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GEODESIC CURRENTS AND LENGTH COMPACTNESS
FOR AUTOMORPHISMS OF FREE GROUPS

STEFANO FRANCAVIGLIA

Abstract. We prove a compactness theorem for automorphisms of free
groups. Namely, we show that the set of automorphisms keeping the length
of the uniform current bounded is compact (up to conjugation). This implies
that the spectrum of the length of the images of the uniform current is discrete,
proving a conjecture of I. Kapovich.

1. Introduction

The aim of this paper is to investigate the action of the automorphisms of a free
group F on the Cayley graph of F . In particular, we are interested in understanding
how automorphisms can stretch geodesics. One can define the length of an auto-
morphism as the generic stretching factor (see [KKS05]) which is, roughly speaking,
the average of the stretching ratios, taken over all geodesics (Definition 3.7). In-
tuitively, for Φ ∈ Aut(F ), one can think of its length as the limit, as n tends to
infinity, of ||Φ(wn)||/n, where wn is a “random” cyclically reduced word in F of
length n, and || · || denotes the cyclically reduced length.

The length function on Aut(F ) is invariant under conjugation, so it descends to
a length function on Out(F ). Our main result is the following:

Theorem 1.1 (Length compactness theorem). Let Φn be a sequence of automor-
phisms of F . Then, up to passing to subsequences, there exists a sequence vn ∈ F
such that the automorphisms Ψn defined by x �→ vnΦ(x)v−1

n satisfy one (and only
one) of the following:

• Ψn converges to an automorphism Φ (that is, it has a constant subsequence
Ψni

= Φ).
• L(Φn) goes to ∞.

A reformulation of this theorem is the following:
The set of automorphisms of bounded length is compact up to conjugation. That is,
for any M ∈ R, the set {[Φ] ∈Out(F ) : L(Φ) < M} is finite.

Equivalently: For a sequence of automorphisms Φn, if there is a word w such
that the cyclically reduced length of Φn(w) goes to ∞, then L(Φn) → ∞.

All the work pivots on the fact that the Cayley graph of F is a hyperbolic
object. Therefore, the boundary at infinity ∂F of F is well defined, and encodes
enough information about the dynamic of the action of Aut(F ). The main idea is
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that length controls attractors: if Φn is a sequence of automorphisms of bounded
length, then, up to conjugation, there are no attractors for the action of Φn on ∂F .
Using this fact we prove that the sequence Φn keeps the cyclically reduced length
of any element of F bounded, and this implies that Φn has a constant subsequence.

As a consequence of Theorem 1.1, we get the following result.

Corollary 1.2. The spectrum of the length function is discrete. That is, the set

{L(Φ) : Φ ∈ Aut(F )}
is a discrete subset of R.

We remark that, while the length of an automorphism depends on the free basis
chosen for the Cayley graph, the spectrum of the length function is intrinsic (it
depends in fact on the current we use to define it, which in our case is the uniform
current).

Corollary 1.2 was conjectured to be true by I. Kapovich, inspired by compu-
tational evidence and partial results. For example, in [KKS05] V. Kaimanovich,
I. Kapovich and P. Shupp proved (among other results) that an automorphism of
length one must be simple (see below) and estimated the “first gap” of the length
function.

A consequence of Corollary 1.2 is that one can use inductive arguments on the
length. For example, we get the following result, which can be viewed as an Ideal
Whitehead Algorithm (see [Kap06a, Conjecture 5.3]). Recall that, given a free basis
Σ of F , an automorphism τ is simple if it is either a permutation of Σ or an inner
automorphism, while it is a Whitehead automorphism of the second kind if there is
a ∈ Σ such that τ (x) ∈ {x, xa, a−1x, a−1xa} for all x ∈ Σ (see for example [LS77]
for more details).

Theorem 1.3. Let Φ ∈ Aut(F ) be a non-simple automorphism. Then there exists
a factorisation

Φ = τnτn−1 · · · τ1σ

where n ≥ 1, the automorphism σ is simple, each τi is a Whitehead automorphism
of the second kind, and

L(τi−1 · · ·σ) < L(τiτi−1 · · ·σ), i = 1, · · · , n − 1.

Let us say a few words about Theorem 1.3. The automorphism problem for a
free group F asks, given two arbitrary elements u, v ∈ F , whether there exists
Φ ∈ Aut(F ) such that Φ(u) = v. In [Whi36] Whitehead gave an algorithm solving
that problem. The first part of the algorithm is to maximally reduce the lengths
of u and v via Whitehead automorphisms. Then, given two minimal elements
one proves that they are in the same Aut(F )-orbit if and only if they are related
via a sequence of minimal elements, each one obtained from the preceding via a
Whitehead automorphism. Roughly speaking, Theorem 1.3 is an averaged version
of the first part of the Whitehead algorithm. We refer the reader to [Kap06a] for
a more detailed discussion on the matter. We only notice that, as our proof is
“typically hyperbolic,” one may expect that it could be adapted to a more general
setting, like that of hyperbolic groups, for which the automorphism problem is still
not completely solved.

The main tool we use is the theory of geodesic currents. These are locally finite
F -invariant Borel measures on the space of geodesics lines in the Cayley graph of
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F . Geodesic currents where introduced by F. Bonahon [Bon86] in the setting of
hyperbolic manifolds, and turned out to be very useful in group theory (see for
example [Mar95, Kap06b, Kap06a]).

