = jn−1)ai,jn−1ajiakj ,

so that, again,

P (Xn+2 = k|Xn = i,Xn+1 = j) =
P (Xn = i,Xn+1 = j,Xn+2 = k)

P (Xn = i,Xn+1 = j)
= akj .

So we have a Markov chain. The terms of matrix A, descriibed in general in Remark 5.6.3, will
be, of course, those in (5.6.6).

Now we ask some questions:

(I) what is the probability that the second player loses all the money?

(II) What is the probability that the first player loses all the money?

(III) What is the probability that the series of games is endless ?

The first case can be identifies with the event Aa :=
⋃
n∈N0
{Xn = a + b}, the second with

the event Ba :=
⋃
n∈N0
{Xn = 0}, the third with Ca := (Aa ∪ Ba)c. We have written a as a

subscript of A and B because, in order to answer questions (I)-(III), it will be convenient to
consider the case that the money at disposal of the first player at the beginning is a generic
s ∈ {0, ..., a+ b}. The analogs of Aa, Ba and Ca will be As, Bs, Cs. Let us indicate with ps, qs,
rs the probabilities of As, Bs, Cs in the respective probability spaces (that is, when we assume
that, at the beginning, the first player has a euros). We observe, first of all, that

p0 = 0, q0 = 1, r0 = 0,
pa+b = 1, qa+b = 0, ra+b = 0.

(5.6.7)
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Moreover,
ps + qs + rs = 1 ∀s ∈ {0, ..., a+ b}. (5.6.8)

Suppose now that we are in the case X0 = s ∈ {1, ..., a+ b− 1}. We indicate with β the event
”the first player wins the first game”, with γ the event ”the second player wins the first game”
Then

ps = P (As) = P (As ∩ β) + P (As ∩ γ) = P (As∩β)
P (β) P (β) + P (As∩γ)

P (β) P (γ)

= pP (As|β) + qP (As|γ).
(5.6.9)

If the first player wins the first game, his capital goes from s to s + 1. So we are in the same
situation of the case that, at the beginning, the first player has s+ 1 euros. So, from (5.6.9) it
is clear that, for each s = 1, ..., a+ b− 1, one has

ps = p · ps+1 + q · ps−1, (5.6.10)

hence, as p+ q = 1,
p(ps+1 − ps) = q(ps − ps−1), 1 ≤ s ≤ a+ b− 1. (5.6.11)

Suppose now that 0 < p < 1. Then, from (5.6.11) it follows

ps+1 − ps =
q

p
(ps − ps−1), 1 ≤ s ≤ a+ b− 1 (5.6.12)

and so, from (5.6.7), for each s = 1, ..., a+ b− 1,

ps+1 − ps =
q

p
(ps − ps−1) = (

q

p
)2(ps−1 − ps−2) = ... = (

q

p
)sp1. (5.6.13)

From (5.6.13) and (5.6.7), we obtain

1 = pa+b − p0 =
∑a+b−1

s=0 (ps+1 − ps) =
∑a+b−1

s=0 ( qp)sp1

=

{
(a+ b)p1 if p = q = 1/2,
1−(q/p)a+b

1−q/p p1 if p 6= q.

(5.6.14)

It follows that

p1 =

{
1
a+b if p = q = 1/2,

1−q/p
1−(q/p)a+b

if p 6= q
(5.6.15)

and, for each s = 1, ..., a+ b,

ps =
∑s−1

j=0(pj+1 − pj) =
∑s−1

j=0( qp)jp1

=

{
s
a+b if p = q = 1/2,
1−(q/p)s

1−(q/p)a+b
if p 6= q.

(5.6.16)

Inverting the roles of the players, we get also

qs =

{
a+b−s
a+b if p = q = 1/2,

1−(p/q)a+b−s

1−(p/q)a+b
if p 6= q.

(5.6.17)

From (5.6.16)-(5.6.17), it immediately follows that, for each s ∈ {0, ..., a+ b},

ps + qs = 1, (5.6.18)

hence
rs = 0. (5.6.19)
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We come back to the general case, that is, we assume only that the conditions (I)-(II) of
Definition 5.6.1. are satisfied. We consider the stochastic matrix A defined in (5.6.2). As it is
a square matrix (m × m), its powers Al (l ∈ N0), obtained by the standard multiplication of
matrixes, are well defined. We introduce also the following notation: if l ∈ N0, 1 ≤ i, j ≤ m, we

indicate with a
(l)
ij the term of place (i, j) in Al.Then the following holds:

Theorem 5.6.5. Suppose that the assumptions of Definition 5.6.1 are satisfied. Let A be the
matrix defined in (5.6.2). Next, let j1,...,jp be nonnegative integers, such that 0 ≤ j1 < ... <
jp−1 < jp (p ≥ 2), si1,...,sip elements of S (not necessarily pairwise distnct) and let P (Xj1 =
si1 , ..., Xjp−1 = sip−1) > 0. Finally, let l = jp − jp−1. Then

P (Xjp = sip |Xj1 = si1 , ..., Xjp−1 = sip−1) = a
(l)
ip,ip−1

. (5.6.20)

Incomplete proof By virtue of the Markov property, it is sufficient to consider the case p = 2.
So we write j instead of j1 and j+ l instead of j2. We limit ourselves to prove the result in case
l = 2. So we have

P (Xj+2 = si2 |Xj = si1) =
P (Xj=si1 ,Xj+2=si2 )

P (Xj=si1 )

=
∑m

k=1
P (Xj=si1 ,Xj+1=sk,Xj+2=si2 )

P (Xj=si1 ) .
(5.6.21)

Let k be such that P (Xj = si1 , Xj+1 = sk) > 0. Then

P (Xj=si1 ,Xj+1=sk,Xj+2=si2 )

P (Xj=si1 ) =
P (Xj=si1 ,Xj+1=sk,Xj+2=si2 )

P (Xj=si1 ,Xj+1=sk)

P (Xj=si1 ,Xj+1=sk)

P (Xj=si1 )

= P (Xj+2 = si2 |Xj = si1 , Xj+1 = sk)
×P (Xj+1 = sk|Xj = si1)
= ai2,kak,i1 .

(5.6.22)

The identity in formula (5.6.22) holds also in case P (Xj = si1 , Xj+1 = sk) = 0. In fact, in this
case,

P (Xj = si1 , Xj+1 = sk, Xj+2 = si2)

P (Xj = si1)
= 0,

while
ak,i1 = P (Xj+1 = sk|Xj = si1) =

P (Xj=si1 ,Xj+1=sk)

P (Xj=si1 )

= 0.

From (5.6.21) we obtain immediately

P (Xj+2 = si2 |Xj = si1) =
∑m

k=1 ai2,kak,i1 = a
(2)
i2,i1

. (5.6.23)
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