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Abstract. Let M be a closed non-positively curved Riemannian (NPCR) mani-

fold, M̃ its universal cover, and X an ultralimit of M̃ . For γ ⊂ M̃ a geodesic, let γω

be a geodesic in X obtained as an ultralimit of γ. We show that if γω is contained
in a flat in X, then the original geodesic γ supports a non-trivial, normal, parallel
Jacobi field. In particular, the rank of a geodesic can be detected from the ultra-
limit of the universal cover. We strengthen this result by allowing for bi-Lipschitz
flats satisfying certain additional hypotheses.

As applications we obtain (1) constraints on the behavior of quasi-isometries
between complete, simply connected, NPCR manifolds, and (2) constraints on
the NPCR metrics supported by certain manifolds, and (3) a correspondence be-
tween metric splittings of complete, simply connected NPCR manifolds, and met-
ric splittings of its asymptotic cones. Furthermore, combining our results with
the Ballmann-Burns-Spatzier rigidity theorem and the classic Mostow rigidity, we
also obtain (4) a new proof of Gromov’s rigidity theorem for higher rank locally
symmetric spaces.

1. Introduction.

Ultralimits have revealed themselves to be a particularly useful tool in geometric
group theory. Indeed, a number of spectacular results have been obtained via the use
of ultralimits, including:

• Gromov’s polynomial growth theorem [G], [VW]
• Kleiner and Leeb’s quasi-isometric rigidity theorem for lattices in higher rank

semi-simple Lie groups [KlL]
• Kapovich, Kleiner, and Leeb’s theorem on detecting de Rham decompositions

for universal covers of Hadamard manifolds [KKL]
• Kapovich and Leeb’s proof that quasi-isometries preserve the JSJ decompo-

sition of Haken 3-manifolds [KaL]
• Drutu and Sapir’s characterization of (strongly) relatively hyperbolic groups

in terms of ultralimits [DS]

In the present note, we show that ultralimits of simply connected Riemannian
manifolds M of non-positive sectional curvature can be used to detect the geometric
rank of geodesics in M . More precisely, we establish the following:
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Theorem 1.1. Let M be a simply connected, complete, Riemannian manifold of
non-positive sectional curvature, and let Cone(M) be an asymptotic cone of M . For
γ ⊂ M an arbitrary geodesic, let γω ⊂ Cone(M) be the corresponding geodesic in
the asymptotic cone. If there exists a flat plane F ⊂ Cone(M) with γω ⊂ F , then
there exists a non-trivial parallel Jacobi field J along γ satisfying 〈J(t), γ̇(t)〉 = 0. In
particular, the geodesic γ has higher rank.

Let us briefly explain the layout of the present paper. In Section 2, we provide
a quick review of the requisite notions concerning asymptotic cones, variation of
arclength formulas for geodesic variations, and other background material. In Section
3, we provide conditions ensuring existence of a non-trivial, orthogonal, Jacobi field
along a geodesic γ. The conditions involve existence of what we call pointed flattening
sequences of 4-tuples for the geodesic γ. The arguments in this section are purely
differential geometric in nature. In Section 4, we show that if γω ⊂ Cone(M) is
contained in a flat, then pointed flattening sequences of 4-tuples can be constructed
along γ (completing the proof of Theorem 1.1). The arguments here rely on some
elementary arguments concerning asymptotic cones and the “large-scale geometry”
of the manifold M . In Section 5, we establish some improvements by allowing for
γω ⊂ Cone(M) to be contained in a bi-Lipschitz flat. The precise result is contained
in:

Theorem 1.2. Let M be a simply connected, complete, Riemannian manifold of
non-positive sectional curvature, and let Cone(M) be an asymptotic cone of M . For
γ ⊂ M an arbitrary geodesic, let γω ⊂ Cone(M) be the corresponding geodesic in the
asymptotic cone. Assume that:

• there exists g ∈ Isom(M) which stabilizes and acts cocompactly on γ, and
• there exists a bi-Lipschitzly embedded flat φ : R2 →֒ Cone(M) mapping the

x-axis onto γω.

Then the original geodesic γ has higher rank.

Finally, in Section 6, we apply our Theorem 1.2 to obtain various geometrical
corollaries. These include:

• constraints on the possible quasi-isometries between certain non-positively
curved Riemannian manifolds.

• restrictions on the possible non-positively curved Riemannian metrics that
are supported by certain manifolds.

• a proof that splittings of simply connected non-positively curved Riemannian
manifolds correspond exactly with metric splittings of the asymptotic cones.

• a new proof of Gromov’s rigidity theorem [BGS]: a closed higher rank locally
symmetric space supports a unique metric of non-positive curvature (up to
homothety).
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Finally, we point out that various authors have studied geometric properties en-
coded in the asymptotic cone of non-positively curved manifolds. Perhaps the view-
point closest to ours is that of Kapovich-Kleiner-Leeb paper [KKL], which focus on
studying the (local homological) topology of the asymptotic cone to recover geometric
information on the original space.

We should also mention the recent preprint of Bestvina-Fujiwara [BeFu], which
gives a bounded cohomological characterization of higher rank symmetric spaces.
Although they do not specifically discuss ultralimits, their discussion of rank 1 isome-
tries seems to bear some philosophical similarities to our work.
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2. Background Material

2.1. Introduction to asymptotic cones. In this section, we provide some back-
ground on ultralimits and asymptotic cones of metric spaces. Let us start with some
basic reminders on ultrafilters.

Definition. A non-principal ultrafilter on the natural numbers N is a collection U of
subsets of N, satisfying the following four axioms:

(1) if S ∈ U , and S ′ ⊃ S, then S ′ ∈ U ,
(2) if S ⊂ N is a finite subset, then S /∈ U ,
(3) if S, S ′ ∈ U , then S ∩ S ′ ∈ U ,
(4) given any finite partition N = S1 ∪ . . . ∪ Sk into pairwise disjoint sets, there

is a unique Si satisfying Si ∈ U .

Zorn’s Lemma guarantees the existence of non-principal ultrafilters. Now given a
compact Hausdorff space X and a map f : N → X, there is a unique point fω ∈ X
such that every neighborhood U of fω satisfies f−1(U) ∈ U . This point is called the
ω−limit of the sequence {f(i)}; we write ω lim f(i) = fω. In particular, if the target
space X is the compact space [0,∞], we have that fω is a well-defined real number
(or ∞).

Definition. Let (X, d, ∗) be a pointed metric space, XN the collection of X-valued
sequences, and λ : N → (0,∞) ⊂ [0,∞] a sequence of real numbers satisfying λω = ∞.
Given any pair of points {xi}, {yi} in XN, we define the pseudo-distance dω({xi}, {yi})
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between them to be fω, where f : N → [0,∞) is the function f(k) = d(xk, yk)/λ(k).
Observe that this pseudo-distance takes on values in [0,∞].

Next, note that XN has a distinguished point, corresponding to the constant se-
quence {∗}. Restricting to the subset of XN consisting of sequences {xi} satisfying
dω({xi}, {∗}) < ∞, and identifying sequences whose dω distance is zero, one obtains
a genuine pointed metric space (Xω, dω, ∗ω), which we call an asymptotic cone of the
pointed metric space (X, d, ∗).

We will usually denote an asymptotic cone by Cone(X). The reader should keep
in mind that the construction of Cone(X) involves a number of choices (basepoints,
sequence λi, choice of non-principal ultrafilters) and that different choices could give
different (non-homeomorphic) asymptotic cones (see the papers [TV], [KSTT], [OS]).

We will require the following facts concerning asymptotic cones of non-positively
curved spaces:

• if (X, d) is a CAT(0) space, then Cone(X) is likewise a CAT(0) space,
• if φ : X → Y is a (C,K)-quasi-isometric map, then φ induces a bi-Lipschitz

map φω : Cone(X) → Cone(Y ),
• if γ ⊂ X is a geodesic, then γω := Cone(γ) ⊂ Cone(X) is a geodesic,
• if {ai}, {bi} ∈ Cone(X) are an arbitrary pair of points, then the ultralimit of

the geodesic segments aibi gives a geodesic segment {ai}{bi} joining {ai} to
{bi}.

Concerning the second point above, we remind the reader that a (C,K)-quasi-isometric
map φ : (X, dX) → (Y, dY ) between metric spaces is a (not necessarily continuous)
map having the property that:

1

C
· dX(p, q) − K ≤ dY (φ(p), φ(q)) ≤ C · dX(p, q) + K.

We now proceed to establish two Lemmas which will be used in some of our proofs.

Lemma 2.1 (Choosing good sequences). Let X be a CAT(0) space, Cone(X) an
asymptotic cone of X, γ ⊂ X a geodesic, and γω ⊂ Cone(X) the corresponding
geodesic in the asymptotic cone. Assume that {A,B,C,D} ⊂ Cone(X) is a 4-tuple
of points having the property that A,B ∈ γω are the closest points on γω to the points
D,C (respectively). Let {Ci}, {Di} ⊂ X be two sequences representing the points
C,D ∈ Cone(X) respectively. Then

(1) if Ai, Bi ∈ γ are the closest points to Di, Ci (respectively), then {Ai}, {Bi}
represent A,B ∈ Cone(X) respectively.

(2) if {ri} ⊂ R+ is a sequence of real numbers satisfying ω lim{ri/λ(i)} = dω(A,D),

and D′

i ∈ −−−→
AiDi satisfies d(Ai, D

′

i) = ri, then the sequence {D′

i} represents
D ∈ Cone(X).
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Lemma 2.1 allows us to replace, in certain circumstances, a given sequence of 4-
tuples representing {A,B,C,D} ⊂ Cone(X) by a new sequence of 4-tuples that are
geometrically better behaved (i.e. have better metric properties).

Proof (Lemma 2.1). To establish (1), we assume without loss of generality that the
constant sequence {∗} of basepoints used to define ∗ ∈ Cone(X) is chosen to lie on
γ. Then the triangle inequality, combined with the fact that Ai is the closest point
to Di on γ, immediately implies:

d(∗, Ai) ≤ d(Ai, Di) + d(Di, ∗) ≤ 2d(Di, ∗)
This in turns implies that dω({Ai}, ∗) ≤ 2dω({Di}, ∗) < ∞, i.e. {Ai} does define
a point Aω ∈ Cone(X). An identical argument shows that {Bi} defines a point
Bω ∈ Cone(X). Furthermore, since all the points Ai, Bi are on γ, we have that
Aω, Bω ∈ γω ⊂ Cone(X). We now claim that Aω = A and Bω = B. To see this, we
note that the sequence of geodesic segments {DiAi} gives rise to a geodesic segment
DAω joining D ∈ Cone(X) to the point Aω ∈ γω ⊂ Cone(X). Since each DiAi was
a minimal length segment joining Di to γ, the segment DAω is likewise a minimal
length segment joining D to γω. But we know that the closest point on γω to D is
A (and this is the unique such point, as Cone(X) is CAT(0)). We conclude that
Aω = A, as desired. An identical argument applies to show Bω = B, completing the
argument for (1).