We also consider measures on the space of geodesic rays (that is, half geodesics)
in the Cayley graph of F . This is the space of frequency measures (see also [Kap05]).

Such spaces are in fact homeomorphic, but each one has peculiar characteristics
that are well-adapted to different situations, and we will jump from one to the other
depending on the calculations needed. Roughly speaking, the action of Aut(F ) on
currents is “more natural”, while frequency measures are “more compact”.

As mentioned earlier, the length function on Aut(F ) depends on the choice of a
current. We use the uniform current, which is the analogous of the Liouville current
for the geodesic flow of a surface, but, ça va sans dire, length compactness should
hold for many other currents. In the last section we discuss some generalisations of
Theorem 1.1 in such a direction.

Remark 1.4. The space of automorphisms of a free group is discrete. Thus, com-
pactness is equivalent to finiteness, and to say that a sequence converges is equiv-
alent to saying that it is finite (and hence eventually constant). Nevertheless, we
prefer to speak about compactness and convergence because we think that this
is closer to the spirit of the paper, in which we used “more hyperbolicity than
discreteness”. (Even if discreteness is necessary, as, for example, in Corollary 1.2.)

2. Notation

For the remainder of the paper, we fix the following notation:

• F is a free group of rank k, with a fixed free basis Σ. We set A = Σ ∪
Σ−1. Any element of F corresponds to a unique freely reduced word in the
alphabet A, that is, a word not containing sub-words of the form aa−1 with
a ∈ A. We identify F with the set of freely reduced words. We denote by 1
the neutral element of F (the empty word). A word w is cyclically reduced
if all the cyclic permutations of w are freely reduced. For v a freely reduced
word, |v| denotes its length, and ||v|| denotes its cyclically reduced length,
that is, the length of the cyclically reduced word obtained by cyclically
reducing v.

• The Cayley graph of F corresponding to A will shortly be denoted simply
by a Cayley graph. We denote by 1 the base point of the Cayley graph
corresponding to 1 ∈ F .

• ∂F is the boundary at infinity of F , identified with the set of geodesic
rays in the Cayley graph, that is, freely reduced, right-infinite words in the
alphabet A. The boundary ∂F is endowed with the Cantor-set topology.
Namely, for each v ∈ F we denote by Cyl(v) the set of rays having v as an
initial segment. We set Cyl(1) = ∂F . Then, a basis for the topology of ∂F
is given by the sets {Cyl(v) : v ∈ F}.

• ∂2F is the set {(x, y) ∈ (∂F )2 : x �= y}. We identify ∂2F with the set of
oriented bi-infinite geodesics in the Cayley graph. We define the base-ball
B of ∂2F as the set of geodesics passing through 1.

• For any x �= y ∈ F , the cylinder Cyl([x, y]) is defined as the subset of ∂2F
of geodesics passing through the oriented segment joining x and y in the
Cayley graph (with the correct orientation). We set Cyl([1, 1]) = B.
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• We denote by T : ∂F → ∂F the shift operator deleting the first letter of a
ray. It turns out that T is a continuous map.

• Given a topological space M , we identify the space of Borel measures on
M with the dual of C0(M) (the space of continuous functions on M with
compact support) endowed with the weak-* topology. Namely, measures
µi converge to µ if and only if

∫
ϕ dµi →

∫
ϕ dµ for all ϕ ∈ C0(M). If µ

is a Borel measure on M , N is a topological space, and f : M → N is a
measurable, proper map, we denote by f∗µ the push-forward of µ, that is,
the measure on N such that

∫
N

ϕ d(f∗µ) =
∫

M
ϕ◦f dµ for all ϕ ∈ C0(N) (see

for example the first chapters of [Fed69] or [AFP00] for good introductions
to geometric measure theory).

3. Definitions and preliminary facts

In this section, we define the space of geodesic currents and of frequency mea-
sures, and we show that such spaces are homeomorphic. We introduce the length of
a current, which is the analog of the length of a cyclically reduced word. We define
the uniform frequency measure and the uniform current, which we use to define the
length of automorphisms.

First of all, in order to describe the action of Aut(F ) on currents, we need the
following classical result, whose proof can be found in [Coo87].

Theorem 3.1. Let Φ be an automorphism of F . Then it extends to a homeomor-
phism of ∂F (which we still denote by Φ).

Since Φ is a homeomorphism of ∂F , the map Φ × Φ is continuous and proper
on ∂2F . It follows that any automorphism Φ acts on the space of Borel measures
on ∂2F via (Φ×Φ)∗. The inclusion of F in Aut(F ) given by inner automorphisms
induces an action of F on the space of Borel measures on ∂2F . By abuse of notation,
if η is a Borel measure, we will denote by Φη the measure (Φ× Φ)∗η. We can now
give the definition of currents and frequency measures. Our definitions are a little
different from those introduced in [Kap06b, Kap05], as we do not require measures
to be normalised to probability measures. This is because the quantities we are
interested in (lengths of automorphisms) depend on the total mass of the measures
with which we work.

Definition 3.2 (Geodesic currents and their lengths). The space of geodesic cur-
rents is the space of locally finite (i.e. finite on compact sets) F -invariant non-
negative Borel measures on ∂2F . The length L(η) of a current η is the measure
η(B) of the base-ball B of ∂2F .

The length of a current η is explicitly given by

L(η) =
∑
x∈A

η(Cyl([1, x])).

