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Abstract. We study a class of continuous deformations of branched complex
projective structures on closed surfaces of genus g ≥ 2, which preserve the

holonomy representation of the structure and the order of the branch points.

In the case of non-elementary holonomy we show that when the underlying
complex structure is infinitesimally preserved the branch points are necessar-

ily arranged on a canonical divisor, and we establish a partial converse for

hyperelliptic structures.
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1. Introduction

In this paper we are interested in the deformation theory of certain classes of
complex projective structures on a fixed closed surface S of genus g ≥ 2. These
are geometric structures locally modelled on the geometry of the Riemann sphere
CP1 and its group of Möbius transformations PSL2C, possibly with branch points;
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in Thurston’s terminology (see [Thu97]), they are called branched (PSL2C,CP1)-
structures. We refer the reader to Dumas’ survey [Dum09] for an account of the clas-
sical theory in the unbranched case, and to Mandelbaum’s original papers [Man72;
Man73] for the branched case.

Such a structure induces in particular a complex structure on the underlying
surface, and actually the classical theory of Riemann surfaces provides lots of ex-
amples. Spherical, Euclidean and hyperbolic geometry have conformal realizations
inside complex projective geometry, so constant curvature metrics are examples
of complex projective structures. Then uniformization theory shows that every
Riemann surface admits structures of this type, both with and without branch
points. In particular the deformation space of branched complex projective struc-
tures BP(S) has a natural surjective forgetful map to the Teichmüller space T (S)
of the surface S

π : BP(S)→ T (S)

As usual with geometric structures (see [Thu97; Dum09]), analytic continuation
of local charts gives rise to a global invariant known as the holonomy of the struc-
ture, which in our context takes the form of a conjugacy class of representations
ρ : π1(S)→ PSL2C. We obtain therefore another forgetful map, known as the ho-
lonomy map, with values in the PSL2C-character variety χ(S) of the fundamental
group of S

hol : BP(S)→ χ(S)

Since the pioneering work of Poincaré on second-order linear ODEs on complex
domains (see for instance [Poi84]), it has been observed that the ratio of two in-
dependent solutions of such an equation can be used to define local charts for a
complex projective structure, which has linked the study of these structures to the
classical theory of ODEs, especially to the study of questions about their mon-
odromy groups. In more recent days this has been popularized by the work of
Gallo-Kapovich-Marden in [GKM00] on the Schwarz equation on closed surfaces of
genus g ≥ 2, which is the equation locally given by(

u′′

u′

)′
− 1

2

(
u′′

u′

)2

= q

where q is a holomorphic quadratic differential. By constructing projective struc-
tures with specified holonomies, they show that a non-elementary representation
ρ : π1(S)→ PSL2C arises as the monodromy group of such an equation if and only
if it lifts to SL2C. In particular it follows from their result that the above map
hol is essentially surjective, and that a lot of non-discrete representations arise as
holonomies of complex projective structures.

Our main motivation for this work lies in a more recent paper by Calsamiglia-
Deroin-Heu-Loray (see [CDHL19]) in which they study sl2-systems on a closed
surface of genus g ≥ 2, i.e. systems of first order ODEs of the form(

u′1
u′2

)
=

(
a11 a12
a21 −a11

)(
u1
u2

)
where aij are holomorphic 1-forms. In their work they have successfully used the
theory of complex projective structures to obtain new results about the monodromy
groups of these equations, establishing a correspondence between sl2-systems and
certain deformation spaces of complex projective structures.
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These applications turn the spotlight on the deformation theory of branched
complex projective structures with a specified holonomy representation (and pos-
sibly a specified number of branch points), and these are the spaces on which we
focus our attention in this work. Let us denote by Mk,ρ the deformation space of
structures having holonomy ρ : π1(S)→ PSL2C and k branch points counted with
multiplicity.

The classical (i.e. unbranched) case corresponds to k = 0. These spaces M0,ρ

are known to be discrete by a classical result of Hejhal (see [Hej75]). More explic-
itly, when ρ is a Fuchsian (i.e. discrete, injective and real) representation Goldman
has shown in [Gol87] that every structure in M0,ρ is obtained from the hyperbolic
structure H2/ρ(π1(S)) by a 2π-grafting along a multicurve, a surgery introduced
originally by Maskit in [Mas69], and later studied in [Gol87; CDF14b]. An analo-
gous result has recently been obtained by Baba for generic holonomy representations
(see [Bab12; Bab15; Bab17]).

The branched case (i.e. k > 0) requires the introduction of an additional surgery,
known as bubbling and introduced in [GKM00]. In the case of Fuchsian holonomy,
some results have been obtained which are analogous to Goldman’s result (see
[CDF14a; Ruf19a; Ruf19b]). Moreover the presence of branch points allows certain
local deformations at branch points, which should be thought as analogous to the
classical Schiffer variations for Riemann surfaces (see [Nag85]), and have actually
been shown to provide holomorphic coordinates on these deformation spaces: indeed
they have been used in [CDF14a, Appendix] to show that if ρ is a non-elementary
representation then Mk,ρ carries a canonical structure of k-dimensional complex
manifold, locally modelled on Hurwitz spaces, and for which the projection to
Teichmüller space π :Mk,ρ → T (S) is holomorphic.

A natural question is to better understand the complex geometry of these de-
formation spaces, which is of course best studied in terms of this projection. This
is moreover motivated by the aforementioned correspondence proved in [CDHL19]
between sl2-systems with irreducible monodromy ρ on a Riemann surface of genus
g ≥ 2 and rational curves in M2g−2,ρ; more precisely they showed that if π :
M2g−2,ρ → T (S) has a fiber with at least three points, then that fiber is actually
a rational curve and ρ is the monodromy of some sl2-system.

This should be contrasted with the unbranched case, in which the projection
π : M0,ρ → T (S) is known to be injective by a classical result of Poincaré (see
[Poi84]). Recently Baba and Gupta have shown that further projecting to moduli
space (i.e. forgetting the marking) results in a dense subset of the moduli space of
Riemann surfaces (see [BG15]).

In the branched case an analogous injectivity result has been obtained by Hejhal
in [Hej75, Theorem 15] for the sub-canonical range k < 2g − 2. The goal of this
work is to improve Hejhal’s result by studying the infinitesimal behaviour of the
forgetful map to Teichmüller space. Our main result is the following (see Theorem
3.11 below); here if λ is a partition of k we denote byMλ,ρ the deformation space of
complex projective structures with holonomy ρ and k branch points counted with
multiplicity and arranged according to the partition λ, and we denote by πλ the
restriction to the stratum Mλ,ρ of the forgetful map π :Mk,ρ → T (S).

Theorem 1.1. Let g ≥ 2, ρ : π1(S) → PSL2C be non-elementary, k ≤ 2g − 2, λ
be a partition of k and σ ∈ Mλ,ρ. If σ is a critical point for πλ, then the branch
points of σ form a canonical divisor on the underlying Riemann surface.
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In particular we get that k must be equal to the degree of a canonical divisor, i.e.
k = 2g − 2. It can be observed by a direct computation that for all the structures
on a rational curve in M2g−2,ρ defined by an sl2-system (through the correspon-
dence from [CDHL19]) the branch points are arranged on a canonical divisor on
the underlying Riemann surface. So the above theorem can be thought as a gen-
eralization of this phenomenon. Motivated once again by the work in [CDHL19],
one would like to find conditions under which some sort of converse holds. One
could ask for instance if having a canonical branching divisor is actually equivalent
to being part of a positive-dimensional fiber of the projection to Teichmüller space.
In order to approach this question we propose a study of hyperelliptic structures,
i.e. structures endowed with a projective hyperelliptic involution. Our main result
in this direction is the next one (see Theorem 4.13 below for a detailed statement),
which is a partial converse to Theorem 1.1 in the hyperelliptic setting.

Theorem 1.2. Let g ≥ 2, ρ : π1(S) → PSL2C be non-elementary, and let σ ∈
M(1,...,1),ρ ⊆ M2g−2,ρ be hyperelliptic. If the branch points of σ form a canonical
divisor on the underlying Riemann surface, then σ is a critical point for π.

The proof actually computes local equations for the critical direction, which
shows that it is 1-dimensional, and transverse to a natural (g − 1)-dimensional
family of deformations of σ through hyperelliptic structures. As a result, for every
non-elementary representation which admits hyperelliptic structures (e.g. any non-
elementary representation in genus two), we obtain examples of a 1-dimensional
family of structures such that all the structures on it have branch points on a
canonical divisor and are critical points for the projection to Teichmüller space,
but the family itself is not a fiber of the projection (as already remarked above, it
has been shown in [CDHL19] that fibers of the projection have at most dimension
1, in which case they are rational curves associated to sl2-systems).

Both theorems rely on an explicit computation of the Beltrami differential in-
duced by a movement of branch points; these are the aforementioned local defor-
mations at branch points that should be thought as a sort of Schiffer variation in
this context, as they provide local holomorphic coordinates forMk,ρ (see [CDF14a,
Appendix]).

This paper is organized as follows. In Section 2 we introduce branched complex
projective structures and the deformation spaces we are interested in; moreover in
Section 2.3 we review the main motivating example from [CDHL19] for our investi-
gation, namely the correspondence between sl2-systems and rational curves in the
deformation spaces of projective structures. We include an elementary proof that
structures coming from this construction have branch points on a canonical divisor.
In Section 3 we formally introduce movements of branch points, compute a formula
for the Beltrami differential induced by such a deformation, and a formula for the
contraction of its derivative with a holomorphic quadratic differential. This section
contains the proof of Theorem 1.1. Finally in Section 4 we introduce hyperelliptic
projective structures, construct some explicit examples thereof, and provide a proof
of Theorem 1.2.

