
THE ISOMETRY GROUP OF OUTER SPACE

STEFANO FRANCAVIGLIA AND ARMANDO MARTINO

Abstract. We prove analogues of Royden’s Theorem for the Lip-
schitz metrics of Outer Space, namely that Isom(CVn) = Out(Fn).
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1. Introduction

For n ≥ 2 let Fn be the free group of rank n, and Out(Fn) be
the group of outer automorphisms of Fn. The Culler-Vogtmann Outer
Space, CVn, is the analogue of Teichmuller space for Out(Fn) and is a
space of metric graphs with fundamental group of rank n.

As for Teichmuller space, one can define the Lipschitz metric of CVn

with a resulting metric which is not symmetric. This non-symmetric
metric is geodesic and seems natural in terms of capturing the dy-
namics of free group automorphisms; for instance the axes of iwip
automorphisms ([1]). However the non-symmetric version also lacks
some properties one might want; it fails to be complete, for instance,
while the symmetrised version turns CVn into a proper metric space
(see [11, 1, 2], and also [12] for a different approach.)

The group Out(Fn) naturally acts on CVn and the action is by isome-
tries. It is also easy to see that this action is faithful for n ≥ 3 but
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not faithful for n = 2. The reason for this is that Out(F2) ≃ GL(2, Z)
has a central element of order 2, namely −I2, which is in the kernel of
the action. If one picks a basis, x1, x2 for F2 the automorphism which
sends each xi to xi

−1 is a pre-image in Aut(F2) of −I2.
In this paper, we prove an analogue of Royden’s Theorem for both

metrics, and any rank, so that Isom(CVn) = Out(Fn) (see below for
exact statements).

There are many of this kind of results in literature, for instance

• The Fundamental Theorem of projective geometry (If a field
F has no non-trivial automorphisms, the group of incidence-
preserving bijections of the projective space of dimension n over
F is precisely PGL(n, F )).

• Tits Theorem: Under suitable hypotheses, the full group of
simplicial automorphisms of the spherical building associated
to an algebraic group is equal to the algebraic group ([22]).

• Ivanov’s Theorem: The group of simplicial automorphisms of
the curve-complex of a surface S of genus at least two is the
mapping class group of S ([15]).

• Royden’s Theorem: The isometry group of the Teichmuller
space of S is the mapping class group of S ([20]).

• Bridson and Vogtmann’s Theorem: For n ≥ 3 the group of
simplicial automorphisms of the spine of CVn is Out(Fn) ([6]).

• Aramayona and Souto’s Theorem: For n ≥ 3, the group of
simplicial automorphisms of the free splitting graph is Out(Fn);
([3]).

Our main results are:

Theorem 1.1. With respect to the symmetric Lipschitz distance,

Isom(CVn) = Out(Fn) for n ≥ 3.

For n = 2,

Isom(CV2) = PGL(2, Z).

We note that replacing the symmetric distance by its non-symmetrised
version one gets the same result.

Theorem 1.2. For both non-symmetric Lipschitz distances dR and dL,
Isom(CVn) is Out(Fn) for n ≥ 3 and PGL(2, Z) for n = 2.

This kind of result has immediate corollaries of fixed-point type (see
for example [5, 6]).

Corollary 1.3. Let G be a semisimple Lie group with finite centre and
no compact factors and suppose the real rank of G is at least two. Let Γ
be a non-uniform, irreducible lattice in G. Then every isometric action
of Γ on CVn has a global fixed point.
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As we note above, there already exists a result of this kind for the
spine of CVn, [6], which states that the simplicial automorphism group
of the spine of CVn is equal to Out(Fn) for n ≥ 3. At a first glance,
Theorem 1.1 could appear to be a direct consequence of [6] after some
easy remarks (using, for instance, Lemma 4.1) and in fact that was
exactly the thought of the authors when this work started.

However, the main difficulty in the paper is precisely moving from
a statement that an isometry preserves the simplicial structure of CVn

to the statement that it is the identity. For instance, once one knows
that an isometry leaves some simplex invariant, it is not clear, a priori,
that the centre of the simplex is fixed (in fact it is not true in general if
one simply looks at isometries of a simplex rather than the restriction
of a global isometry). And even when one has that a given isometry
leaves every simplex invariant, it is not clear how to deduce that the
isometry is in fact the identity - obviously, this is in sharp contrast to
the piecewise Euclidean metric.