Definition 3.3 (Frequency measures). The space of frequency measures is the set
of finite-mass T -invariant non-negative Borel measures on ∂F (where T -invariant
means that T∗µ = µ). The total mass of a measure µ will be denoted by ||µ||.

The unitary ball of the frequency measures, that is to say, the set of probability
T -invariant measures on ∂F , is sometimes called the frequency space of F in the
literature (see [Kap05]).
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We will use the letter η primarily to denote a current, and the letter µ to denote
a frequency measure. We refer the reader to Appendix A for some basic facts about
currents and measures.

If η is a geodesic current, and x, y ∈ F , by F -invariance, the value η(Cyl([x, y]))
depends only on the label x−1y ∈ F . The F -invariance of currents plays the role
of T -invariance for frequency measures. With this in mind, we can construct an
isomorphism between the space of geodesic currents and the space of frequency
measures as follows:

η ↔ µ if and only if η(Cyl([x, y])) = µ(Cyl(x−1y)).

More precisely, one can prove (see also [Kap05, Kap06a]):

Theorem 3.4. The map α from the space of frequency measures to the space of
geodesic currents, defined by

α(µ)(Cyl([x, y])) = µ(Cyl(x−1y))

for all x, y ∈ F , is a homeomorphism with respect to the weak-* topologies. More-
over, under this correspondence, the total mass corresponds to length, that is,

L(α(µ)) = ||µ||.

Proof. We only sketch the proof. The fact that α is well-defined and bijective can
easily be proved using F - and T -invariance. The weak-∗ continuity follows from
Proposition A.1, while the last claim is a straightforward computation. �

The identification between currents and frequency measures induces an action
of Aut(F ) on the frequency measures given by

Φµ = α−1 ◦ (Φ × Φ)∗ ◦ αµ.

Note that the action on frequency measures is not just the push-forward via Φ
because the push-forward does not commute with T .

The fact that the length of a current corresponds to the total mass of a frequency
measure will be the first ingredient of the proof of the compactness result: bounded
length → bounded norm → weak compactness.

Next, we briefly discuss relations between currents and cyclically reduced words,
referring the reader to [Kap06b] for more details.

There is a natural embedding of the space of cyclically reduced words in the space
of geodesic currents (or frequency measures). Namely, if w is a cyclically reduced
word, we denote by w+∞ the ray www · · · , by w−∞ the ray w−1w−1w−1 · · · , and
by γw the geodesic joining w−∞ and w+∞, that is, γw = (w−∞, w+∞) ∈ ∂2F .
Then one can associate at each word w the current

ηw =
∑

v∈[w]

δγv
,

where [w] is the conjugacy class of w in F and δγv
denotes the Dirac measure

concentrated on γv. In the literature, such currents are often referred to as rational
currents. Note that if w is not a proper power, then ||w|| = L(ηw) = ||α−1(ηw)||.

Definition 3.5 (Uniform current and uniform measure). The uniform current ηA

and the uniform frequency measure µA are defined as follows. For all v ∈ F we set

µA(Cyl(v)) =
1

2k(2k − 1)|v|−1
and ηA = α(µA).
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Note that L(ηA) = 1 and ||µA|| = 1.

Remark 3.6. The uniform current is not the product µA × µA on (∂F )2. Indeed,
ηA is a measure on ∂2F �= (∂F )2, and F -invariance implies that neighbourhoods of
the diagonal have infinite measure.

Nevertheless, the current ηA is not so different from µA × µA. Indeed, we can
disintegrate ηA with measures that are in the same density class as µA. This means
that if we cut a slice Sx of ∂2F at the point x, namely Sx = {x} × {∂F \ x}, then
there exists a continuous function ϕ on {∂F \x} such that the measure µx induced
on Sx by ηA is ϕ · µA. A precise version of this fact is proved in Lemma A.2.

Definition 3.7 (Length of automorphisms). For any automorphism Φ of F we
define the length of Φ as the length of the image of the uniform current, that is,

L(Φ) = L(ΦηA) = ηA(Φ−1(B)).

Because of F -invariance of currents, L(Φ) depends only on the class [Φ] ∈Out(F ).
We set L([Φ]) = L(Φ).

Intuitively speaking, for Φ ∈ Aut(F), one can think of the length of Φ as the
limit, as n tends to infinity, of ||Φ(wn)||/n, where wn is a “random” cyclically
reduced word in F of length n.

4. Proofs of the main results

Sketch of the proof of Theorem 1.1. Let {Φn} be a sequence of automorphisms of
bounded length. The strategy of the proof can be summarised as follows.
Step 1. The bounded length hypothesis, together with compactness of frequency
measures, implies that the currents ΦnηA have a limit η∞ (Lemma 4.1).
Step 2. The core of the proof. We study the action of Φn on ∂2F and on ∂F . The
main idea is that unbounded lengths of Φn correspond to the fact that the maps
Φn accumulate all the boundary on some points (the attractors). The key point
is that, on the one hand, the bounded length hypothesis excludes the presence of
attractors, while on the other hand, the existence of an element of f ∈ F such
that ||Φn(f)|| is unbounded implies the presence of attractors (Lemma 4.6 and
Lemma 4.8). Therefore, the maps Φn keep bounded the cyclically reduced length
of all elements of F .
Step 3. If Φn keep bounded the cyclically reduced length of all elements of F , then
Φn has a subsequence that converges, i.e. is eventually constant (Lemma 4.10).