Acknowledgements: We would like to thank Bertrand Deroin and Gabriele
Mondello for many useful conversations.
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2. Preliminaries

Throughout this paper S will be a closed, connected and oriented surface of
genus g ≥ 2, and π1(S) its fundamental group. We will consider the Riemann
sphere CP1 = C∪{∞} and its group of holomorphic automorphisms PSL2C acting
by Möbius transformations. We will denote by T (S) the Teichmüller space of S,
i.e. the space of marked complex structures on S up to isotopies, and by χ(S) the
PSL2C-character variety of π1(S), i.e. the space of representations into PSL2C up
to conjugation by PSL2C

χ(S) = Hom(π1(S),PSL2C)//PSL2C

where the quotient is taken in the sense of GIT. By classical results (see [Dum09]
and references therein) it is known that T (S) admits the structure of a smooth
connected complex manifold of dimension 3g−3, whereas χ(S) admits the structure
of a complex affine algebraic variety of dimension 6g − 6. In this paper we are
interested in the study of geometric structures which have a well-defined underlying
complex structure and induce PSL2C-representations of the fundamental group; as
such, their deformation spaces come equipped with natural maps to T (S) an χ(S),
and we will be interested in understanding their relative behaviour.

2.1. Branched complex projective structures. Complex projective structures
on S are geometric structures locally modelled on the geometry of the Riemann
sphere CP1 preserved by the group of Möbius transformations PSL2C. In the lan-
guage of Ehresmann-Thurston geometric structures they are (PSL2C,CP1)-struc-
tures; we refer the reader to Dumas’ survey [Dum09] for the classical theory.
Branched complex projective structure were introduced by Mandelbaum in [Man72]
as a generalization of classic complex projective structures in which branch points
are allowed. Here we review the main definitions in this more general context for
the convenience of the reader, and to set up notation and terminology.

Definition 2.1. A branched complex projective chart on S is a a pair (A, d) of
an open set A ⊆ S and an oriented finite branched cover d : A → d(A) ⊆ CP1

having isolated branch points. Two charts (A, d), (A′, d′) such that A ∩ A′ 6= ∅
are compatible if there exists some g ∈ PSL2C such that d′ = g ◦ d on A ∩ A′.
A branched complex projective atlas is a covering of S by compatible branched
complex projective charts.

In the following we will call a branched complex projective chart (respectively at-
las) just a projective chart (respectively atlas) for simplicity, whenever no confusion
occurs.

Definition 2.2. A branched complex projective structure (BPS in the following) on
S is the datum of a maximal branched complex projective atlas. A diffeomorphism
between two surfaces endowed with BPSs is said to be projective if it is given
by Möbius transformations in local projective charts. We denote by BP(S) the
deformation space of BPSs on S, namely the space of all marked BPSs on S, where
two structures are considered to be equivalent if there is a projective diffeomorphism
isotopic to the identity between them.

We refer to Section 2.2 below for an easy way to introduce a natural topology
on this space in terms of developing-holonomy pairs.
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Example 2.3. Hyperbolic structures are a major source of classical (i.e. un-
branched) BPSs, but more general examples of BPSs include spherical, Euclidean,
or hyperbolic metrics of constant curvature with cone points of angle 2πn, n ∈ N,
as well as the “trivial” BPS defined by any non-constant meromorphic function on
a Riemann surface.

Definition 2.4. A branch point for a BPS σ on S is a point p ∈ S at which local
charts have a critical point. If a local chart at p has order n + 1 for some n ∈ N,
then we say that p has order ordσ(p) = n. The branching divisor of σ is defined to
be the divisor div(σ) =

∑
p∈S

ordσ(p)p, and its degree is |div(σ)| =
∑
p∈S

ordσ(p).

Notice that the order of a branch point is actually independent of the choice of
the chart and that branch points are isolated, hence, by compactness of S, there is
only a finite number of them.

Remark 2.5. Given a branched cover ϕ : A → U of an open set U ⊆ CP1 with
isolated branch points, there is a unique complex structure on A that makes ϕ
holomorphic, thanks to Riemann extension theorem. Moreover the changes of co-
ordinates in an atlas for a BPS are given by restrictions of Möbius transformations,
which are in particular holomorphic. As a result, we get that compatible projec-
tive charts induce in particular compatible complex charts, i.e. any BPS has an
underlying complex structure, hence we get a natural forgetful map to Teichmüller
space

π : BP (S)→ T (S)

which we call the Teichmüller map. The fiber of this map over a given X ∈ T (S)
can be described in terms of meromorphic quadratic differentials on X with at
worst double poles (plus some integrability condition at poles). In this description
branch points are encoded in double poles, and unbranched structures correspond
to holomorphic quadratic differentials; more precisely a branch point of order n− 1

corresponds to a double pole with residue 1−n2

2 . We refer to [Dum09; Man72] for
more details.

2.2. Holonomy fibers. As usual with geometric structures in the sense of Ehres-
mann and Thurston (see [Dum09; Thu97] for more details), local charts can be
analytically continued along paths to obtain global objects encoding the structure;
for BPSs these are

• a representation ρ : π1(S)→ PSL2C (called a holonomy representation)

• a ρ-equivariant orientation preserving smooth map dev : S̃ → CP1, which
is which is immersive outside a discrete set of isolated branch points (called
a developing map).

The equivariance property means that

dev ◦ γ = ρ(γ) ◦ dev for all γ ∈ π1(S)

The pair (dev, ρ) is called a developing-holonomy pair, and defines a projective
atlas as in the above Definition 2.1 just by restriction. If g ∈ PSL2C then the pair
(g◦dev, g◦ρ◦g−1) is considered to be equivalent to (dev, ρ), as they define the same
maximal projective atlas; analogously, precomposing dev with a π1(S)-equivariant

isotopy of S̃ results in an equivalent structure. The conjugacy class of holonomy
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representations is called the holonomy of the structure, and can be recorded by a
forgetful map to the PSL2C-character variety

hol : BP(S)→ χ(S)

which we call the holonomy map. From this point of view the deformation space
BP(S) can be realized as the space of pairs (dev, ρ), up to the above equivalence
relation, and can therefore be equipped with the quotient of the natural compact-
open topology on this space of maps.

Remark 2.6. Since a Möbius transformation g ∈ PSL2C is determined by the image
of three points in CP1, it is easy to see that a developing map determines uniquely
the representation with respect to which it is equivariant; conversely, if σ is a BPS
whose holonomy has trivial centralizer, then the choice of a holonomy representation
ρ in the conjugacy class uniquely determines a unique developing map dev such
that (dev, ρ) represents the structure σ. Thanks to these facts, we will use the
same notation for a representation and its conjugacy class, and write σ = (dev, ρ)
to mean that (dev, ρ) is a developing-holonomy pair for σ, whenever no confusion
occurs.

We are now ready to introduce the deformation spaces we will be mostly con-
cerned with, namely the space of BPSs with prescribed holonomy and number of
branch points (counted with multiplicity).

Definition 2.7. Let ρ ∈ χ(S). Then we define the holonomy fiber to be

Mρ = {σ ∈ BP(S) | hol(σ) = ρ}

We also introduce the following notation: if k ∈ N and λ = (λ1, . . . , λn) is a
partition of k, then let

Mk,ρ = {σ ∈ BP(S) | hol(σ) = ρ, |div(σ)| = k}

Mλ,ρ = {σ ∈Mk,ρ | σ has n branch points, of orders λ1, . . . , λn respectively}
The spaces Mλ,ρ stratify Mk,ρ, and the principal stratum is defined to be the one
corresponding to the longest partition, i.e. M(1,...,1),ρ. Structures in the principal
stratum are said to be simply branched.

To investigate non-emptiness of these deformation spaces, we will recall a cele-
brated theorem by Gallo-Kapovich-Marden (see [GKM00]). Recall that a represen-
tation ρ : π1(S)→ PSL2C is said to be non-elementary if it has no finite orbits in its
action on CP1∪H3. Such a representation is in particular irreducible and has trivial
centralizer. We also say a representation is liftable if it lifts to a representation into
SL2C. Given our setting, the theorem can be stated as follows.

Theorem 2.8 ([GKM00, Theorem 1.1.1]). Let ρ : π1(S) → PSL2C be a non-
elementary representation. Then

• M0,ρ 6= ∅ if and only if ρ is liftable.
• M1,ρ 6= ∅ if and only if ρ is non-liftable.

Notice that according to our Definition 2.4 a local chart of the form z 7→ zn+1

gives a branch point of order n, whereas it gives a branch point of order n + 1 in
the notation of [GKM00, §11.2]. Moreover it should be noticed that Theorem 2.8
implies that a lot of non-discrete representations arise as holonomies of BPSs.
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Given a structure with a certain holonomy, in order to obtain more BPSs with
the same holonomy but higher branching, we can perform the following geometric
surgery.

Definition 2.9. Let σ = (dev, ρ) be a BPS on S. A simple arc β is said to be
bubbleable for σ if the interior of β avoids branch points and dev is injective on any

lift β̃ of β to the universal cover (we also say that β is injectively developed). If β is
bubbleable on σ, the bubbling of σ along β is the structure Bub(σ, β) obtained by

replacing β with the disk Bβ = CP1 \ dev(β̃), endowed with its natural projective
structure (such a disk is called a bubble).

σ
β

+ CP1

dev(β̃)

Bub(σ, β)

∗ ∗

Figure 1. Bubbling.