To establish (2), we first note that the sequence of geodesic rays {−−−→AiDi} define
some geodesic ray ~η ⊂ Cone(X). Furthermore, by construction, we have that ~η
originates at A, and passes through D. Now again, an easy application of the triangle
inequality implies that the sequence {D′

i} represents a point Dω ∈ Cone(X), which
we are claiming coincides with the point D. Since each D′

i is chosen to lie on the

corresponding geodesic ray
−−−→
AiDi, we immediately get Dω ∈ ~η. Finally, let us calculate

the distance between Dω and the point A: dω(A,Dω) = ω lim{d(Ai, D
′

i)/λ(i)} =
ω lim{ri/λ(i)} = dω(A,D). So we see that Dω, D are a pair of points on the geodesic
ray ~η, having the property that they are both at the exact same distance from the
basepoint A of the geodesic ray. This immediately implies that they have to coincide,
completing the argument for (2), and hence the proof of Lemma 2.1.

¤

Lemma 2.2 (Translations on asymptotic cone). Let X be a geodesic space, γ ⊂ X
a geodesic, and γω ⊂ Cone(X) the corresponding geodesic in an asymptotic cone
Cone(X) of X. Assume that there exists an element g ∈ Isom(X) with the property
that g leaves γ invariant, and acts cocompactly on γ. Then for any pair of points
p, q ∈ γω, there is an isometry Φ : Cone(X) → Cone(X) satisfying Φ(p) = q.

Proof (Lemma 2.2). Let {pi}, {qi} ⊂ γ ⊂ X be sequences defining the points p, q
respectively. Since g leaves γ invariant, and acts cocompactly on γ, there exists a
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real number R > 0 and a sequence of exponents ki ∈ Z with the property that for
every index i, we have d(gki(pi), qi) ≤ R.

Now observe that the sequence {gki} of isometries of X defines a self-map (defined
componentwise) of the space XN of sequences of points in X. Let us denote by gω this
self-map, which we now proceed to show induces the desired isometry on Cone(X).
First note that it is immediate that gω preserves the pseudo-distance dω on XN,
and has the property that dω({gki(pi)}, {qi}) = 0. So to see that gω descends to an
isometry of Cone(X), all we have to establish is that for {xi} a sequence satisfying
dω({xi}, ∗) < ∞, the image sequence also satisfies dω({gki(xi)}, ∗) < ∞. But we have
the series of equivalences:

dω({xi}, ∗) < ∞ ⇐⇒ dω({xi}, {pi}) < ∞
⇐⇒ dω({gki(xi)}, {gki(pi)}) < ∞
⇐⇒ dω({gki(xi)}, {qi}) < ∞
⇐⇒ dω({gki(xi)}, ∗) < ∞

where the first and last equivalences come from applying the triangle inequality in the
pseudo-metric space (XN, dω), and the second and third equivalences follow from our
earlier comments. We conclude that the induced isometry gω on the pseudo-metric
space XN of sequences leaves invariant the subset of sequences at finite distance from
the distinguished constant sequence, and hence descends to an isometry of Cone(X).
Finally, it is immediate from the definition of the isometry gω that it will leave γω

invariant, as each gki leaves γ invariant. This concludes the proof of Lemma 2.2.

¤

Observe that the element g ∈ Isom(X) used in Lemma 2.2 gives rise to a Z-action
on X leaving γ invariant. It is worth pointing out that Lemma 2.2 does not state
that g ∈ Isom(X) induces an R-action on Cone(X). The issue is that for each r ∈ R,
there is indeed a corresponding isometry of Cone(X), but these will not in general
vary continuously with respect to r (as can already be seen in the case X = H2).

2.2. Variation of arclength formulas. The classical variation formulas deal with
the energy of curves within a variation. This is primarily due to the fact that the
energy functional is “easier” to differentiate than the length functional. In the sit-
uation we are interested in, the asymptotic cones pick up (asymptotic) distances,
and hence we need to actually work with variations for the arclength rather than the
energy. We now proceed to remind the reader of the (perhaps less familiar) variation
formulas for arclength. A proof of the present formulas can be found in Jost’s book
[Jo, pgs. 165-169].

Let us start out by setting up some notation. We consider geodesic variations,
which are maps σ : [0, 1] × (−ǫ, ǫ) → M into a Riemannian manifold (s ∈ [0, 1] will
be the first parameter, t ∈ (−ǫ, ǫ) the second parameter), satisfying the following
three properties:
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• the curves s 7→ γt(s) = σ(s, t) is a geodesic for all t,
• the curves γt are parametrised with constant speed: ||γ̇t|| = L(t) where L(t)

is the length of the geodesic γt,
• the “lateral curves” t 7→ σ(0, t) and t 7→ σ(1, t) are geodesics.

We now denote by S,X the following vector fields:

S = Dσ
[ ∂

∂s

]

X = Dσ
[ ∂

∂t

]

Finally, we denote by X̂ the vector field obtained by taking the projection of X
orthogonal to S.

Figure 1 provides an illustration of a geodesic variation. We have included the
base geodesic (at the bottom of the picture) corresponding to t = 0, and have drawn
the portion of σ corresponding to t ∈ [0, ǫ]. The horizontal curves represent geodesic
curves γt, while the two vertical curves are the “lateral curves”. Along the geodesic
γ, we have also illustrated a few values of the Jacobi vector field X (pointing straight
up).

The variation formulas we will need are:

t

S γ
0

Figure 1. Geodesic variation.

First variation of arclength: For t0 ∈ (−ǫ, ǫ), the first derivative of the length
L(t) at t0 is given by (see [Jo, pg. 167, equation 4.1.4]):

dL

dt
(t0) =

〈S,X〉(1,t0) − 〈S,X〉(0,t0)

L(t0)
7



Second variation of arclength: For t0 ∈ (−ǫ, ǫ), the second derivative of the
length L(t) at t0 is given by (see [Jo, pg. 167, equation 4.1.7]):

d2L

dt2
(t0) =

1

L(t0)

(

∫ 1

0

||∇SX̂||2 − K(S ∧ X̂)L(t0)
2||X̂||2ds

)

where K(S ∧ X̂) denotes the sectional curvature of the 2-plane spanned by S and X̂.
Now observe that the actual arclength function Li (and hence, its various deriva-

tives) is in fact independent of the parametrization of the “horizontal geodesics” γt.
Performing a change of variable, we can rewrite the second variation formula in terms
of the unit speed parametrization:

(1)
d2L

dt2
(t) =

∫ L(t)

0

||∇S̄X̂||2 − K(S̄ ∧ X̂)||X̂||2ds.

where now S̄ denotes the unit vector in the direction of S, i.e. S̄ = S/||S||.
Notice that both X and the projection X̂ of X orthogonal to S are Jacobi vector

fields, as they arise from variations by geodesics (see Section 2.3). We point out an
important consequence of the second variation formula in the context of non-positive
curvature. In this setting, equation (1) immediately forces d2L

dt2
(t0) ≥ 0 (since the

expression inside the integral is ≥ 0).

2.3. Jacobi fields, rank of geodesics, and rigidity. For the convenience of the
reader, we briefly recall some basic definitions from Riemannian geometry, referring
the reader to [Jo] for more details. Given a geodesic γ in a Riemannian manifold Mn

of dimension n, a vector field J along γ is said to be a Jacobi field if it satisfies the
following second order differential equation:

J ′′ + R(J, γ′)γ′ ≡ 0

where J ′′ refer to the second covariant derivative of J along γ, and R denotes the
curvature operator. We will require the following classical results concerning Jacobi
fields:

• Jacobi fields along γ form a finite dimensional vector space (of dimension 2n),
• a Jacobi field is uniquely determined by its value (initial conditions) at any

two given points on γ,
• given a geodesic variation σ of γ as in the previous section, the “vertical vector

field” X is a Jacobi field along γ,
• conversely, given a geodesic segment γ in a Riemannian manifold, and a Jacobi

field J along γ, there exists a geodesic variation whose “vertical vector field”
X coincides with J along γ.

Note in particular that the last two properties above tell us that Jacobi fields
exactly encode the infinitesimal behavior of geodesic variations. A Jacobi field J that
additionally satisfies J ′ ≡ 0 will be called a parallel Jacobi fields along γ. The rank of
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a geodesic γ is defined to be the dimension of the vector space of parallel Jacobi fields
along γ. Since a concrete example of a parallel Jacobi field is given by the tangent
vector field V = γ′ to the geodesic γ, we note that rk(γ) ≥ 1 for every geodesic γ.

A celebrated result in the geometry of non-positively curved Riemannian manifolds
is the rank rigidity theorem of Ballman-Burns-Spatzier [Ba2], [BuSp]:

Theorem 2.3 (Rank rigidity theorem). Let M be a closed non-positively curved
Riemannian manifold, and M̃ the universal cover of M with the induced Riemannian
structure. Assume that M̃ has higher geometric rank, in the sense that every geodesic
γ ⊂ M̃ satisfies rk(γ) ≥ 2. Then either:

• M̃ splits isometrically as a product of two simply connected Riemannian man-
ifolds of non-positive curvature, or

• M̃ is an irreducible higher rank symmetric space of non-compact type.

In Section 6, we will make extensive use of this rigidity result to obtain the various
corollaries mentioned in the introduction.

2.4. Distorted subspaces in metric spaces. Let (X, ρ), (Y, d) be a pair of metric
spaces, and φ : Y → X an injective map. We define the distortion of the map φ to
be the supremum, over all triples of distinct points x, y, z ∈ Y , of the quantity:

∣

∣

∣

ρ(φ(x), φ(y))

ρ(φ(y), φ(z))
− d(x, y)

d(y, z)

∣

∣

∣

We denote the distortion of φ by δ(φ). Observe that the distortion δ(φ) measures the
difference between relative distances in Y , and relative distances in φ(Y ) ⊂ X.

We say that a metric space (X, ρ) contains an undistorted copy of a metric space
(Y, d) provided there exists an injective map φ : (Y, d) →֒ (X, ρ) with δ(φ) = 0. We
say that X contains almost undistorted copies if for any ǫ > 0, one can find a map
φǫ : (Y, d) → (X, ρ) with δ(φǫ) < ǫ. Finally, given a sequence of maps φi : Y → X,
we say that the sequence is undistorted in the limit, provided we have lim δ(φi) = 0.

Let ¤ denote the 4-point metric space, consisting of the vertex set of the standard
unit square in R2, with the induced distance, i.e. ¤ consists of four points, with the
four “side” distances equal to one, and the two “diagonal” distances equal to

√
2.