We now proceed to work out the details of the proof.

Lemma 4.1. Up to passing to a subsequence, the currents ΦnηA have a limit η∞
which is a geodesic current.

Proof. Since the lengths L(ΦnηA) are bounded, the total mass of the correspond-
ing frequency measure ΦnµA is bounded. The set of non-negative measures with
bounded mass on a compact space is weakly-* compact. Since ∂F is compact,
up to passing to subsequences, ΦnµA has a limit µ∞. Such a limit is T -invariant
because the push-forward via a continuous map is weak-* continuous. Thus, the
limit is a frequency measure, which therefore corresponds to a geodesic current η∞.
By continuity of the correspondence α between frequency measures and geodesic
currents, it follows that ΦnηA → η∞. �
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Remark 4.2. Although it is not relevant for the sequel, we note that the limit η∞
is actually a non-zero current because L(Φ) ≥ 1 for any Φ.

Next, we proceed to study the attractors. As the next lemma shows, attractors
correspond to singularities of the limit current η∞. More precisely, a Borel measure
σ1 is said to be absolutely continuous w.r.t. the Borel measure σ2 if for any Borel set
C, σ2(C) = 0 implies σ1(C) = 0. We say that a current η has a part concentrated
on a set C if ηA(C) = 0 and η(C) > 0. Similarly, we say that a frequency measure
µ has a part concentrated on a set C if µA(C) = 0 and µ(C) > 0.

Lemma 4.3. Let Ψn be a sequence of automorphisms such that the currents ΨnηA

have a limit current η. Let p, q ∈ ∂F be two distinct points. Suppose that there
exist cylinders Pn = Cyl(pn), Qn = Cyl(qn) ⊂ ∂F such that pn → p and qn → q,
and such that there is a positive constant c for which ηA(Ψ−1

n (Pn×Qn)) > c. Then,
the current η has a part concentrated on (p, q).

Proof. Any cylinder C ⊂ ∂2F containing (p, q), contains Pn×Qn for all sufficiently
large n. Therefore, by definition of push-forward and by hypothesis, we get (for all
sufficiently large n):

ΨnηA(C) > ΨnηA(Pn × Qn) = ηA(Ψ−1
n (Pn × Qn)) > c.

By Proposition A.1 it follows that the limit current satisfies η(C) ≥ c for any
cylinder C containing (p, q). This implies that η((p, q)) ≥ c while ηA((p, q)) = 0,
that is, η has a part concentrated on (p, q). �

The following is a standard fact, which says that the only currents that can have
a part concentrated on a geodesic are essentially the rational currents (recall that
∂F and ∂2F are identified with the set of geodesic rays and of bi-infinite geodesics
in the Cayley graph, respectively).

Lemma 4.4. Any frequency measure (and hence the limit µ∞) cannot have a part
concentrated on a non-periodic ray. Therefore any current (and hence the limit η∞)
cannot have part concentrated on a non-periodic geodesic.

Proof. Any frequency measure µ has finite mass and is T -invariant. Hence if it has
a part concentrated on a point x, it has a part concentrated on each point of the
T -orbit of x, with the same weight. It follows that such an orbit must be finite,
forcing x to be periodic. �

We now prove a small lemma that will be used in Lemma 4.6. We isolated
this result from the proof of Lemma 4.6 because it is the only point in which we
crucially use the properties of the uniform current (this will be further discussed in
Section 5).

Lemma 4.5. For any f ∈ F , there exists a positive constant c, depending only on
f , such that whenever two disjoint Borel-subsets E, S of ∂F satisfy

f(∂F \ E) ⊂ S, f−1(∂F \ S) ⊂ E,

then we have
ηA(E × S) ≥ c(1 − µA(E))(1 − µA(S)).

In particular, ηA(E × S) = 0 if and only if either E or S has full-measure with
respect to µA.
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We notice that the hypothesis that E and S are disjoint is redundant. We
formulated the lemma in that way for reasons of compatibility with Theorem 5.3.

Proof of Lemma 4.5. The hypothesis that E and S are disjoint will not be used
in this proof. By hypothesis we have µA(S) ≥ µA(f(∂F \ E)) and µA(E) ≥
µA(f−1(∂F \ S)), and by Lemma A.4

µA(E) ≥ 1 − µA(S)
(2k − 1)|f |

and

µA(S) ≥ 1 − µA(E)
(2k − 1)|f |

from which we get

µA(E)µA(S) ≥ (1 − µA(E))(1 − µA(S))
(2k − 1)2|f |

.

By Lemma A.3

ηA(E × S) ≥ µA(E)µA(S) ≥ (1 − µA(E))(1− µA(S))
(2k − 1)2|f |

,

and setting c = 1
(2k−1)2|f| completes the proof. �

Now the aim is to prove that the maps Φn keep bounded the lengths of all
elements of F , so that we can apply Lemma 4.10. We do it in the following two
lemmata. Namely, in Lemma 4.6 we show that if this is not the case, then there are
no attractors in ∂2F and at most a unique attractor in ∂F . Lemma 4.8 will show
that, up to conjugation, we can avoid the presence of a unique attractor in ∂F .

Lemma 4.6. Suppose that ΦnηA has bounded length (uniformly on n). Suppose
that there exists an element f ∈ F such that the cyclically reduced length Φn(f) goes
to ∞. Then, after possibly passing to a subsequence, Φn (as maps of ∂F ) pointwise
converge almost everywhere to a constant. That is to say, there exists y ∈ ∂F such
that for µA-almost all x ∈ ∂F , Φn(x) → y.