Notice that if σ ∈ Mk,ρ then Bub(σ, β) ∈ Mk+2,ρ, as two simple branch points
appear at the endpoints of β. This surgery was introduced in [GKM00] as a tool
to deform BPSs with the same holonomy, and has later been studied in [CDF14a;
Ruf19a; Ruf19b] in the case of quasi-Fuchsian representations. These holonomy
fibers Mk,ρ are endowed with natural complex structures as established by the
following theorem.

Theorem 2.10 ( [CDF14a, Theorem A.2] ). If ρ is non-elementary and k ∈ N,
then Mk,ρ carries a natural structure of smooth k-dimensional complex manifold.
Moreover if λ = (λ1, . . . , λn) is any partition of k, then Mλ,ρ is a smooth n-
dimensional complex submanifold.

The manifold structure is locally modelled on Hurwitz spaces. Naively speaking,
local coordinates are obtained by pasting together the local coordinates around the
branch points; we refer to the Appendix of [CDF14a] and to Section 3.1 below for
more details about this deformation theory.

In this paper we will be mostly concerned with the behavior of these holonomy
fibers with respect to the restriction of the Teichmüller projection (introduced above
in Remark 2.5)

π :Mk,ρ → T (S)

In the classical case of unbranched structures (i.e. when k = 0), Poincaré showed
that a complex projective structure is completely determined by its underlying
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complex structure and its holonomy representation; in other words the projection

π :M0,ρ → T (S)

is injective. Moreover Baba and Gupta observed in [BG15] the following interest-
ing phenomenon: even though this projection is also proper (by previous work of
Tanigawa, see [Tan99, Theorem 3.2]) and its image is therefore a discrete subset of
T (S), further projecting to moduli space (i.e. forgetting the marking) results in a
dense subset (see [BG15, Theorem 1.1]).

In the branched case the dimension of Mk,ρ is precisely k, and therefore the
projection can not be injective when k > 3g − 3 = dim(T (S)) just by dimensional
reasons. For small values of k the following injectivity result was proved by Hejhal.

Theorem 2.11 ([Hej75, Theorem 15]). Let σ ∈ Mk1,ρ, τ ∈ Mk2,ρ. If k1 + k2 <
4g − 4 and π(σ) = π(τ), then σ = τ

As a straightforward consequence the projection π : Mk,ρ → T (S) is injective
for k < 2g − 2. The case k = 2g − 2 is of particular interest, as failure of the
projection to be injective is deeply related to the existence of solutions of certain
ODEs with prescribed monodromy (see next Section 2.3 and [CDHL19] for more
details). Our main results concern infinitesimal injectivity of this projection for
k ≤ 2g − 2.

2.3. Rational curves from sl2-systems. In this section we review the main mo-
tivating example for this paper, i.e. a procedure introduced in [CDHL19, §6] that,
starting from a certain class of ODEs, constructs a 1-dimensional family of projec-
tive structures living in the intersection of a Teichmüller fiber and a holonomy fiber.
We start by introducing the type of ODEs that this construction considers; here
and in the following we denote by KX the canonical bundle of a Riemann surface
X.

Definition 2.12. An sl2-system on S is a pair (X,A), where X ∈ T (S) and
A ∈ H0(X,KX ⊗ sl2C).

Such a datum can naturally be viewed as a linear system of ODEs on a trivial
bundle as follows: let E = X × C2 the holomorphically trivial rank 2 bundle over
X; it supports the standard holomorphic connection given by d in local charts, so
the choice of A ∈ H0(X,KX ⊗ sl2C) as above is actually equivalent to the choice
of a trace-free holomorphic (hence flat) connection on E. Given these data, we can
consider the differential equation du = Au on holomorphic sections of E. In local
holomorphic coordinates such an equation takes the form(

u′1
u′2

)
=

(
a11 a12
a21 −a11

)(
u1
u2

)
for some holomorphic coefficients aij . Monodromy of local solutions gives rise to a
representation ρ : π1(X)→ SL2C, which we call the monodromy of the system.

Notice that both the trivial connection and the one introduced by A descend
to the projectivized bundle P(E) = X × CP1, hence we get an induced pair of
holomorphic connections on it. The flat sections of the former are just constant
sections X×{c}, for c ∈ CP1, whereas the ones of the second give rise to a foliation
FA, generically transverse to the one given by constant sections. Comparing these
two foliations defines a family of BPSs on X parametrized by c ∈ CP1 as follows:
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choose a fundamental matrix Φ : X̃ → SL2C for the equation du = Au on the

universal cover X̃ of X, and a point c ∈ CP1; then consider the map

X̃ → CP1, z 7→ Φ(z)−1.c

where the action is by Möbius transformations.
This defines a developing map for a BPS on X with holonomy representation

given by the monodromy of the system. We denote this structure by σ(X,A),c.
More concretely, local charts for it are obtained as follows: fix a point x0 ∈ X,
then flow points of X ×{c} along leaves of the foliation FA until {x0}×CP1; since
the two foliations on P(E) are generically transverse, this is generically realized by
local biholomorphisms from open sets in X × {c} to open sets in {x0} × CP1, but
branch points arise at tangencies between FA and X × {c}. It can be computed
that precisely 2g − 2 branch points occur, counted with multiplicity. We refer to
[CDHL19] for more details and a proof of the next statement.

Lemma 2.13. Let (X,A) be an sl2-system on S with monodromy ρ. The map
CP1 →M2g−2,ρ, c 7→ σ(X,A),c is a holomorphic embedding.

We will denote by Σ(X,A) = {σ(X,A),c | c ∈ CP1} ⊂ M2g−2,ρ the induced family
of BPSs. Notice that all the structures in it have the same underlying complex
structure X and the same holonomy ρ. Direct computations then show they also
share a certain property about their branching divisor.

Proposition 2.14. For any σ(X,A),c ∈ Σ(X,A) the branching divisor of σ(X,A),c is
a canonical divisor on X.

Proof. The branch points of σ(X,A),c occur exactly at tangencies between the foli-
ation FA defined by A and the horizontal section X × {[c1 : c2]} inside the projec-
tivized bundle P(E) = X × CP1, where c = [c1 : c2]. A direct computation using
the local expression for the foliations shows that this occurs exactly at points z ∈ X
at which (c1, c2) is an eigenvector for A(z). Since E = X×C2 is the trivial bundle,
we have that H0(X,KX ⊗ sl2C) = H0(KX)⊕3; more explicitly, A can be written
as

A =

(
a11 a12
a21 −a11

)
, for aij ∈ H0(X,KX)

Then we see that z ∈ X is a point at which (c1, c2) is an eigenvector for A(z) if and
only if the following conditions are satisfied{

c1a11(z) + c2a12(z) = c1λ(z)
c1a21(z)− c2a11(z) = c2λ(z)

where λ ∈ H0(X,KX) is an eigenvalue of A. Since c1, c2 are not both zero, let us
assume c1 6= 0, express λ(z) = a11(z) + c2

c1
a12(z) and obtain therefore that

c21a21(z)− 2c1c2a11(z)− c22a12(z) = 0

In other words the branching divisor of σ(X,A),c is exactly the zero divisor of the

holomorphic 1-form ΘA,c = c21a21 − 2c1c2a11 − c22a12. �

As mentioned above, by construction the rational curve Σ(X,A) lives in the inter-
section of a Teichmüller fiber and a holonomy fiber; in particular all the structures
on it are critical points for the projection M2g−2,ρ → T (S). The main result of
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this paper (see Theorem 3.11) is a generalization of the above statement to struc-
tures which are critical points for the projection to Teichmüller space, but are not
necessarily on a fiber thereof.

3. The local structure of the holonomy fiber

In this section we study the local behavior of Teichmüller map along a holonomy
fiber, i.e. the natural forgetful map to Teichmüller space

π :Mk,ρ → T (S)

obtained by sending a BPS to its underlying complex structure (see Remark 2.5).
By Theorem 2.10 above we know that as soon as ρ is non-elementary the space
Mk,ρ carries a natural structure of smooth k-dimensional complex manifold, with
respect to which π is holomorphic. Throughout the rest of the paper the holonomy
is always assumed to be non-elementary. Our aim is to show that a BPS σ can be
deformed preserving both its holonomy ρ and the underlying complex structure X
only if its branching divisor is a canonical divisor on X.

3.1. Movements of branch points. In the previous section (see Definition 2.9)
we have introduced bubbling as a geometric surgery that turns a BPS into an-
other BPS with the same holonomy by increasing the total branching order by 2.
In view of Theorem 2.8 this allows in particular to create BPSs with arbitrarily
high branching order and prescribed monodromy. In this section we introduce an-
other geometric surgery that preserves both the holonomy and the structure of the
branching divisor, therefore providing a way to navigate the spaces Mk,ρ.

Definition 3.1. Let σ be a BPS on S. Given a branch point p of σ, a movement
of branch point at p is the following deformation: pick a local branched projective
(A, d) chart at p, and replace it with the chart obtained by postcomposing d : A→
CP1 with a smooth isotopy compactly supported in d(A). If the isotopy moves d(p)
to z ∈ d(A) we will denote the resulting structure by Move(σ, z) (see Figure 2).