We call pairs of points at distance one a side pair of vertices. A large part of this
paper will focus on finding and using (almost) undistorted copies of ¤ inside sim-
ply connected complete Riemannian manifolds of non-positive curvature (and inside
their asymptotic cones). Given a (cyclicly ordered) 4-tuple of points {A,B,C,D}
inside a space X, we will frequently identify the 4-tuple with a copy of ¤, with the
understanding that the ordered 4-tuple of points correspond to the cyclicly ordered
points in the square. We now point out an easy lemma that allows us to occasionally
“ignore diagonals.”
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Lemma 2.4. Let {Aj, Bj, Cj, Dj} be a sequence of 4-tuples inside a CAT(0) space
X. Assume that each of the 4-tuples satisfies the conditions:

• the point Bj is the closest point to Cj on the geodesic segment AjBj,
• the point Aj is the closest point to Dj on the geodesic segment AjBj,
• we have equality of the side lengths d(Dj, Aj) = d(Aj, Bj) = d(Bj, Cj) = Kj,
• d(Cj, Dj) = Kj(1 + ǫj), with ǫj → 0.

Then we have that d(Aj, Cj)/Kj →
√

2 and d(Bj, Dj)/Kj →
√

2.

Proof. Let us temporarily ignore the indices j, and for a 4-tuple {A,B,C,D} of
points as above, we let d1, d2 denote the lengths of the two diagonals AC,BD. We
now want to control the two ratios di/K in terms of ǫ, and in fact, show that the
ratios tend to

√
2 as ǫ → 0. But this is relatively easy to do: consider a comparison

triangle ĀB̄C̄ ⊂ R2 for the triangle ABC. The fact that the point B is the closest
point to C on the geodesic segment AB immediately implies that, in the comparison
triangle, we have ∠B̄ ≥ π/2. This in turn forces the inequality:

d2
1 = d(Ā, C̄)2 ≥ d(Ā, B̄)2 + d(B̄, C̄)2 = 2K2 =⇒ d1 ≥ K

√
2

An identical argument establishes d2 ≥ K
√

2. But on the other hand, we know that
CAT(0) spaces satisfy, for any 4-tuples of points {A,B,C,D} the inequality:

d(A,C)2 + d(B,D)2 ≤ d(A,B)2 + d(B,C)2 + d(C,D)2 + d(D,A)2.

Substituting the known quantities into our expression, we obtain:

2 · (K
√

2)2 ≤ d2
1 + d2

2 ≤ 3 · K2 + [K(1 + ǫ)]2

Dividing out by K2, we see that the ratios d1/K, d2/K are a pair of real numbers
≥

√
2 which satisfy the inequality:

4 ≤ (d1/K)2 + (d2/K)2 ≤ 3 + (1 + ǫ)2.

Now taking the indices j back into account, it is now immediate that as ǫj → 0,

the ratios d1/Kj →
√

2 and d2/Kj →
√

2, as desired. This concludes the proof of
Lemma 2.4.

¤

3. From flattening 4-tuples to parallel Jacobi fields.

In this section, we focus on establishing how certain sequences of 4-tuples of points
can be used to construct parallel Jacobi fields along geodesics. More precisely, we
introduce the notion of:

Definition (Good 4-tuple). Let M̃ be a complete, simply connected, Riemmanian
manifold of non-positive sectional curvature, and let γ ⊂ M̃ be an arbitrary geodesic.
We say that that a 4-tuple of points {A,B,C,D} in the space M̃ is good (relative to
γ) provided that A,B ∈ γ, AD ⊥ γ, BC ⊥ γ, and d(D,A) = d(A,B) = d(B,C).
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In effect, a good 4-tuple is a geodesic quadrilateral in M̃ , with one side on the
geodesic γ, the two adjacent sides perpendicular to γ, and with those three sides
having exactly the same length.

Definition (Pointed flattening sequences). We say that γ has pointed flattening 4-
tuples if given any point P ∈ γ, there exists a sequence of {P,Bi, Ci, Di} of 4-tuples,
each of which is good (relative to γ), satisfies lim Bi = γ(∞), and is undistorted in
the limit.

Figure 2 illustrates the first three 4-tuples of a pointed flattening sequence. The
sides of each quadrilateral are perpendicular to the bottom geodesic, and the length
of the top edge approaches (as a ratio in the limit) the length of the remaining three
edges of the quadrilaterals.

P
B B B

C

C

C

D

D

D

1

1
1

2
3

22

3
3

γ

Figure 2. Pointed flattening sequence along a geodesic.

While the definition of pointed flattening sequences of 4-tuples might seem some-
what artificial, the reader will see in Sections 4 and 5 that these are relatively easy
to detect from the asymptotic cone. The main goal of this section is to prove:

Theorem 3.1 (Pointed flattening sequence ⇒ higher rank). Let M̃ be a complete,
simply connected, Riemmanian manifold of non-positive sectional curvature, and let
γ ⊂ M̃ be an arbitrary geodesic. If γ has pointed flattening 4-tuples, then γ supports
a non-trivial, orthogonal, parallel Jacobi field. In particular, rk(γ) ≥ 2.

So let us start with some P ∈ γ, and let {P,Bi, Ci, Di} be the sequence of 4-tuples
whose existence is ensured by the hypothesis that γ has pointed flattening sequences.
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Observe that the point P = γ(r) divides the geodesic γ into two geodesic rays, and we
denote by ~γP the geodesic ray obtained by restricting γ to [r,∞). Our approach will
be to first construct a non-trivial, orthogonal, parallel Jacobi field along the geodesic
ray ~γP , and then let P tend to γ(−∞).

In order to construct the desired Jacobi field along the geodesic ray ~γP , we con-
sider geodesic variations σi in the space M̃ , each of which is constructed from the
corresponding 4-tuple {P,Bi, Ci, Di} as follows:

• αi : [0, Ti] → M̃ denotes the unit speed geodesic from P to Di, and βi denotes
the one from Bi to Ci. We set Li(t) = d(αi(t), βi(t)), so in particular we have
Li(0) = Ti.

• σi is parametrised by {(s, t) : t ∈ [0, Ti], s ∈ [0, Ti]}.
• σi, when restricted to the interval {0} × [0, Ti], coincides with αi, and when

restricted to the interval {1} × [0, Ti], with βi.
• for every t ∈ [0, Ti], the restriction of σi to the interval [0, Ti] × {t} is the

constant speed geodesic from αi(t) to βi(t).

Note that these maps are precisely variations by geodesics of the type discussed in
section 2.2. Our goal will now be to analyze properties of the functions Li. We start
with the easy:

Fact 1: For any fixed value of i, the function Li is twice differentiable and convex.

Twice differentiability follows immediately from the formulas for the first and sec-
ond variation of arclength. Convexity is immediate from the fact that L′′

i (t) ≥ 0 (see
the comment immediately after equation (1)).

Fact 2: For any i and any 0 ≤ x ≤ t ≤ Ti, we have

Li(t) = Li(x) + (t − x)L′

i(x) +

∫ t

x

∫ y

x

L′′

i (τ)dτdy

This is nothing but the Fundamental Theorem of Calculus applied twice.

Fact 3: For any i and any 0 ≤ t ≤ Ti, we have the following expression for Li(t):

(2) Li(t) = Li(0) +

∫ t

0

∫ y

0

L′′

i (τ)dτdy

By Fact 2, it is sufficient to argue that each of the derivatives L′

i(0) is equal to zero.
Now recall that the maps σi are geodesic variations with the property that each of
the “lateral curves” αi(t) = PDi and βi(t) = BiCi are geodesics. Furthermore, since
the 4-tuple {P,Bi, Ci, Di} is good (relative to γ), we have that the “lateral curves”

12



are perpendicular to the geodesic γ. Now applying the first variation of arclength
formula (section 2.2), we immediately see that L′

i(0) = 0, as desired.

Note that a consequence of Fact 3 is that each Li is monotone non-decreasing. Now
recall that the variations we are considering come from a pointed flattening sequence
of 4-tuples, which in particular means that the corresponding maps ¤ → M̃ are
undistorted in the limit. In our current notation, we have that d(Ci, Di) = Li(Ti)
and d(P,Bi) = Ti, hence we obtain:

lim
i→∞

Li(Ti)

Ti

= lim
i→∞

d(Ci, Di)

d(P,Bi)
= 1,

Furthermore, recall that Li(0) = d(P,Bi) = Ti, and in particular we have Li(0)/Ti =
1 (for all i). Combining this with our equation (2) in Fact 3 (applied to t = Ti), we
see that:

(3) lim
i→∞

∫ Ti

0

∫ y

0

L′′

i (τ)

Ti

dτ dy = 0.

The next step is to get rid of the Ti factor inside the integral.

Fact 4: We have that:

lim
i→∞

∫ Ti/2

0

L′′

i (τ) dτ = 0.

To see this, we first observe that we have the obvious series of equalities:

1

2

∫ Ti/2

0

L′′

i (τ) dτ =
Ti

2

∫ Ti/2

0

L′′

i (τ)

Ti

dτ =

∫ Ti

Ti/2

∫ Ti/2

0

L′′

i (τ)

Ti

dτ dy

Now recall from Fact 1 that L′′

i (τ) ≥ 0 (by convexity), and hence the expression
inside each of the integrands above is ≥ 0. But now, by positivity of each of the
functions L′′

i (τ)/Ti, containment of the domains of integrations yields the following
inequality:

∫ Ti

Ti/2

∫ Ti/2

0

L′′

i (τ)

Ti

dτ dy ≤
∫ Ti

0

∫ y

0

L′′

i (τ)

Ti

dτdy.

Combining this upper estimate with equation (3) above, we immediately obtain:

0 ≤ lim
i→∞

∫ Ti/2

0

L′′

i (τ) dτ ≤ 2 · lim
i→∞

∫ Ti

0

∫ y

0

L′′

i (τ)

Ti

dτ dy = 0

completing the proof of Fact 4.

Next we note that a consequence of Fact 4 is that the sequence of functions L′′

i (t)
tends to zero for almost all t ∈ [0, Ti/2]. In particular, we can find a sequence {ti}
satisfying the following two conditions:

(1) ti ∈ [0, Ti] and limi→∞ ti = 0
13



(2) limi→∞ L′′

i (ti) = 0.

Let us denote by γi : [0, 1] → M̃ the geodesic joining αi(ti) to βi(ti). Note that these
geodesics are precisely the curves σi(−, ti) : [0, Li(ti)] → M̃ , where σi is our sequence
of variations of geodesics. We next observe that:

Fact 5: The geodesic segments γi tend to the geodesic ray ~γP ⊂ γ.