Proof. By Lemma 4.1, without loss of generality we can suppose that ΦnηA has a
limit η∞.

Recall that we consider Φn(f) and Φn(f−1) as freely reduced words. Let vn be
the maximal initial segment shared by Φn(f) and Φn(f−1), and let Ψn be the map
x �→ v−1

n Φn(x)vn. Note that ΨnηA = ΦnηA and that Ψn(f) is cyclically reduced.
Up to passing to a subsequence, Ψn(f) and Ψn(f−1) have limits, which we denote
by r+ and r−, in ∂F . Since Ψ(f) is cyclically reduced, r+ �= r−. Note that this
also implies that r+ and r− have no common initial segment, that is, the geodesic
(r−, r+) passes through 1, the base-point of the Cayley graph.

We now show that Ψn, as maps of ∂F , converge µA-almost everywhere either to
r− or to r+.

Next, cut Ψn(f) into two segments of equal length. More precisely, we set

Ψn(f) = sne−1
n

where the starting segment sn and the ending one en both have length |Ψn(f)|/2
(approximated to the nearest integers). We have sn → r+ and en → r−. In
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particular, for large enough n, Cyl(en)∩Cyl(sn) = ∅, which implies Cyl([en, sn]) =
Cyl(en) × Cyl(sn). For large n, let Cn be such a cylinder:

Cn = Cyl([en, sn]) = Cyl(en) × Cyl(sn)

and set En = Ψ−1
n (Cyl(en)) and Sn = Ψ−1

n (Cyl(sn)). Note that En ∩ Sn = ∅.
For all x ∈ ∂F , either Ψn(x) ∈ Cyl(en) or Ψn(fx) ∈ Cyl(sn), so either x ∈ En

or fx ∈ Sn, whence
f(∂F \ En) ⊂ Sn.

Similarly, either Ψn(x) ∈ Cyl(sn) or Ψn(f−1x) ∈ Cyl(en) and

f−1(∂F \ Sn) ⊂ En.

Thus, by Lemma 4.5

ηA(En × Sn) ≥ (1 − µA(En))(1 − µA(En))
(2k − 1)2|f |

.

By the definition of push-forward

ΨnηA(Cn) = ηA(Ψ−1
n (Cn)) = ηA(En × Sn),

and putting together these (in)equalities, we get

ΨnηA(Cn) ≥
[
1 − µA

(
Ψ−1

n (Cyl(en))
)][

1 − µA

(
Ψ−1

n (Cyl(sn))
)]

(2k − 1)2|f |
.

If ΨnηA(Cn) → 0, then either µA(Ψ−1
n (Cyl(en))) or µA(Ψ−1

n (Cyl(sn))) converges
to 1 and therefore, up to passing to subsequences, Ψn converges almost everywhere
either to r− or to r+, and we are done.

We now show that the bounded length hypothesis excludes the possibility that
ΨnηA(Cn) stays bounded away from zero. Indeed, suppose that there exists a
constant c such that ΨnηA(Cn) > c, uniformly on n. Then, by Lemma 4.3, η∞
has a part concentrated on the geodesic (r−, r+), which is therefore periodic by
Lemma 4.4; let w be its period. We must have

(1) r− = w−∞ and r+ = w+∞.

We may assume that the element f is not a proper power. Since Ψn is an automor-
phism of F , it follows that Ψn(f) is not a proper power either. Therefore, by (1),
for all large enough n, we can write Ψn(f) as

Ψn(f) = wi(n)unwj(n)

where un neither starts nor ends with w, and the exponents i(n) and j(n) are non-
negative and go to infinity as n does. Without loss of generality, we can suppose
i(n) ≤ j(n), so that sn starts with wi(n).

For any 0 ≤ h ≤ i(n), let Ch
n be the cylinder

Ch
n = Cyl([w−hen, w−hsn]).

Note that the Ch
n ’s are pairwise disjoint, because un neither starts nor ends with

w. Moreover, the condition 0 ≤ h ≤ i(n) ≤ j(n) implies that the geodesic segment
from w−hen and w−hsn passes through 1, thus Ch

n ⊂ B for all 0 ≤ h ≤ i(n). By
F -invariance of currents, we have

ΨnηA(Ch
n) = ΨnηA(Cn) > c
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uniformly on n. It follows that

L(Φn) = L(Ψn) = ΨnηA(B) > ci(n)

which goes to infinity as n does, contradicting the bounded length hypothesis.
Thus we have proved that, after passing to a subsequence, the maps Ψn : x �→

v−1
n Φn(x)vn µA-almost everywhere converge to a map which is constant (either to

r− or to r+). Up to possibly passing to a subsequence, vn converges to a limit v∞,
which is either an element of F or of ∂F . Since the elements vn were the maximal
initial segments shared by Φn(f) and Φn(f−1), the words vnΨn(f) and vnΨn(f−1)
are freely reduced. It follows that the maps Φn converge almost everywhere, up to
passing to the same subsequence, to a constant – which is either v∞ (if v∞ is an
element of ∂F ) or v∞r− or v∞r+ (if v∞ ∈ F ). �

Remark 4.7. The proof of Lemma 4.6 can be adapted to prove the following more
general fact. If we replace the hypothesis “ΦnηA has bounded length η∞” with
“ Φn