Remark 3.2. The result of a movement of branch points depends, up to isomor-
phism, only on the final image of the branch point, i.e. the point of d(A) to
which d(p) moves through the isotopy; in particular we can choose the isotopy
to be a straight-line isotopy in the chosen projective chart. Moreover it is clear
that such a deformation can be performed independently at distinct branch points;
if p1, . . . , pn are the branch points of σ and (Ai, di) is a local chart at pi, with
Ai ∩ Aj = ∅ for i 6= j, then such a deformation is conveniently parametrized by∏n
i=1 di(Ai) ⊆

∏n
i=1 CP

1. In the above notations, we denote by Move(σ, z1, . . . , zn)
the structure obtained by moving di(pi) to zi.

Remark 3.3. Moving branch points does not change the structure of the branching
divisor, i.e. the number and order of branch points. If λ is any partition of k ∈ N
and σ ∈Mλ,ρ then Move(σ, z1, . . . , zk) ∈Mλ,ρ, and it follows from Theorem 2.10
these deformations account for a full neighborhood of σ inside Mλ,ρ. For simply
branched structures (i.e. those in the principal stratum, as defined in Definition
2.7), this is also a neighborhood in Mk,ρ. For structures in lower strata, a full
neighborhood in Mk,ρ should also include deformations which split higher order
branch points into lower order ones; we refer to [CDF14a, Appendix] for more
details.
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3.2. Beltrami differentials for movements of branch points. We begin by
computing an explicit formula for the Beltrami differential associated to the defor-
mation of the underlying complex structure X induced by a movement of branch
points: more precisely we will consider a BPS σ and a 1-parameter deformation
{σt | t ∈ [0, 1]} obtained by moving one branch point in a given direction, and
we will compute the 1-parameter family of Beltrami differentials {µt | t ∈ [0, 1]}
induced by it; this is done below in Lemma 3.6. We will also compute the first
order approximation of this 1-parameter family of Beltrami differential, which we
will regard as another Beltrami differential approximating the initial infinitesimal
behavior of {µt | t ∈ [0, 1]}.

Recall that if f : X → Y is a smooth map between Riemann surfaces, its Beltrami
differential is defined to be the smooth section of the line bundle KX ⊗K−1X given

in local complex charts by ∂f
∂z

(
∂f
∂z

)−1
, and is a measure of the failure of f to be

holomorphic. We refer to [IT92] for background about Beltrami differentials, and
in particular for the existence of a natural duality between Beltrami differentials
and holomorphic quadratic differentials, which provide respectively a description of
the tangent and cotangent space to Teichmüller space.

Let σ ∈ Mk,ρ, let X ∈ T (S) be the underlying complex structure, and let p be
a branch point of order ord(p) = m − 1 ≥ 1. Recall from Definition 2.4 that this
means that local projective charts at p are branched covers of order m. First of all
we find a normal local expression for the projective charts.

Lemma 3.4. For any projective local chart (A, d) for σ at p there exists a complex
local chart (A,ϕ) for X at p such that d◦ϕ−1 : ϕ(A)→ d(A) is given by d◦ϕ−1(z) =
zm + o(zm).

Proof. Given a complex local chart (A,ψ) and a series expansion for d ◦ ϕ−1, a
translation can be used to fix the constant term, and a dilatation can be used to
fix the next non-zero term. In other words ϕ can be obtained by post-composing
ψ with a complex affine transformation. �

Let us fix a branched complex projective atlas U for σ. In the notations of
Lemma 3.4, let us pick an open set B such that p ∈ B ⊂ A and such that for
any other projective chart (U, g) ∈ U \ {(A, d)} we have A ∩ U ⊂ A \ B. Let z be
a complex coordinate on ϕ(A) and w a projective coordinate on d(A) and let us
denote by c the holomorphic map c = d ◦ ϕ−1 : ϕ(A)→ d(A), c(z) = zm + o(zm).

Let us consider a point q ∈ d(A), an open neighborhood C ⊂ C ⊂ B of p, and a
smooth bump function η : d(A)→ [0, 1] such that

• η is compactly supported in d(B)
• η = 1 on d(C)

Then we get a well-defined isotopy

H : [0, 1]× d(A)→ d(A)

H(t, w) = w + tqη(w)

supported on d(B). In particular, for any t ∈ [0, 1] the map Ht : d(A) →
d(A), Ht(w) = H(t, w) is a smooth isotopy of d(A) which is projective on d(A)\d(B)
and on d(C), where it coincides respectively with the identity and with the trans-
lation w 7→ w + tq (see Figure 2).
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A B

C

pd

ϕ

c = dϕ−1

0

0

z ∈ C

w ∈ CP1

Ht(w) = w + tqη(w)

v ∈ CP1

u ∈ C

ct = dtϕ
−1
t

ϕt

dt = Htd

Ft

0

0

tq

Figure 2. Local analysis of the movement of a branch point.

Let us define dt = Ht ◦ d : A → d(A). Then replacing the chart (A, d) with the
chart (A, dt) gives a new BPS on S, which we denote by σt. Let us denote by Xt

the complex structure underlying σt. With the same argument of Lemma 3.4, we
can obtain a local complex chart (A,ϕt) for the complex structure Xt such that
ct := dt ◦ ϕ−1t : ϕt(A) → dt(A) = d(A) is given by ct(u) = tq + um + o(um) for a
coordinate u on ϕt(A). We can then choose a diffeomorphism Ft : ϕ(A) → ϕt(A)
which lifts Ht : d(A) → dt(A) = d(A) (i.e. Ht ◦ c = ct ◦ Ft); among the possible
lifts, there is exactly one which satisfies Ft ◦ ϕ = ϕt, and we choose this one.

Notice that Ft will be holomorphic on ϕ(A) \ ϕ(B) and on ϕ(C), but not else-
where; also notice that if ϕ(A) = ϕt(A) then the deformation of the complex struc-
ture would be trivial. Anyway this is never the case: indeed Ft can be regarded as a
sort of Schiffer variation of the underlying complex structure (see [Nag85]). To get
a feeling of how this works, we can look for a geometric description of the domain
ϕt(A) as a subset of the complex plane with coordinate u ∈ C. Without loss of
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generality, we can assume that d(A) = D = {|w| < 1}; then dt(A) = {|v| < 1}.
Then the map ct will take the form v = ct(u) = tq+

∑
k≥m eku

k, with em = 1, and

the domain ϕt(A) of the u-plane is the one which is mapped by ct to the unit disk
dt(A) = {|v| < 1} in the v-plane. A direct computation shows that
ϕt(A) is a domain bounded by a curve defined by an equation of the form

t2|q|2 + 2t

2m−1∑
k=m

Re(qeku
k) + |u|2m + o(u2m)− 1 = 0

Example 3.5. Let us consider the base case of a simple branch point (i.e. m = 2);
let us also assume that the local charts take the form d(A) = {|w| = 1}, dt(A) =
{|v| = 1}, w = c(z) = z2 and v = ct(u) = tq + u2. Then the above computation
shows that ϕt(A) is the domain of the u-plane bounded by the curve

t2|q|2 + 2tRe(qu2) + |u|4 − 1 = 0

Plotting this curve for values such that tq = 1 − ε, for ε > 0 small enough, we
obtain pictures consistent to the one shown on the right in Picture 2. The map
Ft : ϕ(A) → ϕt(A) from the unit disk in the z-plane to this bean-like domain is
smooth and holomorphic near the boundary and around 0. We can directly compute
that

Ft(z)
2 + tq = ct(Ft(z)) = Ht(c(z)) = Ht(z

2) = z2 + tqη(z2)

i.e. the map Ft : ϕ(A) → ϕt(A) looks like Ft(z) =
√
z2 + tq(η(z2)− 1), which

coincides with Ft(z) = z around z = 0 and with Ft(z) =
√
z2 − tq near the

boundary of ϕ(A).

We are now going to compute the Beltrami differential of the identity map idS of
the surface S considered as a map between the marked Riemann surfaces X and Xt.
For convenience, let us introduce the notation F (t, z) = Ft(z) and µ(t, z) = µt(z).

Lemma 3.6. In the above notations, the Beltrami differential µt of idS : X → Xt

is zero outside A, and with respect to the coordinate z over ϕ(A) it is given by the
following expression

µt(z) = µ(t, z) =
tq
∂η

∂w
(c(z))

∂c

∂z
(z)(

1 + tq
∂η

∂w
(c(z))

)
∂c

∂z
(z)

Proof. With the atlases we are using, the identity map reads as the identity for any
choice of charts, with the exception of the choice of charts (A,ϕ) for X and (A,ϕt)
for Xt; by construction, in these charts it reads as the map Ft : ϕ(A) → ϕt(A),
hence we reduce to compute the Beltrami differential of Ft. We recall from the
above construction the relation ct(F (t, z)) = H(t, c(z)) = c(z) + tqη(c(z)). Taking
the derivative with respect to z we obtain

∂ct
∂u

(F (t, z))
∂F

∂z
(t, z) =

∂c

∂z
(z)

(
1 + tq

∂η

∂w
(c(z))

)
and taking the derivative with respect to z we obtain

∂ct
∂u

(F (t, z))
∂F

∂z
(t, z) =

∂c

∂z
(z)tq

∂η

∂w
(c(z)))
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Comparing the two equalities we get the desired expression for µt(z) =

∂F

∂z
(t, z)

∂F

∂z
(t, z)

.

�

Let us now compute the first order approximation at t = 0 for this 1-parameter
family of deformations.