To see this, we first note since the “lateral curves” for the variation σi are geodesics
perpendicular to γ (and since we have K ≤ 0), we have

d(αi(ti), γ) = ti = d(βi(ti), γ)

In particular, we see that the geodesic segments γi join a pair of points whose distance
from γ tends to zero. Since geodesic neighborhoods of γ are convex (by the non-
positive curvature hypothesis), we conclude that the distance of any point on γi is
at most ti away from the geodesic γ, where ti was chosen to tend to 0. Furthermore,
we clearly have that lim αi(ti) = P , and lim βi(ti) = γ(∞), and hence we obtain
lim γi = ~γP , as desired.

Now along each of the geodesic segments γi, we have that the corresponding geo-
desic variation σi gives rise to a Jacobi vector field Xi. We now focus our attention
to this sequence of Jacobi fields.

Fact 6: The Jacobi field Xi along γi satisfies ||Xi(p)|| ≤ 1 for all p ∈ γi.

To see this, first observe that Xi(0) = α′

i(ti) and Xi(Li(ti)) = β′

i(ti). Since αi and
βi are unit speed parametrized, this implies that

||Xi(0)|| = ||Xi(Li(ti))|| = 1.

But from the non-positive curvature assumption and the Jacobi differential equation,
it follows that the square-norm of a Jacobi field along a geodesic is a convex function.
Since ||Xi|| = 1 at the endpoints of the geodesic γi, Fact 6 follows.

Fact 7: Up to possibly passing to subsequences, the Jacobi fields Xi along γi converge
(uniformly on compact sets), to a Jacobi field X along ~γP .

This follows from the general fact that a Jacobi field is determined by any two of its
values. Take points pi, qi in γi that converge to points p 6= q of ~γP . From Fact 6, we
see that up to possibly passing to subsequences, both Xi(pi) and Xi(qi) have a limit.
Moreover, Jacobi fields are solution of ordinary differential equations with smooth
coefficients (in fact with the regularity of the curvature tensor) and therefore depend
continuously on the initial data (the values at pi and qi.) It follows that Xi converge
to a Jacobi field X along γ uniformly on compact sets, and in particular point-wise.

14



Fact 8: The sequence {ti} can be chosen so that the limiting vector field X is
perpendicular to the geodesic ray ~γP .

To see this, we note that for each of the variations σi, we have the two associated
continuous vector fields Si, Xi (see section 2.2). Furthermore, note that these two
vector fields are orthogonal along the base geodesic γi. Indeed, the vector field Si

is just γ′

i, while the vector field Xi is orthogonal to γi at the two endpoints of the
variation (recall that αi, βi are ⊥ to γi). But from the Jacobi equation, a Jacobi field
that is orthogonal to a geodesic at a pair of points is orthogonal to the geodesic at
every point.

Next observe that the inner product between the vectors Xi and Si varies contin-
uously along the domain of σi. Since we have 〈Xi, Si〉 ≡ 0 along the geodesic γ, by
choosing ti close enough to zero, one can ensure that

lim
i→∞

sup
x∈γi

∣

∣〈Xi, Si〉x
∣

∣ = 0.

In particular, for any sequence of points {pi} ⊂ M̃ satisfying pi ∈ γi and lim pi = p ∈
γ, we have that:

〈X(p), γ′(p)〉 = 〈 lim
i→∞

Xi(pi), lim
i→∞

γ′

i(pi)〉 = lim
i→∞

〈Xi(pi), Si(pi)〉 = 0

Applying this to the two sequences of points with distinct limits, we see that the lim-
iting vector field X is orthogonal to ~γP at two distinct points, and hence is orthogonal
to ~γP at every point. In fact, the discussion above also shows that the Jacobi field X
defined on ~γP extends to a perpendicular Jacobi field along the entire geodesic γ.

Fact 9: The Jacobi vector field X along ~γP satisfies:

(4)

∫

~γP

−K(X ∧ γ̇)||X||2 + ||∇γ̇X||2ds = 0.

This follows immediately from Facts 5, 7, condition (2) in our choice of the sequence
{ti} (see the discussion preceding Fact 5), and the second variation formula for L′′

i (ti)
(see section 2.2, equation (1)). Indeed, this is just an application of the Lebesgue
dominated convergence theorem (the integrand is positive, bounded on compact sets,
and we have point-wise convergence.)

Observe that at this point, we are almost done. Since M̃ has non-positive sectional
curvature, we see that the expression inside the integral in equation (4) consists of
a sum of two terms that are ≥ 0 (pointwise). Since the overall integral is zero, and
the expression inside the integral varies continuously, this tells us that at every point
along ~γP , we have that:

−K(X ∧ γ̇)||X||2 = 0 and ||∇γ̇X||2 = 0.
15



Furthermore, at the point P we see that the vector field X is the limit of vectors
of norm =1 (see Fact 6), and whose angle with γ′ tends to π/2 (see Fact 8). In
particular this gives:

Fact 10: The Jacobi field X is not the zero vector field, since we have X(P ) 6= 0.

Finally, let us complete the proof of the theorem. Let {Pk} be a sequence of
points on γ, with Pk = γ(tk) for a strictly decreasing sequence of real numbers tk
with lim tk = −∞ (so in particular, limPk = γ(−∞)). Let J denote the (2n − 2)-
dimensional vector space of orthogonal Jacobi fields along the geodesic γ. Corre-
sponding to each Pk, we let Jk ⊂ J denote the collection of all orthogonal Jacobi
fields on γ having the property that they are parallel along the geodesic ray ~γPk

(with no constraints on the behavior on the rest of γ). It is obvious that each Jk

is actually a vector subspace of J , and our proof ensures that each Jk contains a
non-zero vector field, and in particular, satisfies dimJk ≥ 1. Furthermore, whenever
k ≥ k′, we have a containment of geodesic rays ~γP

k′
⊂ ~γPk

, which immediately yields
containments Jk ⊂ Jk′ . Since we have a sequence of nested, non-trivial, vector sub-
spaces of the finite dimensional vector space J , we conclude that their intersection
is non-zero. This implies the existence of a globally defined, non-trivial, parallel,
orthogonal Jacobi field along γ, completing the proof of the theorem.

¤

4. From flats in the ultralimit to flattening sequences.

In this section, we focus exclusively on finding conditions on the ultralimit Cone(M̃)
that can be used to construct pointed flattening sequences along a geodesic γ. This
entire section will be devoted to establishing the following:

Theorem 4.1 (Undistorted ¤ in ultralimit ⇒ Pointed flattening sequence). Let
M̃ be a simply connected, complete, Riemmanian manifold of non-positive sectional
curvature, and let Cone(M̃) be an asymptotic cone of M̃ . Given a geodesic γ ⊂ M̃ ,
let γω ⊂ Cone(M̃) be the corresponding geodesic in the ultralimit. Assume that
there exists a 4-tuple of points {A,B,C,D} ⊂ Cone(M̃), satisfying A,B ∈ γω, with
∗ ∈ Int(AB), and so that the associated map ¤ → Cone(M̃) is undistorted. Then
the original geodesic γ has pointed flattening sequences.

In the next section, we will establish a strengthening of this result, by considering
the case where γω is contained in a bi-Lipschitz flat (i.e. a bi-Lipschitz image of R2

equipped with the standard metric). In this more general context, and under the
presence of some additional constraints we will see that γ still has pointed flattening
sequences.

Before starting the proof of the theorem, let us first introduce an auxiliary notion.
16



Figure 3. Flattening sequence along a geodesic.

Definition (Flattening sequences). We say that γ has flattening 4-tuples if there
exists a sequence {Ai, Bi, Ci, Di} of 4-tuples of points each of which is good (relative
to γ), has lim Ai = γ(−∞) and lim Bi = γ(+∞), and viewing the 4-tuples as a
sequence of maps ¤ → M̃ , we also require the sequence to be undistorted in the limit.

An illustration of a flattening sequence is provided in Figure 3. All the quadrilat-
erals are perpendicular along the base geodesic, have three sides of equal length, and
have the length of the top edge tending (asymptotically, in the ratio) to the length
of the remaining three edges.

We now begin the proof of theorem 4.1, by establishing:

Step 1: The geodesic γ has a flattening sequence.

Proof (Step 1). In the ultralimit Cone(M̃), let us pick out points {A,B,C,D} to
be the vertices of an undistorted square, with the property that AB ⊂ γω, and
∗ ∈ Int(AB). We now intend to show that a suitable approximating sequence of
4-tuples in M̃ will give us the desired flattening sequence.

Let us start out by picking an arbitrary pair of approximating sequences {C ′

i}
and {D′

i} for the points C,D ∈ Cone(M̃). Now observe that corresponding to the
geodesic γ ⊂ M̃ , we have a well-defined projection map ρ : M̃ → γ, where ρ(x)
is defined to be the unique point on γ closest to the point x. We now define the
sequence {Ai} (respectively {Bi}) by setting Ai := ρ(D′

i) (respectively Bi := ρ(C ′

i)).
Note that each of the 4-tuples of points {Ai, Bi, C

′

i, D
′

i} clearly satisfies the first three
properties of being good for the geodesic γ (the points Ai, Bi are on γ, and the sides

AiD′

i and BiC ′

i are ⊥ to γ). To ensure the last condition, we pick points Ci ∈
−−→
BiC

′

i,
17



Di ∈
−−−→
AiD

′

i satisfying d(Di, Ai) = d(Ai, Bi) = d(Bi, Ci). Note that this construction
is exactly the sort considered in Lemma 2.1. In particular, statement (1) in Lemma
2.1 tells us that {Ai} = A ∈ Cone(M̃) and {Bi} = B ∈ Cone(M̃), while statement
(2) in Lemma 2.1 ensures that {Ci} = C ∈ Cone(M̃) and {Di} = D ∈ Cone(M̃).

Up to this point, we have constructed a sequence {Ai, Bi, Ci, Di} of 4-tuples, each
of which is good for the geodesic γ, and additionally having the property that the
sequence (ultra)-converges to the 4-tuple {A,B,C,D} ⊂ Cone(M̃). To conclude,
we simply need to ensure that our sequence also satisfies the two conditions for a
flattening sequence, namely, we need (1) that lim Ai = γ(−∞) and lim Bi = γ(+∞),
and (2) that limi→∞{d(Ci, Di)/d(Ai, Bi)} = 1. We will ensure that these additional
conditions are satisfied by passing to suitable subsequences of our original sequence.
Let us explain the argument for (2); the argument for (1) is analogous (after a possible
permutation of labels on the 4-tuples of points).