L(Φn)ηA has a limit η∞” – which is always true up to passing to a subsequence –
then, we get that η∞ does not have a part concentrated on a geodesic. Indeed, if
η∞ has a part concentrated on a geodesic γ, then there exists a positive constant c
such that for any cylinder C containing γ we have ηA((Φn ×Φn)−1(C)) ∼ cL(Φn).
As in the argument above, we must have γ = (w−∞, w+∞) for some w ∈ F , and
conjugating Φn by a suitable power of w, we reach a contradiction. Indeed, if X
denotes the set (Φn × Φn)−1(C), then (Φn × Φn)−1(wC) = Φ−1

n (w)X which is
contained in the set (Φn × Φn)−1(B), whose ηA-measure is L(Φn) by definition. If
a geodesic belongs to X ∩ Φ−1

n (w)X, then it passes through 1, whence

ηA(X ∩ Φ−1
n (w)X) ≤ 1.

Since ηA(X) ∼ cL(Φn), we can conjugate by w approximately at most 1/c times,
while if γ = (w−∞, w+∞), then we can do that infinitely many times.

After Lemma 4.6, it remains to deal with the case where Φn converges almost
everywhere to a constant. What is the behavior of such a sequence? An example
can be constructed by taking a fixed Φ and conjugating with elements vn whose
length goes to infinity. The next lemma shows that more or less this is the only
possibility.

Lemma 4.8. Let Φn be a sequence of automorphisms of F . Then, there exists vn ∈
F such that, up to possibly passing to a subsequence, the maps x �→ v−1

n Φn(x)vn

have no subsequence converging to a constant µA-almost everywhere.

Proof. The rough idea is that, via conjugations, we can force the “barycentre of
Φn” to stay in a fixed compact.

For any freely reduced word w of length M , define Bn(w) as the set of rays x
such that Φn(x) starts by w, namely

Bn(w) = {x ∈ ∂F : Φn(x) ∈ Cyl(w)} = Φ−1
n (Cyl(w)).

Obviously Bn(1) = ∂F . Moreover, for each n we have

(2) lim
M→∞

sup
|w|=M

µA(Bn(w)) = 0.

Indeed, otherwise for all M there exists wM ∈ F of length M such that µA(Bn(wM ))
> c > 0. Up to subsequences, wM converges to a ray R, and Φn(Bn(wM ))
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= Cyl(wM ) → R, contradicting the fact that Φn is a homeomorphism of ∂F
(in this argument n is fixed).

Now, let vn be a freely reduced word of maximal length such that µA(Bn(vn)) ≥
1
2 . Let Φ̃n be the map x �→ v−1

n Φ(x)vn and let

B̃n(w) = {x ∈ ∂F : Φ̃n(w) ∈ Cyl(w)}.

Let ln ∈ A be the last letter of vn. Since µA(Bn(vn)) ≥ 1
2 we get µA(B̃n(l−1

n )) ≤ 1
2 .

On the other hand, for any a ∈ A, different from l−1
n , maximality of the length of

vn implies

µA(B̃n(a)) ≤ 1
2
.

Hence, such an inequality holds for all a ∈ A. It follows that the sequence Φ̃n

cannot have any subsequence converging to a constant almost everywhere. �

Since conjugations do not affect the length of cyclically reduced words, Lemma
4.6 and Lemma 4.8 can be summarised as follows (recall that for f ∈ F , |f | denotes
its length, while ||f || denotes the length of the cyclically reduced word obtained
from f).

Corollary 4.9. Let Φn be a sequence of automorphisms. If there is M such that
L(Φn) < M , then for each f ∈ F there exists M(f) such that ||Φn(f)|| < M(f).

As the experts know, Corollary 4.9 implies Theorem 1.1. We include the proof
of the following Lemma 4.10 for completeness.

Lemma 4.10. Let {Φn} be a sequence of automorphisms such that for each f ∈
F there is an M(f) such that ||Φn(f)|| < M(f). Then, there exist elements
vn ∈ F such that a subsequence of {v−1

n Φnvn} converges to an automorphism (i.e.
{v−1

n Φnvn} has a constant subsequence).

Proof. By a diagonal argument, up to passing to a subsequence, the maps Φn, as
maps from F to itself, pointwise converge to a map Φ∞ (up to conjugation). In
particular, there exists a map Φ∞ : A → F and maps wn : A → F such that Φ∞(f)
is cyclically reduced and, up to passing to a subsequence, for all f ∈ A we have

Φn(f) = wn(f)Φ∞(f)wn(f)−1.

Choose an element a ∈ A. Up to conjugation we can suppose that wn(a) = 1,
that is, Φn really converges as an automorphism on the subgroup generated by a.
Let G ⊂ A be a maximal set of generators g such that |Φn(g)| stays bounded. If
G = A we are done, because, up to subsequences, Φn converges on A, whence on
F . Otherwise, there exists f ∈ A such that the length of wn(f) goes to infinity.
Since

Φn(af) = Φ∞(a)Φn(f) = Φ∞(a)wn(f)Φ∞(f)wn(f)−1

has bounded cyclically reduced length, and since Φ∞(a) has finite length, we get
that, for large enough n, wn(f) must start either with Φ∞(a) or with Φ∞(a)−1.
Iterating this argument we get that wn(f) is the product of a power of Φ∞(a) and
a word of bounded length. Thus, up to subsequences, we get

(3) wn(f) = Φ∞(a)mu

for some m ∈ Z with |m| → ∞ as n → ∞, and u a finite word (which depends on
f).
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It follows that, up to conjugating Φn by Φ∞(a)m, we can suppose that G has at
least two elements a, b and that Φn is eventually constant on the subgroup generated
by a and b. If G �= A, let f be as above. As in (3), we get

wn(f) = Φ∞(a)mu,

wn(f) = Φn(b)lv

for some exponents m, l such that |m|, |l| go to infinity as n does, and fixed words u, v
(depending on f, a, b). Therefore, as n goes to infinity, we get that the unoriented
geodesics (Φ∞(a)−∞, Φ∞(a)+∞) and (Φn(b)−∞, Φn(b)+∞) coincide.