Lemma 3.7.
∂µ

∂t
(0, z) =

q
∂η

∂w
(c(z))

∂c

∂z
(z)

∂c

∂z
(z)

=
∂

∂z

(
∂F

∂t
(0, z)

)

Proof. To get the first equality, we begin by taking a derivative in t in the expression
of µ from the previous lemma to obtain

∂µ

∂t
(t, z) =

q
∂η

∂w
(c(z))

∂c

∂z
(z)

∂c

∂z

∂

∂t

 t

1 + tq
∂η

∂w
(c(z))

 =

=
q
∂η

∂w
(c(z))

∂c

∂z
(z)

∂c

∂z

·
1 + tq

∂η

∂w
(c(z))− tq ∂η

∂w
(c(z))

(1 + tq
∂η

∂w
(c(z)))2

=

=
q
∂η

∂w
(c(z))

∂c

∂z
(z)

∂c

∂z

· 1(
1 + tq

∂η

∂w
(c(z))

)2

and then we evaluate at t = 0 to get the first identity.
For the second equality, let us recall the relation c(z) + tqη(c(z)) = H(t, c(z)) =

ct(F (t, z)). Differentiating in t we obtain

qη(c(z)) =
∂ct
∂u

(F (t, z))
∂F

∂t
(t, z)

from which we get
∂F

∂t
(t, z) =

qη(c(z))

∂ct
∂u

(F (t, z))

By definition we have F (0, z) = z and c0(F (0, z)) = c(z), hence at t = 0 we obtain

∂F

∂t
(0, z) =

qη(c(z))

∂c

∂z
(z)

Differentiating in z we obtain then

∂

∂z

(
∂F

∂t
(0, z)

)
=

q

∂c

∂z
(z)

∂

∂z
(η(c(z))) =

q
∂η

∂w
(c(z))

∂c

∂z
(z)

∂c

∂z
(z)

which proves the second identity. �
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Remark 3.8. Notice that the first order deformation at t = 0 has an elementary
∂-primitive: namely by the above computations we get

∂µ

∂t
(0, z) =

∂

∂z

qη(c(z))

∂c

∂z
(z)

 =
q

∂c

∂z
(z)

∂

∂z
(η(c(z)))

where the second equality comes from the fact that c is holomorphic. This will turn
out to be useful in the following computations.

3.3. Contraction with quadratic differentials. The goal of this section is to
provide a proof of the main theorem (Theorem 1.1 in the Introduction, see Theorem
3.11 below). This involves a criterion to decide whether a movement of branch
points induces a deformation of the underlying complex structures which is non-
trivial at the first order. Beltrami differentials are specifically designed to measure
whether a deformation of a complex structure is trivial or not, so in order to do
this, we are going to determine whether the family of Beltrami differentials µt from
the previous section is trivial at first order; equivalently, we regard the expression
µ̇0(z) = ∂µ

∂t (0, z) from Lemma 3.7 as a Beltrami differential on its own, representing
the first order behavior of the family µt at t = 0.

It is a standard fact in Teichmüller theory (see [IT92] for a reference) that given
any complex structure X ∈ T (S) there is a natural pairing between Beltrami
differentials and holomorphic quadratic differentials on X given by

〈α, µ〉 =

∫
X

αµ =

∫
X

α(z)µ(z)dzdz

where α = α(z)dz2 is a local expression for a holomorphic quadratic differential

α and µ = µ(z)dz
(
∂
∂z

)−1
is a local expression for a Beltrami differential. Moreover

a Beltrami differential µ is trivial (hence the associated deformation of complex
structure is trivial) precisely when 〈α, µ〉 = 0 for all holomorphic quadratic differ-
entials α ∈ H0(X,K2

X).
We are now going to compute an expression for the pairing of the first order

approximation µ̇0 with an arbitrary holomorphic quadratic differential. Let us recall
the notation and setting from the previous section: p is a branch point of order
m−1, local projective charts can be taken to be of the form c(z) = zm+o(zm), and
let us introduce the notation ∂c

∂z (z) = zm−1g(z), where g is a holomorphic function
such that g(0) = m.

Proposition 3.9. Let α ∈ H0(X,K2
X) be a holomorphic quadratic differential on

X, and let α = α(z)dz2 be its expression in the coordinate z on ϕ(A). Then

〈α, µ̇0〉 =
2πiq

(m− 2)!

∂m−2

∂zm−2
α(z)

g(z)

∣∣∣∣
z=0

Proof. We begin with

〈α, µ̇0〉 =

∫
S

αµ̇0 =

∫
A

αµ̇0 =

where we restrict the integral over A since µt is compactly supported inside it for
any t ∈ [0, 1]. Then we can go in local coordinates in ϕ(A)

=

∫
ϕ(A)

α(z)µ̇0(z)dzdz̄ =

∫
ϕ(A)

α(z)
q

∂c

∂z
(z)

∂

∂z
(η(c(z)))dzdz̄
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where the last equality comes from the above Remark 3.8. Also notice that the
second integral can actually be restricted to ϕ(B \ C) because η is constant on
c(ϕ(C)) = d(C) and on c(ϕ(A \B)) = d(A \B).

We now observe that, since α is holomorphic, we have

d

 qα(z)

∂c

∂z
(z)

η(c(z))dz

 = − qα(z)

∂c

∂z
(z)

∂

∂z
(η(c(z)))dzdz̄

Then we can resume the computation from above and obtain

〈α, µ̇0〉 = · · · = −
∫
ϕ(B\C)

d

 qα(z)

∂c

∂z
(z)

η(c(z))dz

 =

to which we now apply Stokes Theorem to get

= −
∫
ϕ(∂B)

qα(z)

∂c

∂z
(z)

η(c(z))dz +

∫
ϕ(∂C)

qα(z)

∂c

∂z
(z)

η(c(z))dz =

∫
ϕ(∂C)

qα(z)

zm−1g(z)
dz

where the last equality comes from the fact that, by definition, η = 0 in the first
integral and η = 1 in the second, and from the definition of g(z) = ∂c

∂z (z)z1−m.
Now observe that everything inside the last integral is holomorphic, therefore we
can apply Cauchy’s integral formula to obtain the desired expression

〈α, µ̇0〉 =

∫
ϕ(∂C)

qα(z)

zm−1g(z)
dz =

2πiq

(m− 2)!

∂m−2

∂zm−2
α(z)

g(z)

∣∣∣∣
z=0

�

Example 3.10. In the case of a simple branch point, i.e. m = 2, we have c(z) =
z2 + o(z2), hence g(0) = 2 and the above formula reduces to

〈α, µ̇0〉 = πiqα(0)

We are now ready to prove the main result. Recall from Definition 2.7 that if
k ∈ N and λ = (λ1, . . . , λn) is a partition of k, then a structure σ ∈ Mk,ρ belongs
to the λ-stratum Mλ,ρ if its branching divisor is of the form div(σ) =

∑n
j=1 λjpj ;

in the above notations, a branch point of order λj has a local chart of the form
z 7→ zλj+1 + o(zλj+1).

Since we are considering only deformations which preserve the structure of the
branching divisor, i.e. do not leave the stratum Mλ,ρ, we find it convenient to
denote by πλ : Mλ,ρ → T (S) the restriction of the Teichmüller map to the the
λ-stratum Mλ,ρ of the holonomy fiber Mk,ρ.

Theorem 3.11. Let ρ : π1(S) → PSL2C be non-elementary, k ≤ 2g − 2, λ =
(λ1, . . . , λn) be a partition of k; let σ ∈ Mλ,ρ and let div(σ) =

∑n
j=1 λjpj be its

branching divisor. If σ is a critical point for πλ, then div(σ) is a canonical divisor
on the underlying Riemann surface X = π(σ).

Proof. As recalled at the beginning of this section, it is a classical fact that a defor-
mation of a complex structure on a surface is trivial if and only if the contraction
of its Beltrami differential with all holomorphic quadratic differentials is trivial.
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Local deformations of σ insideMλ,ρ are precisely given by movements of branch
points, according to Remark 3.3. If (Aj , dj) is a local projective chart at pj , for
j = 1, . . . , n, with Ai ∩ Aj = ∅ for i 6= j, then we know from Remark 3.2 that
these deformations are parametrized by the choice of a point q = (q1, . . . , qn) ∈∏n
j=1 dj(Aj).

We are now going to assume by contradiction that the divisor div(σ) is not
canonical on X, and show that all these deformations change the underlying com-
plex structure, by showing that they are non-trivial at first order. In order to show
this we will exploit the aforementioned natural pairing with holomorphic quadratic
differentials, and the formula from Proposition 3.9.

If (Aj , ϕj) are the local complex charts around pj associated to (Aj , dj) in

the sense of Lemma 3.4, with coordinate zj , and if cj = dj ◦ ϕ−1j and gj(zj) =
∂cj
∂zj

(zj)z
−λj

j , then by Proposition 3.9 we can write the contraction between any

holomorphic quadratic differential α ∈ H0(X,K2
X) and the first order approxima-

tion µ̇0 of the Beltrami differential of this deformation as

< α, µ̇0 >=

n∑
j=1

2πiqj
(λj − 1)!

∂λj−1

∂z
λj−1
j

αj
gj

(zj)

∣∣∣∣∣
zj=0

where αj is the local expression of α in the coordinate (Aj , ϕj) at pj . Notice that
for any s ≥ 0 we have

∂s

∂zsj

αj
gj

(zj) =
1

gj(zj)

(
∂sαj
∂zsj

(zj)−
s−1∑
l=0

(
s

l

)
∂l

∂zlj

αj
gj

(zj)
∂s−lgj

∂zs−lj

(zj)

)
so that the vanishing of derivatives of αj recursively implies the vanishing of deriva-
tives of

αj

gj
. Recalling that by definition gj(0) = λj + 1, in particular we obtain the

following

∂s

∂zsj

αj
gj

(0) =


1

gj(0)

∂sαj
∂zsj

(0) =
ajs!

λj + 1
if ord0(αj) = s

0 if ord0(αj) > s

for some constants aj 6= 0. If the movement of branch points is not trivial, then
at least one of the points qj is not zero; let us assume for simplicity q1 6= 0. We
now claim that, under the assumption that div(σ) is not canonical on X, it is
possible to find a holomorphic quadratic differential α ∈ H0(X,K2

X) which has a
zero of order exactly λ1 − 1 at p1 (not higher!) and a zero of order at least λj
at pj for j = 2, . . . , n. For such a differential it is easily obtained from the above
computations that

∂λj−1

∂z
λj−1
j

αj
gj

(0) =


a1(λ1 − 1)!