Given any k ∈ N, the fact that ω lim{d(Ci, Di)/λ(i)} = dω(C,D) implies that the
set of indices i for which the following relation holds

(5)
∣

∣

∣

d(Ci, Di)

λ(i)
− dω(C,D)

∣

∣

∣
<

1

k

forms a subset Ik ∈ U . Similarly, the fact that ω lim{d(Ai, Bi)/λ(i)} = dω(A,B)
implies that the set of indices i for which the following relation holds

(6)
∣

∣

∣

d(Ai, Bi)

λ(i)
− dω(A,B)

∣

∣

∣
<

1

k

likewise forms a subset I ′

k ∈ U . Since the ultrafilter U is closed under intersections,
we conclude that Ik ∩ I ′

k ∈ U . But every element in U is an infinite subset of N,
and in particular, non-empty. Hence there is an index ik for which both equations
(5) and (6) hold. Now consider the subsequence {Aik , Bik , Cik , Dik} of 4-tuples in M̃ ,
and observe that from (5) and (6), we have that the kth 4-tuple satisfies:

dω(C,D) − 1/k

dω(A,B) + 1/k
≤ d(Cik , Dik)

d(Aik , Bik)
≤ dω(C,D) + 1/k

dω(A,B) − 1/k

Now it is immediate that for this subsequence, we obtain:

lim
k→∞

d(Cik , Dik)

d(Aik , Bik)
=

dω(C,D)

dω(A,B)
= 1

where the last equality comes from the fact that the quadrilateral {A,B,C,D} ⊂
Cone(M̃) is an undistorted copy of ¤. But this is precisely the desired property (2).

So we now know that the geodesic γ we were interested in has a flattening sequence.
The second step in the proof of theorem 4.1 lies in improving the choice of our
subsequence, obtaining:
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Step 2: The geodesic γ has pointed flattening sequences.

Proof (Step 2). In the proof of Step 1, we started out by constructing a sequence
of 4-tuples {Ai, Bi, Ci, Di}, each of which was good for γ. The flattening sequence
along γ was then obtained by picking a suitable subsequence of this sequence of 4-
tuples. We now proceed to explain how, by being a bit more careful with our choice
of subsequence, we can construct pointed flattening sequences.

To this end, let {Ai, Bi, Ci, Di} be the sequence of good 4-tuples for γ obtained
in Step 1, and let P ∈ γ be an arbitrary chosen point. Since ω lim{Ai} = A,
ω lim{Bi} = B, ω lim{P} = ∗, and we have a containment ∗ ∈ Int(AB) ⊂ Cone(M̃),
we immediately see that the set of indices J1 ⊂ N for which the corresponding 4-tuples
has the property that P ∈ Int(AiBi) consists of a set in our ultrafilter: J1 ∈ U .

Now consider the nearest point projection ρ : M̃ → γ, and let us first consider
indices i ∈ J1. Since each of the 4-tuples in our sequence is good, we clearly have
ρ(Di) = Ai and ρ(Ci) = Bi. Observe that P disconnects the geodesic γ into two
components (since i ∈ J), and the points Ai, Bi lie in distinct components of γ−{P}.
Since ρ(DiCi) gives a path in γ joining Ai to Bi, we conclude that there must exist
a point Ei ∈ DiCi satisfying ρ(Ei) = P . Observe that this immediately implies that
PEi ⊥ γ′. For the remaining indices i /∈ J1, we set Ei = Ci. In particular, we now
have a sequence of points {Ei}, with Ei ∈ DiCi.

Now it is easy to verify that the sequence {Ei} defines a point E ∈ Cone(M̃),
and since each Ei ∈ DiCi, we have that E ∈ DC. Furthermore, the fact that
ρ(Ei) = P for a collection of indices i ∈ J1 contained in our ultrafilter U implies that
ρω(E) = ω lim{P} = ∗ ∈ Cone(M̃), where ρω : Cone(M̃) → γω is the projection
map from Cone(M̃) to γω.

Observe that the 4-tuple of points {A,B,C,D} ⊂ Cone(M̃), corresponding to an
undistorted ¤, satisfies the equality:

(7) 1 =
dω(A,C)2 + dω(B,D)2 − dω(C,D)2 − dω(A,B)2

2 · dω(A,D) · dω(B,C)

But inside a geodesic space, a 4-tuple of (distinct, non-colinear) points satisfies the
equality in equation (7) if and only if the 4-tuple of points are the vertices of a
flat parallelogram (see Berg-Nikolaev [BeNi, Theorem 15]). Applying this to the
given 4-tuple of points in Cone(M̃), we see that there exists an isometric embedding
P →֒ Cone(M̃) from a square P ⊂ R2, with the property that the vertices map
precisely to the points {A,B,C,D}. But now we immediately see that the point
E ∈ CD must be the point satisfying dω(E,C) = dω(P,B), and in particular, that the
4-tuple {P,B,C,E} are the vertices of a flat rectangle in Cone(M̃), with dω(C,E) =
dω(P,B) < dω(P,E) = dω(B,C).

So we can find a collection of indices J2 ∈ U with the property that for all i ∈ J2,
d(P,Bi) < d(P,Ei) and d(P,Bi) < d(Bi, Ci). For each of the indices i ∈ J2, we can
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now choose points Fi ∈ PEi, Gi ∈ BiCi to satisfy d(P, Fi) = d(P,Bi) = d(Bi, Gi).
For indices i /∈ J2, we set Fi = Ei, Gi = Ci. It is again easy to verity that the
sequences {Fi}, {Gi} define points F,G ∈ Cone(M̃). Furthermore one can verify
that the 4-tuple {P,B,G, F} define an undistorted ¤ in Cone(M̃).

A
P

B

F

E

C

i

i

i

i
G i

i γ

D i

Figure 4. Constructing pointed flattening sequences.

Figure 4 contains an illustration of where the various points Ei, Fi, Gi are chosen
from the original 4-tuple {Ai, Bi, Ci, Di} (for indices i ∈ J1 ∩ J2). We observe that
for our sequence of 4-tuples we now have:

• the sequence of 4-tuples {P,Bi, Gi, Fi} ultra-converges to the vertices of an
undistorted square in Cone(M̃), and

• for each index i ∈ J1 ∩ J2, the corresponding 4-tuple {P,Bi, Gi, Fi} is good.

We now want to pick a subsequence of 4-tuples, within the index set J1 ∩ J2,
which satisfies the additional property that limk→∞{d(Fik , Gik)/d(P,Bik)} = 1. So
define, for k ∈ N, the sets Ik, I

′

k ∈ U to be the set of indices satisfying the obvious
analogues of equations (5) and (6) from Step 1. Then we see that, from the closure of
ultrafilters under finite intersections, we have for each k ∈ N the set Ik ∩ I ′

k ∩ J1 ∩ J2

lies in our ultrafilter U , and hence is non-empty. In particular, we can select indices
ik ∈ Ik∩I ′

k∩J1∩J2, and the argument given at the end of Step 1 extends verbatim to
see that the subsequence {P,Bik , Gik , Fik} satisfies the desired additional property.
This completes the proof of Step 2, and hence of Theorem 4.1.

¤
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Finally, we conclude this section by pointing out that if the geodesic γω ⊂ Cone(M̃)
is contained in a flat, then the combination of Theorem 4.1 and Theorem 3.1 imme-
diately tells us that γ must be of higher rank. In particular, this completes the proof
of Theorem 1.1.

5. From bi-Lipschitz flats to flattening sequences.

In the previous section, we saw that we can use the presence of flats in the asymp-
totic cone Cone(M̃) to construct flattening sequences (which in turn could be used
to construct pointed flattening sequences). For our applications, it will be important
for us to be able to use bi-Lipschitz flats instead of genuine flats. The reason for this
is that bi-Lipschitz flats in Cone(M) appear naturally as ultralimits of quasi-flats in
the original M .

To establish the result, we will first show (Lemma 5.1) that we can use suitable
sequences of maps ¤ → Cone(M̃) that are undistorted in the limit to construct
flattening sequences along γ. We will then show (Theorem 5.2) that in the presence
of certain bi-Lipschitz flats, one can construct the desired sequence of maps ¤ →
Cone(M̃) that are undistorted in the limit.

Lemma 5.1 (Almost undistorted metric squares ⇒ flattening sequence). Let M̃ be
a complete, simply-connected, Riemannian manifold of non-positive sectional curva-
ture, and Cone(M̃) an asymptotic cone of M̃ . For γ ⊂ M̃ a geodesic, let γω ⊂
Cone(M̃) be the corresponding geodesic in the asymptotic cone of M̃ . Assume that
for each ǫ > 0, one can find an ǫ-undistorted copy {A,B,C,D} of ¤ in Cone(M̃)
satisfying the properties:

• A,B ∈ γω with ∗ ∈ Int(AB),
• A,B are the closest points to D,C (respectively) on the geodesic γω.

Then γ has a flattening sequence of 4-tuples.

Proof. We want to build a sequence of good 4-tuples in M̃ which are undistorted in
the limit. We will explain how to find, for a given ǫ > 0, a good 4-tuple in M̃ with
distortion < ǫ. Choosing such 4-tuples for a sequence of error terms ǫk → 0 will yield
the desired flattening sequence.

From the hypotheses in our Lemma, we can find a 4-tuple {A,B,C,D} ⊂ Cone(M̃)
satisfying ∗ ∈ Int(AB) ⊂ γω, with distortion < ǫ/3. Now this 4-tuple in the as-
ymptotic cone corresponds to a sequence {Ai, Bi, Ci, Di} ⊂ M̃ of 4-tuples satisfying
{Ai} = A, {Bi} = B, {Ci} = C, {Di} = D. Applying Lemma 2.1, we can replace
this sequence of 4-tuples by another sequence {A′

i, B
′

i, C
′

i, D
′

i} ⊂ M̃ satisfying the
additional property that: A′

i, B
′

i are the closest points on γ to the points D′

i, C
′

i

respectively.
Since the distortion of {A,B,C,D} ⊂ Cone(M̃) is < ǫ/3, we have that for some

index i, the distortion of {A′

i, B
′

i, C
′

i, D
′

i} ⊂ M̃ is likewise < ǫ/3 (in fact, the set
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of such indices i has to lie in the ultrafilter U). Now the problem is that there is
no guarantee that this 4-tuple {A′

i, B
′

i, C
′

i, D
′

i} is good for the geodesic γ: while it
satisfies the orthogonality conditions D′

iA
′

i ⊥ γ and C ′

iB
′

i ⊥ γ, the 4-tuple does not
necessarily have the requisite property that d(D′

i, A
′

i) = d(A′

i, B
′

i) = d(B′

i, C
′

i).
So we modify the 4-tuple in the obvious manner, by replacing the points C ′

i, D
′

i ∈
M̃ by the points C ′′

i ∈ −−→
B′

iC
′

i, D
′′

i ∈ −−−→
A′

iD
′

i chosen so that d(D′′

i , A
′

i) = d(A′

i, B
′

i) =
d(B′

i, C
′′

i ). This new sequence of 4-tuples now does have the property of being good
for γ. So in order to complete the Lemma, we just need to make sure that this new
4-tuple {A′

i, B
′

i, C
′′

i , D′′

i } has distortion < ǫ. Note that by Lemma 2.2, it is sufficient
to show that the distance d(C ′′

i , D′′

i ) is not too much larger than d(A′

i, B
′

i).
Letting K := d(A′

i, B
′

i), we first observe that from the fact that the (unmodified)
4-tuple {A′

i, B
′

i, C
′

i, D
′

i} has distortion < ǫ/3 implies that:

1 − ǫ/3 < d(A′

i, D
′

i)/K < 1 + ǫ/3

which translates to the estimate:

d(D′

i, D
′′

i ) = |d(A′

i, D
′

i) − K| < K · ǫ/3
An identical argument gives the estimate d(C ′

i, C
′′

i ) < K · ǫ/3. Now the triangle
inequality gives us the estimate:

|d(C ′′

i , D′′

i ) − d(C ′

i, D
′

i)| ≤ d(C ′

i, C
′′

i ) + d(D′

i, D
′′

i ) < 2K · ǫ/3
Dividing by K, we obtain:

∣

∣

∣

d(C ′′

i , D′′

i )

K
− d(C ′

i, D
′

i)

K

∣

∣

∣
< 2ǫ/3

But since the original 4-tuple was ǫ/3-undistorted, we have that d(C ′

i, D
′

i)/K is within
ǫ/3 of 1. Hence applying the triangle inequality one last time gives:

1 − ǫ <
d(C ′′

i , D′′

i )

K
< 1 + ǫ

precisely as desired. This concludes the proof of Lemma 5.1.