This implies that Φn(b) is cyclically reduced. In particular, we get Φn(b) =
Φ∞(b), and therefore Φ∞ is an automorphism on the group generated by a and b.
Moreover, the above inequalities imply that

Φ∞(b)|Φ∞(a)| = Φ∞(a±1)|Φ∞(b)|,

whence
b|Φ∞(a)| = a±1|Φ∞(b)|,

which is impossible because F is free. Thus G = A, and hence there exists a
subsequence of {Φn} which converges. �

By Lemma 4.8, up to conjugation, the sequence Φn does not sub-converge almost
everywhere to the same point; by Lemma 4.6 we can apply Lemma 4.10, and the
proof of Theorem 1.1 is complete. �

Proof of Corollary 1.2. We have to prove that the spectrum of the length function
is discrete. Suppose not, and take a sequence Φn of automorphisms such that L(Φn)
has a limit λ, with L(Φn) �= λ for all n. By Theorem 1.1 there exist elements vn

and a subsequence ni such that the maps Ψni
: x �→ vni

Φni
(x)v−1

ni
converge to an

automorphism Ψ. Thus, the sequence Ψni
is eventually constant, and therefore the

sequence of lengths L(Ψni
) is also eventually constant. But L(Ψni

) = L(Φni
) is

therefore eventually equal to λ, a contradiction. �

Proof of Theorem 1.3. This immediately follows from Corollary 1.2 and [Kap06a,
Proposition 5.2]. Indeed, I. Kapovich proved that for any non-simple automorphism
Φ there exists a Whitehead automorphism τ such that

1 ≤ L(τΦ) < L(Φ),

and the claim follows by an inductive argument on the length. �

5. Generalisations

In this section we give a (partial) answer to the question: For which currents
does Theorem 1.1 hold?. The idea is that length-compactness is true (for any action
on metric trees and) for any current for which Lemma 4.5 holds.

Definition 5.1 (η-length of automorphisms). Let η be a geodesic current and let
Φ ∈ Aut(F ). We define the η-length of Φ as

Lη(Φ) = L(Φη).
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The proof of Theorem 1.1 can be followed step by step in this new setting,
obtaining:

Theorem 5.2. Let η be a geodesic current and let µ be its corresponding frequency-
measure. Suppose there exists a constant c > 0 and that for each f ∈ F there is
b(f) > 0 such that for any disjoint Borel sets E, S ⊂ ∂F ,

µ(fE) ≥ b(f)µ(E) and η(E × S) ≥ cµ(E)µ(S).

Then Theorem 1.1 holds for η. That is to say, any sequence of automorphisms
Φn ∈ Aut(F ) with bounded η-length has, after possibly conjugating, a convergent
subsequence (i.e. a constant subsequence).

Proof. The hypotheses on η guarantee that Lemma 4.5 holds for η. Moreover, our
assumptions imply that η is not concentrated on a single geodesic. This implies
that Lemma 4.8 can be rewritten, with the difference being that equation (2) of
page 170 becomes (notation as in Lemma 4.8)

lim
M→∞

sup
|w|=M

µ(Bn(w)) < C < 1

for a certain constant C, so that we have to consider a word vn of maximal length
such that µ(Bn(vn)) ≥ C.

The proof now is exactly as in Theorem 1.1 because there are no other places in
the proof of Theorem 1.1 where the specific properties of the uniform current can
be used. �

We now give a criterion for a current to satisfy the hypotheses of Theorem 5.2,
formulated in terms of the corresponding frequency measure.

Theorem 5.3. Let η be a geodesic current and µ be its corresponding frequency
measure. Suppose that for each a ∈ A there exist two strictly positive constants
C1(a) and C2(a) such that for any E ⊂ ∂F \ Cyl(a−1) we have

C1(a)µ(E) ≤ µ(aE) ≤ C2(a)µ(E).

For all freely reduced words w = a0 . . . ak, set Ci(w) = Ci(a0) · · ·Ci(ak), i = 1, 2.
If there is a constant M such that

inf
w∈F

C1(w−1)
C2(w)

≥ 1
M

, sup
w∈F

C2(w) ≤ M,

then the hypothesis of Theorem 5.2 is satisfied. Namely, there exists a constant
c > 0 and for each f ∈ F there is b(f) > 0 such that for any E, S ⊂ ∂F

µ(fE) ≥ b(f)µ(E) and η(E × S) ≥ cµ(E)µ(S).

In particular, length compactness holds for η.