λ1 + 1
j = 1

0 j = 2, . . . , n

We conclude that for such a differential we have < α, µ̇0 >= 2πiq1a1
λ1+1 6= 0, which

implies that deformation is non-trivial at first order, hence σ can not be a critical
point for πλ, which is the desired contradiction.

To complete the proof let us prove the above claim about the existence of the
required quadratic differential. If E is any divisor on X, let us denote by Q(X,E) =
{α ∈ H0(X,K2

X) | div(α) + E ≥ 0}; when E < 0 this is the space of holomorphic
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quadratic differentials vanishing along E with at least the multiplicity prescribed
by E. Let D = −div(σ) and D′ = p1 + D; notice deg(D) = −k < 0 by definition.
We have an obvious inclusion

Q(X,D) ⊆ Q(X,D′)

An element of Q(X,D) vanishes at pj with order at least λj for all j = 1, . . . , n,
while an element of Q(X,D′) vanishes at pj with order at least λj for all j =
2, . . . , n, but only with order at least λ1 − 1 at p1. So an element of Q(X,D1) \
Q(X,D) is precisely a holomorphic quadratic differential which vanishes on p1 with
order exactly λ1−1, and vanishes on pj with order at least λj for j = 2, . . . , n. The
claim then follows if we prove that the above inclusion has positive codimension.
The Riemann-Roch formula allows to compute that

• if div(σ) is not canonical, then dim(Q(X,D)) = 3g−3−k and dim(Q(X,D′)) =
3g − 3− k + 1,

• if div(σ) is canonical, then dim(Q(X,D)) = dim(Q(X,D′)).

which concludes the proof of the claim. �

The remaining results of this section are straightforward consequences of the
previous Theorem.

Corollary 3.12. Let k ≤ 2g − 2 and let X ∈ T (S). If F = π−1(X) ⊆ Mk,ρ has
positive dimension, then for any σ ∈ F we have that div(σ) is canonical on X.

Proof. Let σ ∈ F . First assume that a neighborhood Ω of σ in F is fully contained
in a stratum Mλ,ρ, for some partition λ of k. Then πλ(Ω) = X, in particular σ is
critical for πλ. By Theorem 3.11 we are done.

So now assume that any neighborhood of σ in F contains structures from higher-
dimensional strata; then consider an arbitrarily small deformation of σ that splits
branch points on σ to jump into the top-dimensional stratum of the induced strati-
fication on F (see Remark 3.3). Considering the structures obtained in this way, we
can argue as before, and apply Theorem 3.11 to show that they are all critical for
the projection from their stratum, hence they are all canonically branched. This
shows that σ has full connected neighborhood Ω in F in which canonically branched
structures fill an open dense subspace. Since being canonical is a closed condition
on divisors, this implies that σ is canonically branched too (as well as every other
structure in Ω). �

Example 3.13. A major motivating example is given by the 1-dimensional sub-
manifold Σ(X,A) ⊆ F = π−1(X) where (X,A) is an sl2-system (see Section 2.3 for
details about the construction). Structures on Σ(X,A) have the same underlying
complex structure and are generically contained in the same stratum (see Remark
3.14 for more subtle aspects), and they have already been shown to be branched
on a canonical divisor in Proposition 2.14.

Remark 3.14. It is possible for positive-dimensional fibers and positive-dimensional
strata to intersect at isolated points (which is covered by the second case of the
previous proof). For instance if (X,A) is a sl2-system of genus g = 2 (see Section
2.3), then the induced rational curve Σ(X,A) is a 1-dimensional fiber over X of the
2-dimensional complex manifold M2,ρ; it is generically contained in the principal
stratum M(1,1),ρ but it may intersect the minimal stratum M(2),ρ in six isolated
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points (corresponding to structures with a double branch point at one of the six
Weierstrass points of X).

The following is based on an observation present in [CDHL19, Corollary 6.3],
where it is shown that if a fiber of π : M2g−2,ρ → T (S) contains at least three
points, then it is actually the rational curve of some sl2-system (see Section 2.3).

Corollary 3.15. Let k ≤ 2g − 2. If Z ⊆ Mk,ρ is a compact complex submanifold
of positive dimension, then for any σ ∈ Z we have that div(σ) is canonical on the
underlying Riemann surface.

Proof. Since Teichmüller space is a Stein manifold, Z is compact and π :Mk,ρ →
T (S) is holomorphic, we have that the restriction of π to Z must be constant. In
other words Z must be contained in a fiber π−1(X) for some X ∈ T (S). Then we
can apply Corollary 3.12 to conclude. �

3.4. The sub-canonical range. In this section we apply results from the previous
section to show that the Teichmüller map π :Mk,ρ → T (S) is quite well-behaved
when the branching order is sub-canonical, i.e. k < 2g − 2.

Corollary 3.16. Let ρ : π1(S) → PSL2C be non-elementary, k < 2g − 2 and λ a
partition of k. Then the following hold:

(1) πλ :Mλ,ρ → T (S) is an injective immersion;
(2) Mk,ρ contains no positive-dimensional compact complex submanifolds.

Proof.

(1) The injectivity of πλ follows from the global injectivity of π, which is a clas-
sical result of Hejhal (see [Hej75, Theorem 15], which appears as Theorem
2.11 above). Then assume by contradiction that πλ has a critical point σ.
By Theorem 3.11 we obtain that σ must be canonically branched. But this
is absurd, simply because the branching order of σ is less than the degree
of a canonical divisor.

(2) Analogously, by Corollary 3.15 structures on a compact complex subman-
ifold should be canonically branched, which once again is impossible just
because k < 2g − 2.

�

In light of the previous statement, it would then be interesting to consider the
following questions:

Question 3.17. Is π immersive?

Question 3.18. Are π and/or πλ proper?

Affirmative answers would imply (in view of Corollary 3.16) that when k < 2g−2
the manifolds Mk,ρ (or at least their strata Mλ,ρ) embed as a closed smooth
complex submanifolds of Teichmüller space, hence are themselves Stein manifolds;
point (2) in Corollary 3.16 suggests that no obvious obstruction to this arises from
the geometry of submanifolds.
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4. Hyperelliptic structures

The purpose of this last section is to obtain a partial converse to the main result
(Theorem 3.11) in the case of BPSs endowed with a special type of automorphism.
We will provide an explicit construction of structures of this type and study natural
deformations thereof.

4.1. Projective hyperelliptic involutions. Recall from Definition 2.2 that, given
a BPS σ ∈ BP(S), a diffeomorphism f of S is said to be projective with respect
to σ if it is given by Möbius transformations in local projective charts defining σ.
Equivalently, if f acts on developing maps for σ by post-composition with some
Möbius transformation in the following sense (see [FR19, §2] for details): let dev
be a developing map for σ, then f is projective for σ if and only if ∃ g ∈ PSL2C
and a lift f̃ of f to the universal cover such that dev ◦ f̃−1 = g ◦ dev; in particular

dev ◦ f̃−1 is another developing map for σ.
Also recall from Remark 2.5 that a BPS has an underlying complex structure,

and notice that projective diffeomorphisms are in particular biholomorphic with
respect to it. The following lemmas give some elementary properties of projective
diffeomorphisms.

Lemma 4.1. Let σ ∈ BP(S) and let f : S → S be a projective diffeomorphism.
Then f permutes the branch points of σ, preserving their order.

Proof. Let dev1 be a developing map for σ, and let dev2 = dev1 ◦ f̃−1 = g ◦ dev1
for some lift of f to the universal cover and some g ∈ PSL2C. For any point p ∈ S̃
in the universal cover we have

∂zdev1(f̃−1(p))∂z f̃
−1(p) = ∂zdev2(p) = ∂wg(dev1(p))∂zdev1(p)

for complex coordinates z on S̃ and w on CP1. Since f̃ and g are biholomorphisms,
this means that p is a branch point for dev1 if and only if it is a branch point for

dev2, if and only if f̃−1(p) is a branch point for dev1. Branching orders are precisely
given by the order of ramification of developing maps, so the same equation shows
that they must be preserved. �

We focus here on structures which admit a special type of projective symmetry.
Recall that a Riemann surface X of genus g is hyperelliptic if it admits a holo-
morphic involution J with 2g + 2 fix points, known as the Weierstrass point of X;
notice that if follows from the Riemann-Hurwitz formula that X/J ∼= CP1.

Definition 4.2. A BPS is said to be hyperelliptic if it admits a projective involu-
tion J with 2g+2 fix points. The involution will be called a projective hyperelliptic
involution. A hyperelliptic BPS is non-degenerate if the projective hyperelliptic in-
volution J does not fix any of the branch points. If X ⊆ BP(S) is any subspace,

then we will denote by HX (respectively HX ]) the locus of hyperelliptic (respec-
tively non-degenerate hyperelliptic) structures in X .

Example 4.3. Any hyperelliptic hyperbolic surface can be seen as a hyperellip-
tic BPS without branch points: the hyperelliptic involution J is isometric, hence
projective.

Example 4.4. For a branched example, consider the trivial BPS induced on a hy-
perelliptic Riemann surface X by the quotient map X → X/J = CP1; this structure
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has 2g + 2 simple branch points and trivial holonomy. For a less trivial example,
let σ0 be a genus zero Euclidean orbifold with four points of angle π, and take a
double cover σ → σ0 branched at the four cones and also at two smooth points; the
result is a hyperelliptic BPS on a surface of genus 2. An analogous construction
works in every genus, but notice that all these structures are degenerate, as that
they are branched precisely at Weierstrass points. For examples of non-degenerate
hyperelliptic BPSs we refer to Section 4.2 below.