¤

Now assume that we have a bi-Lipschitz map φ : R2 →֒ Cone(M̃). We will call the
image φ(R2) a bi-Lipschitz ultraflat. The primary application of almost undistorted
metric squares lies in establishing the following:

Theorem 5.2 (Bi-Lipschitz ultraflat ⇒ flattening sequences.). Let M̃ be a complete,
simply-connected, Riemannian manifold of non-positive sectional curvature, and let
Cone(M̃) an asymptotic cone of M̃ . For γ ⊂ M̃ a geodesic, let γω ⊂ Cone(M̃) be
the corresponding geodesic in the asymptotic cone of M̃ . Assume that:

• the sectional curvature of M̃ is bounded below,
• there exists g ∈ Isom(M) which stabilizes γ, and acts cocompactly on g, and
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• there is a bi-Lipschitz ultraflat φ : R2 →֒ Cone(M) mapping the x-axis to γω.

Then γ has a flattening sequence of 4-tuples.

Proof. Our approach is to reduce the problem to one which can be dealt with by meth-
ods similar to those in the previous Lemma 5.1. Let φ : (R2, || · ||) →֒ (Cone(M̃), d)
be the given bi-Lipschitz ultraflat, and let C be the bi-Lipschitz constant. For r ∈ R,
let us denote by Lr ⊂ R2 the horizontal line at height r. Note that L0 coincides with
the x-axis in R2, and hence, by hypothesis, must map to γω under φ. Note that to
make our various expressions more readable, we are using d to denote distance in
Cone(M̃) (as opposed to dω), and the norm notation to denote distance inside R2.

We now define, for each r ∈ [0,∞) a map ψr : Lr → L0 as follows: given p ∈ Lr,
we have φ(p) ∈ Cone(M̃). Since γω ⊂ Cone(M̃) is a geodesic inside the CAT(0)
space Cone(M̃), there is a well defined, distance non-increasing, projection map
π : Cone(M̃) → γω, which sends any given point in Cone(M̃) to the (unique) closest
point on γω. Hence given p ∈ Lr, we have the composite map π ◦ φ : Lr → γω.
But recall that, by hypothesis φ maps L0 homeomorphically to γω. We can now set
ψr : Lr → L0 to be the composite map φ−1 ◦ π ◦ φ. We now have the following:

Assertion: For every r ∈ [0,∞), there exist a pair of points p, q ∈ Lr ⊂ R2 having
the property that ||p − q|| = 1, and ||ψr(p) − ψr(q)|| > 1/2.

Let us explain how to obtain the Assertion. We first observe that for arbitrary
x ∈ Lr, we have that the distance from x to L0 is exactly r, and hence from the
bi-Lipschitz estimate, we have

d(φ(x), γω) = d(φ(x), φ(L0)) ≤ Cr

Since π is the nearest point projection onto γω, this implies that d
(

φ(x), (π◦φ)(x)
)

≤
Cr. Since (π ◦ φ)(x) = φ(ψr(x)), we can again use the bi-Lipschitz estimate to
conclude that:

Cr ≥ d
(

φ(x), (π ◦ φ)(x)
)

= d(φ(x), φ(ψr(x)) ≥ 1

C
· ||x − ψr(x)||

Which gives us the estimate: ||x − ψr(x)|| ≤ C2r.
Finally, to establish the Assertion, let us argue by contradiction (we will ulti-

mately contradict the upper bound on ||x − ψr(x)|| obtained in the previous para-
graph). Consider, for integers k ≥ 0, the point xk := (k, r) ∈ Lr, and yk := (k, 0) ∈
L0. Observe that we clearly have ||xi − xi+1|| = 1, and let us assume, by way of
contradiction, that every pair {xi, xi+1} satisfies ||ψr(xi)−ψr(xi+1)|| ≤ 1/2. We then
observe that we can easily estimate from above the distance between ψr(xk) and the
origin y0:

||y0 − ψr(xk)|| ≤ ||y0 − ψr(x0)|| +
k

∑

i=1

||ψr(xi−1) − ψr(xi)||
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Figure 5. Illustration of the proof of our Assertion.

Note that since the three points x0, y0, and ψr(x0) form a right triangle, two of
whose sides are controlled, we can estimate from above ||y0 − ψr(x0)|| ≤ r

√
C4 − 1.

Combined with our assumption that all the ||ψr(xk) − ψr(xk+1)|| ≤ 1/2, this yields
the estimate:

||y0 − ψr(xk)|| ≤ r
√

C4 − 1 + k/2

Since ||y0 − yk|| = k, the estimate above immediately gives us the lower bound:

||yk − ψr(xk)|| ≥ k/2 − r
√

C4 − 1

But now, using the fact that the three points xk, yk, ψr(xk) form a right triangle, we
obtain the lower bound:

||xk − ψr(xk)|| ≥
√

r2 + (k/2 − r
√

C4 − 1)2

Note that the lower bound above tends to infinity as k → ∞, and hence for k suffi-
ciently large, yields ||xk − ψr(xk)|| > C2r, which contradicts the previously obtained
upper bound ||xk − ψr(xk)|| ≤ C2r. Hence our initial assumption must have been
wrong, i.e. there exist a pair {xk, xk+1} satisfying ||ψr(xk) − ψr(xk+1)|| > 1/2, com-
pleting the proof of the Assertion.

For an illustration of this argument, we refer the reader to Figure 5. The parallel
lines are L0 at the bottom, Lr at the top. The points xi are represented along the
line Lr, with pairwise distance = 1. The points along L0 represent the corresponding
ψr(xi), with a straight line segment joining each xi to the corresponding ψr(xi). Our
argument is merely making formal the fact that if all the successive distances along Lr

are = 1, while all the successive distances along L0 are < 1/2, then eventually the bold

segment xkψr(xk) has arbitrary large length (in particular > C2r, a contradiction).

Let us now use the Assertion to construct almost undistorted metric squares
of the type appearing in Lemma 5.1. For each index j ∈ N, let us take a pair of
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Figure 6. Choosing the points {Aj, Bj, Qj, Pj}.

points pj, qj ∈ Lj whose existence is ensured by the Assertion. Consider now the

4-tuple of points {Aj, Bj, Qj, Pj} in Cone(M̃), defined by Pj = φ(pj), Qj = φ(qj),
Aj = (π ◦ φ)(pj) , and Bj = (π ◦ φ)(qj). An illustration of a few of these 4-tuples
is given in Figure 6 above. The slanted surface represents the bi-Lipschitz flat in
Cone(M̃), along with the image of the horizontal lines L1, L2 ⊂ R2 under the map
φ, and the corresponding 4-tuples of points.

Now for each integer j, we observe that the corresponding 4-tuple of points in
Cone(M̃) satisfies the following nice properties:

(1) d(Pj, Qj) = d(φ(pj), φ(qj)) ≤ C · ||pj − qj|| = C,
(2) d(Aj, Bj) = d

(

φ(ψj(pj)), φ(ψj(qj))
)

≥ 1
C
· ||ψj(pj) − ψj(qj)|| > 1/2C,

(3) Aj, Bj are the closest points on γω to Pj, Qj respectively,
(4) d(Pj, Aj) = d(Pj, γω) = d(φ(pj), φ(L0)) ≥ j/C, and similarly for d(Qj, Bj).

We now proceed to explain how we can use this sequence of 4-tuples to construct
a sequence of almost undistorted metric squares along γω. This will be done via a
two step process, and the modification at each step is illustrated in Figure 7.

The first step is to replace the original sequence by a new sequence {Aj, Bj, P
′

j , Q
′

j}
chosen as follows: if d(Pj, Aj) ≤ d(Qj, Bj), let P ′

j = Pj, but pick Q′

j to be the unique

point on the geodesic segment BjQj at distance d(Pj, Aj) from the point Bj (and
perform the symmetric procedure if d(Pj, Aj) ≥ d(Qj, Bj)). This new sequence of
4-tuples satisfies the same properties and estimates (2)-(4) from above, but of course,
the distance d(P ′

j , Q
′

j) no longer satisfies estimate (1). We now proceed to use the
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triangle inequality to give a new estimate (1′) for the analogous distance for our
new 4-tuple. Assuming that we are in the case where P ′

j = Pj (the other case is

symmetric), we are truncating the segment BjQj to have the same length as AjPj;
the amount being truncated can be estimated by the triangle inequality:

d(Q′

j, Qj) = d(Qj, Bj) − d(Pj, Aj) ≤ d(Pj, Qj) + d(Aj, Bj) ≤ 2C

This in turn allows us to estimate from above the distance:

d(P ′

j , Q
′

j) = d(Pj, Q
′

j) ≤ d(Pj, Qj) + d(Qj, Q
′

j) ≤ C + 2C = 3C

In particular, our new sequence satisfies the following property: (1′) for each j, we
have the uniform estimate d(P ′

j , Q
′

j) ≤ 3C. In addition, our new sequence satisfies
the additional property (5) for each j, d(Aj, P

′

j) = d(Bj, Q
′

j).

B jA j

jA

A j B j

jP
,,

Qj
,,

jP
j
,

QjP
,

jB

Qj

Qj
,

Figure 7. Changing {Aj, Bj, Qj, Pj} to an almost undistorted ¤.