Proof. By Proposition A.1, it suffices to prove the claims when E and S are cylin-
ders, and, regarding the first claim, it suffices to prove it for generators. Let E ⊂ ∂F
be a cylinder and a ∈ A. Set E0 = E ∩ Cyl(a−1) and E1 = E \ E0. Then

µA(aE0) ≥
1

C2(a−1)
µA(E0), µA(aE1) ≥ C1(a)µA(E1),

and the first claim follows setting b(a) = inf{C1(A), 1
C2(a−1)}.

We now prove the second claim. Let E, S ⊂ ∂F be two disjoint cylinders. Let

E = Cyl(v0v), S = Cyl(v0w),
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with v0v, v0w, v−1w freely reduced (that is, v0 is the maximal initial segment shared
by E and S). We set

E′ = Cyl(v) = v−1
0 E, S′ = Cyl(w) = v−1

0 S,

E′′ = v−1E′, S′′ = v−1S′ = Cyl(v−1w).

By F -invariance we have

η(E × S) = η(E′ × S′) = η(E′′ × S′′) = η(Cyl([v−1w])) = µ(S′′).

Then by induction on the lengths of v0, v, w (and using the fact that v0v, v0w,
v−1w are reduced) we get

µ(S′′) ≥ Cµ(S′′)µ(E′′) ≥ CC1(v−1)µ(S′)
1

C2(v)
µ(E′)

= c
C1(v−1)
C2(v)

µ(S′)µ(E′) ≥ C
C1(v−1)
C2(v)

µ(S)
C2(v0)

µ(E)
C2(v0)

where C is a suitable constant, and the claim follows by setting c = C/M3. �

Appendix A

Throughout the paper, we used some standard results about currents and mea-
sures. This section contains the proofs of some of these facts.

Proposition A.1. Let m be a Borel measure on ∂F or ∂2F . Then, m is determined
by its value on cylinders. Moreover, if {mi} is a sequence of Borel measures, then
mi converges to m if and only if for all cylinders C, mi(C) → m(C).

Proof. We restrict ourselves to the case where m is a Borel measure on ∂F ; an
identical argument gives the ∂2F -case. So assume m is a Borel measure on ∂F . The
characteristic function of any cylinder belongs to C0(∂F ), and the space V generated
by the characteristic functions of cylinders is dense in C0(∂F ) (the topology of
C0(∂F ) is given by uniform convergence). The first claim follows.

In addition, this implies that if mi converges to m, then for any cylinder C,
mi(C) → m(C). On the other hand, suppose that mi(C) → m(C) for all cylinders
C. Then for any χ ∈ V ,

∫
χ dmi →

∫
χ dm. Therefore, for any ϕ ∈ C0(∂F ), if

{χk} ⊂ V is a sequence converging to ϕ, we have

|
∫

ϕ d(mi − m)| ≤ |
∫

|ϕ − χk| dmi| + |
∫

χk d(mi − m)| + |
∫

|χk − ϕ| dm|

where the sum of the first and the last term is bounded by ||ϕ−χk||(||mi||+ ||m||),
which goes to zero as k → ∞, uniformly on i. The second term goes to zero for
any k. �

Lemma A.2. For any (x, y) ∈ ∂2F let L(x, y) be the length of the maximal initial
segment shared by x and y. Then we have

ηA = 2k(2k − 1)2L(x,y)−1µA × µA.

Proof. Let D, E ⊂ ∂F be two disjoint cylinders. Since D and E are disjoint, there
exist v, w ∈ F such that D = Cyl(v), E = Cyl(w), and such that v is not the
initial segment of w and vice versa. Let L be the length of the maximal initial
segment shared by v and w (possibly L = 0). Now, let D′ = Cyl(v′) ⊂ D and
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E′ = Cyl(w′) ⊂ E be two cylinders. We set |v′| = L + a and |w′| = L + b. We have
D′ × E′ = Cyl([v′, w′]) and, by definition (Definition 3.5)

ηA(Cyl([v′, w′])) =
1

2k(2k − 1)|(v′)−1w′|−1
=

1
2k(2k − 1)a+b−1

which can be written as
2k(2k − 1)2L−1

(2k(2k − 1)L+a−1)(2k(2k − 1)L+b−1)
= 2k(2k − 1)2L−1µA(D′)µA(E)′.

So by Proposition A.1, the restriction of ηA to D×E is given by 2k(2k−1)2L−1µA×
µA. Since for each (x, y) ∈ D × E we have L(x, y) = L, we get that the restriction
of ηA to D × E is given by

2k(2k − 1)2L(x,y)−1µA × µA.

Since this holds for any D, E, the claim follows by Proposition A.1. �

An immediate corollary of Lemma A.2 is the following.

Lemma A.3. Let E, D ⊂ ∂F be two Borel subsets of µA-positive measure. Then
ηA(E × D) ≥ µA(E)µA(D).

Proof. Just apply the Fubini-Tonelli theorem, using Lemma A.2, and the fact that
L(x, y) ≥ 0 and that 2k

2k−1 > 1. �

Lemma A.4. Let E be a Borel subset of ∂F . Then for all f ∈ F

µA(fE) ≥ µA(E)
(2k − 1)|f |

.

In particular, if E has µA-positive measure, then fE has µA-positive measure.

Proof. It suffices to prove the claim for f ∈ A. Let E0 = E ∩ Cyl(f−1) and
E1 = E \ E0. By definition of µA and Proposition A.1 we have

µA(fE0) = (2k − 1)µA(E0), µA(fE1) =
µA(E1)
2k − 1

,

and the claim follows. �
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