We collect here for future reference some facts about hyperelliptic structures that
just follow from the definition and Lemma 4.1.

Lemma 4.5. Let σ ∈ HBP(S), with projective hyperelliptic involution J , and
underlying complex structure X. Then

(1) X is a hyperelliptic Riemann surface with hyperelliptic involution J .
(2) σ ∈ HBP(S)] if and only if none of the branch points of σ is a Weierstrass

point for X.
(3) If σ ∈ HBP(S), p is a branch point, and (A, d) is a projective chart at

it with d(p) = 0, then p′ = J(p) is a branch point of the same order,
and (A′, d′) = (J(A), d ◦ J) is a projective chart at it with d′(p′) = 0 and
d′(A′) = d(A).

For non-degenerate hyperelliptic BPS we can introduce preferred neighborhoods

inside the holonomy fibers as follows. Let σ ∈ HM]
λ,ρ ⊂Mk,ρ for some partition λ

of k. Thanks to Lemma 4.5 the branch points of σ are in even number and of the
form p1, J(p1), . . . , pn, J(pn), where pi 6= J(pi), and n is half of the length of the
partition λ; in particular branch points are simple precisely when 2n = k, but we
are not requiring this.

Definition 4.6. A standard neighborhood of σ ∈ HM]
λ,ρ is the neighborhood of

σ inside Mλ,ρ which is defined, in the notation of Definition 3.1, by

Ω(σ) = {Move(σ, z1, w1, . . . , zn, wn) | zi, wi ∈ di(Ai), i = 1, . . . , n}

where (Ai, di) is a projective chart at pi, for i = 1, . . . , n. We also define the
diagonal slice of it to be the half-dimensional subspace given by

∆Ω(σ) = {Move(σ, z1, w1, . . . , zn, wn) ∈ Ω(σ) | zi = wi, i = 1, . . . , n}

Naively speaking, this is the neighborhood of structures obtained by moving
branch points in such a way that paired branch points pi, J(pi) remain inside the
common chart di(Ai), and the diagonal slice is the subspace obtained by moving
them “consistently with respect to J” (i.e. J-equivariantly). Notice that

Ω(σ) ∼=
n∏
i=1

(di(Ai)× di(Ai)) , ∆Ω(σ) ∼=
n∏
i=1

di(Ai)

Of course a standard neighborhood depends on a specific choice of projective charts
at each branch point pi for i = 1, . . . , n; but in any case all the possible resulting
standard neighborhoods provide a fundamental system of neighborhoods of σ for
the topology of Mλ,ρ (compare Remarks 3.2 and 3.3). Hence we suppress the
dependence in our notation, and whenever talking about a standard neighborhood
or diagonal slice we will implicitly assume that such a choice of local charts has
been made.
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We conclude this section by showing that diagonal slices are actually contained
in the non-degenerate hyperelliptic locus. This is illustrated by Example 4.9 and
Remark 4.10 below.

Proposition 4.7. If σ ∈ HM]
λ,ρ, then ∆Ω(σ) ⊆ HM]

λ,ρ.

Proof. Recall from Section 3.1 that local deformations of σ in Mλ,ρ are given by
moving branch points, and that this can be obtained by postcomposing charts
around branch points with a compactly supported isotopies. By Lemma 4.5 we can
choose charts to be of the form (Ai, di) at pi and (J(Ai), di ◦ J) at J(pi); let Ω(σ)
be the induced standard neighborhood. Then deformations along the diagonal slice
∆Ω(σ) correspond to using the same isotopy Hi of di(Ai) for both pi and J(pi).
The hyperelliptic involution of σ, seen just as a diffeomorphism of S, is given by
the identity in these preferred charts throughout the deformation; in particular it
is projective for all of them. This proves that all the structures along the diagonal
slice are hyperelliptic. Moreover they are non-degenerate because the involution
never fixes any of the branch points by construction. �

Remark 4.8. It has been observed in [CDHL19, Lemma 10.1.(iii)] that in the genus
2 case for any non-elementary representation ρ the hyperelliptic involution induces
a holomorphic involution of M2,ρ without isolated fixed points. Proposition 4.7
provides a generalization to higher genus and higher number of branch points:
when the holonomy fiber Mk,ρ supports an action by a hyperelliptic involution,
the hyperelliptic locus is at least half-dimensional in every stratum.

4.2. Hyperelliptic bubblings. Here we present a general construction to produce
examples of non-degenerate hyperelliptic BPSs (see Definition 4.2).

Example 4.9. Let σ ∈ HM0,ρ, with involution J , and let β : [0, 1] → σ be a
bubbleable arc on σ (see Definition 2.9). Assume that J maps β to itself swapping
its two endpoints. Then bubbling σ along β results in a non-degenerate hyperelliptic

structure Bub(σ, β) ∈ HM]
2,ρ. Indeed let dev be a developing map and let g ∈

PSL2C be an order 2 Möbius transformation realizing J through dev, in the sense

that dev ◦ J̃−1 = g ◦ dev where J̃ is a lift of J to the universal cover. Since β

is J-invariant, its developed image β̂ is g-invariant, therefore the bubble CP1 \ β̂
carries a natural projective involution given by the restriction of g. We first restrict
J to an involution of σ \ β, and then just extend this to the whole Bub(σ, β) by
using g inside the bubble.

Remark 4.10. This construction can be deformed to give rise to a 1-dimensional

family inside HM]
2,ρ: for instance just extend β as desired at one endpoint and

extend β at the other endpoint in the only way that produces a J-invariant arc;
then perform a bubbling on the new arc. In any standard neighborhood for σ this
family is given by the diagonal slice ∆Ω(σ) (see Definition 4.6 and Proposition 4.7).

Remark 4.11. This construction applies every time some σ ∈ HM0,ρ is available,
for instance

• when ρ is a hyperelliptic Fuchsian representation (i.e. such that H2/ρ
is a hyperelliptic hyperbolic surface). In this case just take σ = H2/ρ.
Representations of this type exist in every genus g ≥ 2.

• in genus g = 2 every unbranched projective structure is hyperelliptic (see
for instance [FR19, Example 4.11]); so for any non-elementary liftable rep-
resentation ρ we can choose any σ ∈M0,ρ = HM0,ρ.
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Of course this construction can also be iterated to produce examples with more
branch points, possibly with higher branching order too.

4.3. Critical movements for hyperelliptic structures. In this section we prove
a partial converse to Theorem 3.11 under the assumption that the structure is
hyperelliptic. In particular we will show that the critical direction is always 1-
dimensional, and provide an explicit equation for this line in suitable standard
neighborhood coordinates (introduced in Definition 4.6). Recall from that section

that if λ = (λ1, . . . , λn) is a partition of k, σ ∈ HM]
λ,ρ and Ω(σ) is a standard

neighborhood of σ, then the diagonal slice of Ω(σ) is defined to be

∆Ω(σ) = {Move(σ, z1, w1, . . . , zn, wn) ∈ Ω(σ) | zi − wi = 0, i = 1, . . . , n}

we also introduce a natural complement, which we call the opposite diagonal
slice, defined as

∆⊥Ω(σ) = {Move(σ, z1, w1, . . . , zn, wn) ∈ Ω(σ) | zi + wi = 0, i = 1, . . . , n}

In the rest of the section we will consider the case k = 2g − 2, and the generic
case of structures contained in the principal stratum, corresponding to the partition
λ = (1, . . . , 1), i.e. n = g − 1 and all branch points are simple branch points (order
1). Moreover σ ∈ HM(1,...,1),ρ will be a hyperelliptic structure in the principal
stratum, J the hyperelliptic involution and X = π(σ) the underlying Riemann
surface. We know that the branching divisor will have the form

div(σ) = p1 + J(p1) + · · ·+ pg−1 + J(pg−1)

Moreover the following is true.

Lemma 4.12. div(σ) is a canonical divisor on X if and only if σ ∈ HM]
(1,...,1),ρ.

Proof. On a hyperelliptic Riemann surface X of genus g, the canonical divisor is
linearly equivalent to the sum of g−1 fibers of the canonical map X → X/J = CP1.
Such a fiber can be given by a double Weierstrass point, or by the sum of two
distinct non-Weierstrass points exchanged by the hyperelliptic involution. Since all
the coefficients in our divisor are 1 (we are in the principal stratum), this divisor is
canonical if and only if none of the points in it is a Weierstrass point. The statement
then follows from Lemma 4.5 above. �

In the next proof we will need some standard facts about quadratic differentials
on hyperelliptic Riemann surfaces. Let us fix an affine model for X, i.e. a realization
of X as the smooth compactification of the plane affine curve

C =

(x, y) ∈ C2

∣∣∣∣∣∣ y2 = P (x) =

2g+2∏
j=1

(x− wk)


where P ∈ C[x] is a polynomial with distinct simple roots wj , j = 1, . . . , 2g + 2.
The points Wj = (wj , 0) ∈ C are precisely the Weierstrass points, the hyperelliptic
involution is given by J(x, y) = (x,−y), and x is the quotient map. Notice that,
since P has even degree, X has two points over x = ∞, and none of them is a
Weierstrass point.
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The hyperelliptic involution acts as a linear involution on the space of holomor-
phic quadratic differentials on X, with eigenvalues ±1, and splits it into the sum of
the two eigenspaces V±. Using the affine model they can be presented as follows:

H0(X,K2
X) = V+ ⊕ V− = C[x]≤2g−2 ·

dx2

y2
⊕ C[x]≤g−3 ·

dx2

y

where C[x]≤d denotes the space of polynomials of degree at most d, and dx2

y2 (respec-

tively dx2

y ) is a J-invariant (respectively J-anti-invariant) holomorphic differential

on X. Notice V± have dimension respectively 2g − 1 and g − 2; in particular all
holomorphic quadratic differentials are J-invariant in genus g = 2.