Our second step is to further modify the sequence as follows: starting from the
index j ≥ C2, consider the new sequence of 4-tuples {Aj, Bj, Q

′′

j , P
′′

j } chosen by

picking the points P ′′

j ∈ AjP ′

j and Q′′

j ∈ BjQ′

j to satisfy the following stronger
version of (5):

d(Aj, P
′′

j ) = d(Aj, Bj) = d(Bj, Q
′′

j )

Note that this new sequence of 4-tuples still satisfies properties (2) and (3). We now
make the:
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Claim: The sequence of 4-tuples {Aj, Bj, Q
′′

j , P
′′

j }, as a sequence of maps ¤ →
Cone(M̃), is undistorted in the limit.

To establish this, we need to show that the limit (as j → ∞) of the ratios of all
distances tend to the corresponding distances in ¤ (i.e. tend to 1 or

√
2 according

to which ratio of distances is considered). We first observe that, for all j ≥ C2, we
have by construction the equalities:

d(Aj, P
′′

j )

d(Aj, Bj)
=

d(Bj, Q
′′

j )

d(Aj, Bj)
= 1

which accounts for the relative distances of three of the four sides. Now let us
consider the ratio of the fourth side to the first, i.e. the ratio d(P ′′

j , Q′′

j )/d(Aj, Bj).
In order to estimate this, we first observe that the points P ′′

j , Q′′

j project to Aj, Bj

under the projection map π : Cone(M̃) → γω, and hence since this map is distance
non-increasing, we obtain the estimate d(Aj, Bj) ≤ d(P ′′

j , Q′′

j ). To give an upper

bound, we make use of the fact that Cone(M̃) is a CAT(0) space, and hence we
have convexity of the distance function. Recall that this tells us that given any two
geodesic segments α, β : [0, 1] → Cone(M̃), with parametrization proportional to
arclength, and given any t ∈ [0, 1], we have the estimate:

(8) d(α(t), β(t)) ≤ (1 − t) · d(α(0), β(0)) + t · d(α(1), β(1))

Let us apply this to the two geodesic segments α = AjP ′

j and β = BjQ′

j. In this sit-
uation, we see that d(α(0), β(0)) = d(Aj, Bj). Furthermore, we have from properties
(1′) and (2) the estimate:

d(α(1), β(1)) = d(P ′

j , Q
′

j) ≤ 3C ≤ 6C2 · d(Aj, Bj)

Substituting these estimates into the convexity equation (8), we obtain the following
inequality:

(9)
d(α(t), β(t))

d(Aj, Bj)
≤ (1 − t) + 6C2 · t

Finally, we recall that d(Aj, P
′′

j ) = d(Aj, Bj) ≤ C, while from property (4), we have
that d(Aj, P

′

j) ≥ j/C. In particular, the parameter t corresponding to the point P ′′

j

is at most C2/j. Now from property (3), we also know that the function d(α(t), β(t))
is strictly increasing, giving us the following estimate:

(10)
d(P ′′

j , Q′′

j )

d(Aj, Bj)
≤ d(α(C2/j), β(C2/j))

d(Aj, Bj)
≤ (1 − C2/j) + 6C2 · C2/j ≤ 1 + 6C4/j

It is now immediate that this ratio tends to one as j → ∞. Applying Lemma 2.4, we
conclude that the sequence of 4-tuples is undistorted in the limit.

To complete the proof of Theorem 5.2, we would like to apply Lemma 5.1. Looking
at the statement of the proposition, we see that we have one more condition we need

27



to ensure, namely we require the sequence of ǫ-undistorted squares ¤ →֒ Cone(M̃)
to all satisfy ∗ ∈ Int(AjBj). Note that this is not a priori satisfied by the sequence of
4-tuples we constructed above. In order to ensure this additional condition, we make
use of the fact that inside M̃ , we assumed that there was a g ∈ Isom(M̃) acting
cocompactly on the geodesic γ. This allows us to make use of Lemma 2.2, which
implies that given any pair of points p, q on γω, we have an isometry of Cone(M̃)
leaving γω invariant and taking p to q.

To finish, we pick, for each of our previously constructed 4-tuples {Aj, Bj, Q
′′

j , P
′′

j },
a point pj ∈ Int(AjBj) ⊂ γω. Then our Lemma 2.2 ensures the existence of a
corresponding isometry Φj, leaving γω invariant, and mapping pj to the distinguished

basepoint ∗ ∈ Cone(M̃). The sequence of image 4-tuples Φj({Aj, Bj, Q
′′

j , P
′′

j }) now
satisfy all the hypotheses of Lemma 5.1. Applying the lemma now completes the
proof of Theorem 5.2.

¤

Finally, we conclude this section by pointing out that combining Theorem 5.2,
Theorem 4.1 (Step 2), and Theorem 3.1 completes the proof of Theorem 1.2 from the
introduction.

6. Some applications

Finally, let us discuss some consequences of our main results.

Corollary 6.1 (Constraints on quasi-isometries). Let M̃1, M̃2 be two simply con-
nected, complete, Riemannian manifolds of non-positive sectional curvature, and as-
sume that φ : M̃1 → M̃2 is a quasi-isometry. Let γ ⊂ M̃1 be a geodesic, γω ⊂
Cone(M̃1) the corresponding geodesic in the asymptotic cone, and assume that there
exists a bi-Lipschitz flat F ⊂ Cone(M̃1) containing the geodesic γω. Then the follow-
ing dichotomy holds:

(1) every geodesic η at bounded distance from φ(γ) satisfies η/StabG(η) non-
compact, where G = Isom(M̃2), or

(2) every geodesic η at bounded distance from φ(γ) has rk(η) ≥ 2.

Proof. This follows readily from our Theorem 1.2. Assume that the first possibility
does not occur, i.e. there exists a geodesic η at bounded distance from φ(γ) with the
property that StabG(η) ⊂ G = Isom(M̃2) acts cocompactly on η. Then we would
like to establish that every geodesic η′ at finite distance from φ(γ) has higher rank.
We first observe that if there were more than one such geodesic, then the flat strip
theorem would imply that any two of them arise as the boundary of a flat strip, and
hence that they would all have higher rank.

So we only need to deal with the case where there is a unique such geodesic,
i.e. show that the geodesic η has rk(η) ≥ 2. Now recall that the quasi-isometry
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φ : M̃1 → M̃2 induces a bi-Lipschitz homeomorphism φω : Cone(M̃1) → Cone(M̃2).
Since η ⊂ M̃2 was a geodesic at finite distance from φ(γ), we have the containment:

φω(γω) ⊆ ηω ⊂ Cone(M̃2).

Since φω(γω) is a bi-Lipschitz copy of R inside the geodesic ηω, we conclude that
φ maps γω homeomorphically onto ηω. But recall that we assumed that γω was
contained inside a bi-Lipschitz flat γω ⊂ F ⊂ Cone(M̃1), and hence we see that
ηω ⊂ φω(F ) is likewise contained inside a bi-Lipschitz flat.

Furthermore, since StabG(η) acts cocompactly on η, we see that there exists an
element g ∈ G = Isom(M̃2) which stabilizes and acts cocompactly on η. Hence η
satisfies the hypotheses of Theorem 1.2, and must have rk(η) ≥ 2, as desired. This
concludes the proof of Corollary 6.1.

¤

The statement of our first corollary might seem somewhat complicated. We now
proceed to isolate the special case which is of most interest:

Corollary 6.2 (Constraints on perturbations of metrics). Assume that (M, g0) is
a closed Riemannian manifold of non-positive sectional curvature, and assume that
γ0 ⊂ M is a closed geodesic. Let γ̃0 ⊂ M̃ be a lift of γ0, and assume that γ̃0 ⊂ F is
contained in a flat F .

Then if (M, g) is any other Riemannian metric on M with non-positive sectional
curvature, and γ ⊂ M is a geodesic (in the g-metric) freely homotopic to γ0, then the
lift γ̃ ⊂ (M̃, g̃) satisfies rk(γ̃) ≥ 2.

We can think of Corollary 6.2 as a “non-periodic” version of the Flat Torus theorem.
Indeed, in the case where F is π1(M)-periodic, the Flat Torus theorem applied to
(M, g) implies that γ̃ is likewise contained in a periodic flat (and in particular has
rank ≥ 2).

Proof. Since M is compact, the identity map provides a quasi-isometry φ : (M̃, g̃0) →
(M̃, g̃). The flat F containing γ̃0 gives rise to a flat Fω ⊂ Cone(M̃, g̃0) containing
(γ̃0)ω. In particular, we can apply the previous Corollary 6.1.

Next note that, since γ0, γ are freely homotopic to each other, there is a lift γ̃ of
γ which is at finite distance (in the g-metric) from the given γ̃0 ⊂ (M̃, g̃). Indeed,
taking the free homotopy H : S1 × [0, 1] → M between H0 = γ0 and H1 = γ, we
can then take a lift H̃ : R × [0, 1] → M̃ satisfying the initial condition H̃0 = γ̃0 (the
given lift of γ0). The time one map H̃1 : R → M̃ will be a lift of H1 = γ, hence a
geodesic in (M̃, g̃). Furthermore, the distance (in the g-metric) between γ̃0 and γ̃ will
clearly be bounded above by the supremum of the g-lengths of the (compact) family
of curves Hp : [0, 1] → (M, g), p ∈ S1, defined by Hp(t) = H(p, t).

Now observe that by construction, the γ̃ ⊂ (M̃, g̃) from the previous paragraph
has StabG(γ̃) acting cocompactly on γ̃, where G = Isom(M̃, g̃). Hence the first
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possibility in the conclusion of Corollary 6.1 cannot occur, and we conclude that γ̃
has rk(γ̃) ≥ 2, as desired. This concludes the proof of Corollary 6.2.

¤

Next we recall that the classic de Rham theorem [dR] states that any simply
connnected, complete Riemannian manifold admits a decomposition as a metric prod-
uct M̃ = Rk×M1×. . .×Mk, where Rk is a Euclidean space equipped with the standard
metric, and each Mi is metrically irreducible (and not R or a point). Furthermore,
this decomposition is unique up to permutation of the factors. This result was re-
cently generalized by Foertsch-Lytchak to cover finite dimensional geodesic metric
spaces [FL]. Our next corollary shows that, in the presence of non-positive Riemann-
ian curvature, there is a strong relationship between splittings of M̃ and splittings of
Cone(M̃).

Corollary 6.3 (Asymptotic cones detect splittings). Let M be a closed Riemann-
ian manifold of non-positive curvature, M̃ the universal cover of M with induced
Riemannian metric, and X = Cone(M̃) an arbitrary asymptotic cone of M̃ . If
M̃ = Rk × M1 × . . . × Mn is the de Rham splitting of M̃ into irreducible factors,
and X = Rl × X1 × . . . × Xm is the Foertsch-Lytchak splitting of X into irreducible
factors, then k = l, n = m, and up to a relabeling of the index set, we have that each
Xi = Cone(Mi).