Let us emphasise this contrast. Suppose that one wants to prove
Theoorem 1.1 for the piecewise Euclidean metric. First, note that
simplices corresponding to graphs with disconnecting edges are an ob-
vious obstruction. However, one always may to restrict to a “reduced”
Outer Space by removing such simplices. Now, looking at the incidence
structure of ideal vertices, one can prove that any isometry (w.r.t.
the piecewise Euclidean metric) maps ideal vertices to ideal vertices
and thus simplices to simplices because isometries are local PL-maps.
(Lemma 4.1 is no longer true, as stated, for this reduced Outer Space
as one can easily see in the rank-2 case.) Then, invoking the Bridson-
Vogtmann result, one gets that up to composing with automorphisms,
simplices are not permuted, and the PL-structure now completes the
job.

Now let us return to the Lipschitz metric. There are four key facts
in Theorem 1.1. First, the study of local isometries. The main point is
that in general, the isometry group of a fixed simplex of CVn is in fact
much bigger than its stabiliser in Out(Fn).

The second fact is that CVn is highly non-homogeneous. This allows
one to find particular points in simplices of CVn that are invariant
under isometries, so that one can characterise those isometries that are
restrictions of global ones.

Third, there is the fact that asymptotic behavior of distances from
a particular set of points determines the distance between points of
CVn. This is a non-trivial issue, that we like to paraphrase saying that
Busemann functions of ideal vertices are coordinates for CVn. The
main consequence of this fact is that one can deduce that an isometry
that does not permute simplices is in fact the identity.

Lastly, there is a permutation issue, similar to the one faced in [6],
that we solve metrically using our “Busemann functions”.
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We also remark that Theorem 1.1 holds for any rank and includes
the study of simplices with disconnecting edges. The complete schema
of the proof of Theorem 1.1 is described in Section 3.

Acknowledgments. The first named author wishes to thank the UFF
of Niterói (RJ, Brazil), the CRM of Barcelona (Spain) and the SOTON
(Southampton, UK) for their kind hospitality and the great work en-
vironment they provide.

This work was inspired by the beautiful articles [6, 5], and most of
the material of this introduction was picked from there.

2. Preliminaries

In this section we fix terminology, give basic definitions, and recall
some known facts (and prove some easy ones) that we shall need for
the rest of the paper. Experienced readers may skip directly to next
section and refer to present one just for notation.

2.1. Outer Space. First of all, we recall what Culler-Vogtmann space
or “Outer Space” is. We refer to the pioneer work [9] and beautiful
surveys [23, 24] for more details.

For any n ≥ 2 let Fn be the free group of rank n which we identify
with the fundamental group of Rn = S1 ∧ · · · ∧ S1 (the product taken
n times).

Consider finite graphs X whose vertices have valence at least three,
this means that each vertex has at least three germs of incident edges.
We require that X has rank n, that is to say, π1(X) ≃ Fn and that X
comes equipped with a metric. Giving a metric on X is equivalent to
giving positive lengths for the edges of X.

We also require X to be a marked graph, which is to say that it comes
with a fixed marking. A marking on X is a continuous map τ : Rn →
X which induces an isomorphism τ∗ : Fn ≃ π1(Rn) → π1(X). Two
marked metric graphs (A, τA) and (B, τB) are considered equivalent if
there exists a homothety, h : A → B, such that the following diagram
commutes up to free homotopy,

A
h // B

Rn

τA

``AAAAAAAA τB

>>}}}}}}}}

Culler Vogtmann Space of Fn or Outer Space of rank n is the set
CVn of equivalence classes of marked metric graphs of rank n.

It is common to consider standard representative of a given class by
taking volume one graphs (here volume means total edge length.)
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However, we usually do not normalise metric graphs, and when we
will do it we will use different normalisations depending on the calcu-
lations we are making.

We note that since the equivalence allows homothety, given a point
[X] in CVn, we only have the metric on X up to scaling constants.
If one instead only considers the equivalence up to isometry, then one
obtains unprojectivised CVn and the metric on the graph corresponding
to a point there is determined by the point.

Remark 2.1. In the following, if there is no ambiguity, we will not
distinguish between a metric graph X and its class [X]. If we need to
choose a particular representative of [X] we will explicitly declare that.

2.2. The Topology of CVn. Outer space is endowed with topology
induced by edge-lengths of graphs.

Given any marked graph A, we can look at the universal cover TA

which is an R-tree on which π1(Rn) acts by isometries, via the marking
τA. Conversely, given any minimal free action of Fn by isometries on
a simplicial R-tree, we can look at the quotient object, which will be
a graph, A, and produce a homotopy equivalence τA : Rn → A via the
action. Equivalence of graphs in CVn corresponds to actions which are
equivalent up to equivariant homothety.