Theorem 4.13. Let ρ : π1(S) → PSL2C be non-elementary, σ ∈ HM(1,...,1),ρ ⊆
M2g−2,ρ and let X = π(σ) be the underlying Riemann surface. If div(σ) is a canon-

ical divisor on X, then σ is a critical point for π = π(1,...,1), with 1-dimensional
critical direction.

More precisely, let div(σ) =
∑g−1
j=1(pj + J(pj)) and (Ai, di) be charts at pi; then

there exist non-zero constants Q1, . . . , Qg−2 ∈ C∗ such that the subspace of the
induced standard neighborhood Ω(σ) defined by

KΩ(σ) =

{
Move(σ, z1, w1, . . . , zg−1, wg−1) ∈ Ω(σ)

∣∣∣∣ zi + wi = 0, 1 ≤ i ≤ g − 1
zj = Qjzg−1, 1 ≤ j ≤ g − 2

}
satisfies the following properties

(1) KΩ(σ) ⊆ ∆⊥Ω(σ) (it is understood that KΩ(σ) = ∆⊥Ω(σ) for g = 2).
(2) dim(KΩ(σ)) = 1.
(3) TσKΩ(σ) = ker(dπ)σ.

In other words KΩ(σ) is precisely the critical locus, it is a line in standard
neighborhood coordinates, and it is transversal to the diagonal slices.

Proof. To begin with we observe that π = π(1,...,1) at σ, just because σ is assumed
to belong to the principal stratum, which is an open dense submanifold ofM2g−2,ρ.
Moreover we know from Lemma 4.12 that σ is non degenerate. So it makes sense
to talk about standard neighborhoods. Now (1) is completely obvious from the
definition of ∆⊥Ω(σ). To get (2) one can just observe that in these coordinates
KΩ(σ) is given by g− 1 + g− 2 = 2g− 3 linear equations in 2g− 2 variables; since
Qj 6= 0 one sees that they are all independent. Indeed (1) holds for any choice of
Qj , and (2) holds for any choice of Qj 6= 0. Therefore the theorem will be proven
if we prove the existence of Qj 6= 0 for which (3) is satisfied.

Let (Aj , ϕj) be the local complex chart associated to (Aj , dj) in the sense of
Lemma 3.4. Notice that (J(Aj), dj ◦J) and (J(Aj), ϕj ◦J) are then local projective
and complex chart at J(pj) respectively (see Lemma 4.5), adapted to each other in
the sense of Lemma 3.4.

Let us pick a point (z1, w1, . . . , zg−1, wg−1) ∈
∏g−1
j=1 dj(Aj) × dj(Aj), let µt be

the Beltrami differential of the movement of branch point defined by

[0, 1] 3 t 7→Move(σ, tz1, tw1, . . . , tzg−1, twg−1) ∈ Ω(σ)

and let µ̇0 its derivative at t = 0. As we have already done in Section 3, to test
triviality of the Beltrami differential we are going to contract it with holomorphic
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quadratic differentials. We want to prove that movements along KΩ(σ) are pre-
cisely those for which the contraction with all holomorphic quadratic differentials
vanishes; we are going to exploit the decomposition into invariant and anti-invariant
differentials described above.

By Proposition 3.9 (notice that all branch points are simple, and see also Example
3.10) we can compute that for all α ∈ H0(X,K2

X) we have

< µ̇0, α >= πi

g−1∑
j=1

(αj(0)zj + α′j(0)wj)

where αj(0) and α′j(0) denote respectively the values of α at pj and J(pj) in the
chosen complex coordinate (the ones adapted to the projective structure in the
sense of Lemma 3.4). Notice that, since these coordinates are compatible with the
action of J , if α ∈ V± then α′j(0) = ±αj(0), for j = 1, . . . , g − 1.

In particular for any α ∈ V+ we have

< µ̇0, α >= πi

g−1∑
j=1

αj(0)(zj + wj)

We claim (*) that this vanishes ∀ α ∈ V+ if and only if

Move(σ, z1, w1, . . . , zg−1, wg−1) ∈ ∆⊥Ω(σ)

To see this, notice that if Move(σ, z1, w1, . . . , zg−1, wg−1) ∈ ∆⊥Ω(σ) then zj+wj =
0 for all j = 1, . . . , g − 1, so the sum clearly vanishes. Vice versa if < µ̇0, α >= 0
for all α ∈ V+, then in particular it has to vanish for the holomorphic quadratic
differentials αl given in the affine model by

αl =

g−1∏
k=1,k 6=l

(x− xk)
dx2

y2
, l = 1, . . . , g − 1

where pj = (xj ,
√
P (xj)) and J(pj) = (xj ,−

√
P (xj)) are the coordinates of the

branch points of σ in the affine model for X. Notice that αl vanishes at pj and
J(pj) if and only if j 6= l; even if a priori the complex charts chosen above and the
complex charts coming from the affine model are not the same, nevertheless the
vanishing of a differential does not depend on the chosen chart, so we can safely
conclude that (αl)j(0) = 0 if and only if j 6= l. Then we can compute that

0 =< µ̇0, αl >= πi(αl)l(0)(zl + wl)

which forces zl + wl = 0 for l = 1, . . . , g − 1, and proves the claim (*).
If g = 2, then every quadratic differential is invariant, hence we are done. If the

genus is higher we need to take care of anti-invariant differentials. Exploiting the
affine model once again, let us consider the following differentials

βl =

g−2∏
k=1,k 6=l

(x− xk)
dx2

y
, l = 1, . . . , g − 2

If g = 3, then it is understood that there is only one differential β1 = dx2

y . In any

case {βl | l = 1, . . . , g − 2} form a basis for V− (see Remark 4.14 at the end of this
proof). Moreover we have
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(βl)j(0) =



1√
P (xj)

∏g−2
k=1,k 6=l(xj − xk) = 0, 1 ≤ j ≤ g − 2, j 6= l

1√
P (xl)

∏g−2
k=1,k 6=l(xl − xk) 6= 0, 1 ≤ j ≤ g − 2, j = l

1√
P (xg−1)

∏g−2
k=1,k 6=l(xg−1 − xk) 6= 0, j = g − 1

where, once again, we only care about the vanishing pattern, as the actual non-zero
values might be different in the chosen charts and in the chart coming from the
affine model. Moreover by anti-invariance of βl we get that

(β′l)j(0) = −(βl)j(0)

Let us consider a deformation Move(σ, z1, w1, . . . , zg−1, wg−1) ∈ ∆⊥Ω(σ), and
let µ̇0 be the induced Beltrami differential as above. Then we claim (**) that
< µ̇0, βl >= 0 for l = 1, . . . , g − 2 if and only if Move(σ, z1, w1, . . . , zg−1, wg−1) ∈
KΩ(σ), for a suitable choice of the constants defining KΩ(σ), which we will now
compute. Indeed the contraction with these differentials can be computed to be

< µ̇0, βl >= πi((βl)l(0)zl + (β′l)l(0)wl + (βg−1)g−1(0)zg−1 + (β′g−1)l(0)wg−1) =

= 2πi((βl)l(0)zl + (βg−1)g−1(0)zg−1)

where the last equality follows from anti-invariance of βl and the fact that the de-
formation is along ∆⊥Ω(σ). Then one sees that all these quantities vanish precisely
when the following system of linear equations is satisfied

(βl)l(0)zl + (βg−1)g−1(0)zg−1 = 0 , l = 1, . . . , g − 2

Since all the coefficients here are non zero, setting Ql = − (βg−1)g−1(0)

(βl)l(0)
provides

the constants required to prove the claim (**). The Theorem follows then, with this
choice of constants, from claims (*) and (**), and the fact that invariant differentials
together with {βl | l = 1, . . . , g − 2} generate the whole space of holomorphic
quadratic differentials on X. �

Remark 4.14. Notice that βl ∈ V− because the polynomial defining it has degree
g − 3, since in the product the index is bounded to be k ≤ g − 2. This might look
a bit odd, as it introduces an asymmetry in the role of the variables, but allowing
k ≤ g − 1 would result in a polynomial of degree g − 2, which would give rise to
a meromorphic differential with poles at infinity in the affine model. It should be
clear from the statement of the Theorem, in particular from the equations defining
KΩ(σ) that this asymmetry is not substantial, and the variable zg−1 which is
made special by the choice of these differentials turns out to be just a parameter
for KΩ(σ), and could be replaced by any of the other variables.

Remark 4.15. As already observed in Remark 3.14 it is possible for a hyperelliptic
BPS in the stratum HM(2),ρ to be canonically branched without being a critical

point for the projection π(2); in other words the analogous statement for the minimal
stratum fails.
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Remark 4.16. In particular a diagonal slice ∆Ω(σ) at a non-degenerate hyperelliptic
BPS σ ∈M(1,...,1),ρ ⊆M2g−2,ρ provides an example of a (g−1)-dimensional family
of structures inM2g−2,ρ which are canonically branched but transverse to fibers of
the Teichmüller map π :M2g−2,ρ → T (S) (the critical direction should be tangent
to the slice otherwise). Contrast this with the case of a rational sphere Σ(X,A) (see
Section 2.3 for details) which is a 1-dimensional family of structures in M2g−2,ρ
which are canonically branched and actually constitute a fiber of π.
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