Proof. Let us first assume that M̃ is irreducible (i.e. k=0, n=1), and show that
Cone(M̃) is also irreducible (i.e. l=0, m=1). By way of contradiction, let us assume
that X splits as a metric product, and observe that this clearly implies that every
geodesic γ ⊂ X is contained inside a flat. In particular, from our Theorem 1.1, we see
that every geodesic inside M̃ must have higher rank. Applying the Ballmann-Burns-
Spatzier rank rigidity result, and recalling that M̃ was irreducible, we conclude that
M̃ is in fact an irreducible higher rank symmetric space. But now Kleiner-Leeb have
shown that for such spaces, the asymptotic cone is irreducible (see [KlL, Section 6]),
giving us the desired contradiction.

Let us now proceed to the general case: from the metric splitting of M̃ , we get
a corresponding metric splitting Cone(M̃) = Rk × Y1 × . . . × Yn, where each Yi =
Cone(Mi). Since each Mi is irreducible, the previous paragraph tells us that each
Yi is likewise irreducible. So we now have two product decompositions of Cone(M̃)
into irreducible factors. So assuming that each Yi is distinct from a point and is not
isometric to R, we could appeal to the uniqueness portion of Foertsch-Lytchak [FL,
Theorem 1.1] to conclude that, up to relabeling of the index set, each Xi = Yi =
Cone(Mi), and that the Euclidean factors have to have the same dimension k = l.

To conclude the proof of our Corollary, we establish that if M is a simply connected,
complete, Riemannian manifold of non-positive sectional curvature, and dim(M) ≥ 2,
then Cone(M) is distinct from a point or R. First, recall that taking an arbitrary
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geodesic γ ⊂ M (which we may assume passes through the basepoint ∗ ∈ M), we
get a corresponding geodesic γω ⊂ Cone(M), i.e. an isometric embedding of R into
Cone(M). In particular, we see that dim(Cone(M)) > 0. To see that Cone(M) is
distinct from R, it is enough to establish the existence of three points p1, p2, p3 ∈
Cone(M) such that for each index j we have:

(11) dω(pj, pj+2) 6= dω(pj, pj+1) + dω(pj+1, pj+2)

But this is easy to do: take p1, p2 to be the two distinct points on the geodesic γω at
distance one from the basepoint ∗ ∈ Cone(M), so that dω(p1, p2) = 2. Observe that
one can represent the points p1, p2 via the sequences of points {xi}, {yi} along γ hav-
ing the property that ∗ ∈ xiyi, and d(xi, ∗) = λi = d(∗, yi), where λi is the sequence
of scales used in forming the asymptotic cone Cone(M). Now since dim(M) ≥ 2, we
can find another geodesic η through the basepoint ∗ ∈ M , with the property that
η ⊥ γ. Taking the sequence {zi} to lie on η, and satisfy d(zi, ∗) = λi, it is easy to see
that this sequence defines a third point p3 ∈ Cone(M) satisfying dω(p3, ∗) = 1. From
the triangle inequality, we immediately have that dω(p1, p3) ≤ 2 and dω(p2, p3) ≤ 2.
On the other hand, since the Riemannian manifold M has non-positive sectional
curvature, we can apply Toponogov’s theorem to each of the triangles {∗, xi, zi}:
since we have a right angle at the vertex ∗, and we have d(∗, xi) = d(∗, zi) = λi,
Toponogov tells us that d(xi, zi) ≥

√
2 · λi. Passing to the asymptotic cone, this

gives the lower bound d(p1, p3) ≥
√

2, and an identical argument gives the estimate
d(p2, p3) ≥

√
2. It is now easy to verify that the three points p1, p2, p3 satisfy (11),

and hence Cone(M) 6= R, as desired. This concludes the proof of Corollary 6.3.

¤

Before stating our next result, we recall that the celebrated rank rigidity theorem
of Ballmann-Burns-Spatzier (see Section 2.3) was motivated by Gromov’s well-known
rigidity theorem, the proof of which appears in the book [BGS]. Our next corollary
shows how in fact Gromov’s rigidity theorem can directly be deduced from the rank
rigidity theorem. This is our last:

Corollary 6.4 (Gromov’s higher rank rigidity [BGS]). Let M∗ be a compact locally
symmetric space of R-rank ≥ 2, with universal cover M̃∗ irreducible, and let M be a
compact Riemannian manifold with sectional curvature K ≤ 0. If π1(M) ∼= π1(M

∗),
then M is isometric to M∗, provided V ol(M) = V ol(M∗).

Proof. Since both M and M∗ are compact with isomorphic fundamental groups, the
Milnor-Švarc theorem gives us quasi-isometries:

M̃∗ ≃ π1(M
∗) ≃ π1(M) ≃ M̃

which induce a bi-Lipschitz homeomorphism φ : Cone(M̃∗) → Cone(M̃). Now in
order to apply the rank rigidity theorem, we need to establish that every geodesic in
M̃ has rank ≥ 2.
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We first observe that the proof of Corollary 6.2 extends almost verbatim to the
present setting. Indeed, in Corollary 6.2, we used the identity map to induce a
bi-Lipschitz homeomorphism between the asymptotic cones, and then appealed to
Corollary 6.1. The sole difference in our present context is that, rather than using
the identity map, we use the quasi-isometry between M̃ and M̃∗ induced by the
isomorphism π1(M) ∼= π1(M

∗). This in turn induces a bi-Lipschitz homeomorphism
between asymptotic cones (see Section 2.1). The reader can easily verify that the
rest of the argument in Corollary 6.2 extends to our present setting, establishing that
every lift to M̃ of a periodic geodesic in M has rank ≥ 2.

So we now move to the general case, and explain why every geodesic in M̃ has
higher rank. To see this, assume by way of contradiction that there is a geodesic
η ⊂ M̃ with rk(η) = 1. Note that the geodesic η cannot bound a half-plane. But
once we have the existence of such an η, we can appeal to results of Ballmann [Ba1,
Theorem 2.13], which imply that η can be approximated (uniformly on compacts)
by lifts of periodic geodesics in M ; let {γ̃i} → η be such an approximating sequence.
Since each γ̃i has rk(γ̃i) ≥ 2, it supports a parallel Jacobi field Ji, which can be taken
to satisfy ||Ji|| ≡ 1 and 〈Ji, γ̃

′

i〉 ≡ 0. Now we see that:

• the limiting vector field J defined along η exists, due to the control on ||Ji||,
• the vector field J along η is a parallel Jacobi field, since both the “parallel”

and “Jacobi” condition can be encoded by differential equations with smooth
coefficients, solutions to which will vary continuously with respect to initial
conditions, and

• J will have unit length and will be orthogonal to η′, from the corresponding
condition on the Ji.

But this contradicts our assumption that rk(η) = 1. So we conclude that every
geodesic η ⊂ M̃ must satisy rk(η) ≥ 2, as desired.

From the rank rigidity theorem, we can now conclude that M̃ either splits as
a product, or is isometric to an irreducible higher rank symmetric space. Since
the asymptotic cone of the irreducible higher rank symmetric space is topologically
irreducible (see [KlL, Section 6]), and Cone(M̃) is homeomorphic to Cone(M̃∗),
we have that M̃ cannot split as a product. Finally, we see that π1(M) ∼= π1(M

∗)
acts cocompactly, isometrically on two irreducible higher rank symmetric spaces M̃
and M̃∗. By Mostow rigidity [Mo], we have that the quotient spaces are, after
suitably rescaling, isometric. This completes our proof of Gromov’s higher rank
rigidity theorem.

¤

Finally, let us conclude our paper with a few comments on this last corollary.

Remarks: (1) The actual statement of Gromov’s theorem in [BGS, pg. (i)] does not
assume M̃∗ to be irreducible, but rather M∗ to be irreducible (i.e. there is no finite
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cover of M∗ that splits isometrically as a product). This leaves the possibility that
the universal cover M̃∗ splits isometrically as a product, but no finite cover of M∗

splits isometrically as a product. However, in this specific case, the desired result was
already proved by Eberlein (see [Eb]). And in fact, in the original proof of Gromov’s
rigidity theorem, the very first step (see [BGS, pg. 154]) consists of appealing to
Eberlein’s result to reduce to the case where M̃∗ is irreducible.
(2) In the course of writing this paper, the authors learnt of the existence of another
proof of Gromov’s rigidity result, which bears some similarity to our reasoning. As
the reader has surmised from the proof of Corollary 6.3, the key is to somehow show
that M also has to have higher rank. But a sophisticated result of Ballmann-Eberlein
[BaEb] establishes that the rank of a non-positively curved Riemannian manifold M
can in fact be detected directly from algebraic properties of π1(M), and hence the
property of having “higher rank” is in fact algebraic (see also the recent preprint
of Bestvina-Fujiwara [BeFu]). The main advantage of our approach is that one can
deduce Gromov’s rigidity result directly from rank rigidity.
(3) We point out that various other mathematicians have obtained results extending
Gromov’s theorem (and which do not seem tractable using our methods). A varia-
tion considered by Davis-Okun-Zheng ([DOZ], requires M̃∗ to be reducible and M∗

to be an irreducible (the same hypothesis as in Eberlein’s rigidity result). However,
Davis-Okun-Zheng allow the metric on M to be locally CAT(0) (rather than Rie-
mannian non-positively curved), and are still able to conclude that M is isometric
(after rescaling) to M∗. The optimal result in this direction is due to Leeb [L], giving
a characterization of certain higher rank symmetric spaces and Euclidean buildings
within the broadest possible class of metric spaces, the Hadamard spaces (complete
geodesic spaces for which the distance function between pairs of geodesics is always
convex). It is worth mentioning that Leeb’s result relies heavily on the viewpoint
developed in the Kleiner-Leeb paper [KlL].
(4) We note that our method of proof can also be used to establish a non-compact,
finite volume analogue of the previous corollary. Three of the key ingredients go-
ing into our proof were (i) Ballmann’s result on the density of periodic geodesics in
the tangent bundle, (ii) Ballmann-Burns-Spatzier’s rank rigidity theorem, and (iii)
Mostow’s strong rigidity theorem. A finite volume version of (i) was obtained by
Croke-Eberlein-Kleiner (see [CEK, Appendix]), under the assumption that the fun-
damental group is finitely generated. A finite volume version of (ii) was obtained by
Eberlein-Heber (see [EbH]). The finite volume versions of Mostow’s strong rigidity
were obtained by Prasad in the Q-rank one case [Pr] and Margulis in the Q-rank
≥ 2 case [Ma] (see also [R]). One technicality in the non-compact case is that iso-
morphisms of fundamental groups no longer induce quasi-isometries of the universal
cover. In particular, it is no longer sufficient to just assume π1(M) ∼= π1(M

∗), but
rather one needs a homotopy equivalence f : M → M∗ with the property that f lifts
to a quasi-isometry f̃ : M̃ → M̃∗. We leave the details to the interested reader.
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