Thus, points in CVn can be thought of as equivalence classes of
minimal free isometric actions on simplicial R-trees. Given an element
w of Fn and a point A of the unprojectivised CVn, with universal cover
TA whose metric we denote by dA, we may consider,

LA(w) := inf
p∈TA

dA(p, wp).

It is well known that this infimum is always obtained and that, for
a free action, it is non-zero for the non-identity elements of the group.
In this context, LA(w) is called the translation length of the element
w in the corresponding tree and clearly depends only on the conjugacy
class of w in Fn. If we look at graph A, then LA(w) is the length of the
geodesic representative of w in A, that is to say, the length of shortest
closed loop representing free homotopy class of τA∗(w) as an element
of π1(A). Thus for any point, A, in CVn we can associate the sequence
(LA(w))w∈Fn

and it is clear that equivalent marked metric graphs will
produce two sequences, one of which is a multiple of the other by a
positive real number (the homothety constant). Moreover, it is also
the case that inequivalent points in CVn will produce sequences which
are not multiples of each other [8]. Thus, we have an embedding of CVn

into R
Fn/ ∼, where ∼ is the equivalence relation of homothety. The

space CVn is given the subspace topology induced by this embedding.
Finally it is clear we can realise any automorphism, φ, of Fn as a

homotopy equivalence, also called φ, of Rn. Thus the automorphism
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group of Fn acts on CVn by changing the marking. That is, given a
point (A, τA) of CVn the image of this point under φ is (A, τAφ).

Rn

φ
//

τAφ

!!
Rn

τA // A.

Since two automorphisms which differ by an inner automorphism
always send equivalent points in CVn to equivalent points, we actually
have an action of Out(Fn) on CVn, and this space is called Outer Space
for this reason.

2.3. Simplicial Subdivision of CVn. Given a rank-n, marked, met-
ric graph X whose edges are labelled e1, . . . , ek, we can consider all
marked metric graphs homeomorphic to X and with same marking.
Such subset of CVn can be embedded in R

k by

X 7→ (LX(e1), . . . , LX(ek)).

If we consider standard normalisation with volume one, we obtain
standard open (k − 1)-simplex of R

k, i.e. the set {(x1, . . . , xk) ∈ R
k :

xi > 0,
∑

xi = 1}.
This gives us a natural subdivision of CVn into open simplices.

Definition 2.2. Let ∆ be an open simplex of CVn. The (marked)
graph underlying of ∆ is the (marked) topological type of graphs cor-
responding to points of ∆.

Simplices of CVn will have some ideal faces and some true faces.
More precisely, in an abstract way, if ∆ is a simplex with underlying
graph X, a face δ of ∆ is obtained by setting to zero the lengths of
some of the edges of X. This topologically corresponds to collapsing
such edges. If the resulting graph has still rank n, then δ exists as a
simplex of CVn, and in this sense it is a true face. On the other hand,
if the rank decreases, then δ is not in CVn (and in fact belongs to the
boundary at infinity of CVn) and in this case we say that δ is an ideal
face of ∆.

In what follows we always deal with true faces.

Definition 2.3. Let ∆ be a simplex of CVn with underlying marked
graph X. A face of ∆ is a simplex of CVn whose underlying marked
graph is obtained from X by collapsing some edges. The codimension
of the face of ∆ is the number of collapsed edges.

It is readily checked by an Euler characteristic count that simplices
of maximal dimension of CVn correspond to trivalent graphs, and that
such graphs have 3n − 3 edges and 2n − 2 vertices. Therefore their
dimension is 3n − 4 as CVn is the projectivised outer space. Looking
at the topology of graphs we see that in general,
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Lemma 2.4. k-dimensional simplices of (projectivised) CVn corre-
spond to graphs with k + 1 edges and k − n + 2 vertices.

Next we consider the i-skeleton of CVn.

Definition 2.5. For i ≤ 3n − n, the i-skeleton CVi
n of CVn is the set

of simplices of CVn of dimension at most i.

An easy but important fact is that i-simplices correspond to smooth
points of the i-skeleton.

Definition 2.6. A point x ∈CVi
n is smooth if it has a neighbourhood

in CVi
n homeomorphic to R

i.

Lemma 2.7. Open i-simplices of CVn are exactly the connected com-
ponents of the set of smooth points of CVi

n. That is to say

{x ∈ CV i
n : x is smooth } =

⊔

∆ open i-simplex

∆

Proof. It is enough to show that any i − 1 simplex is the face of at
least three different i-simplices. Let X be a point of an (i−1)-simplex.
Then X is obtained by collapsing to zero an edge e of a point X̄ of
an i-simplex. Let v− and v+ be the endpoints of e. Clearly v− 6= v+

because otherwise the collapse would decrease the rank. By definition,
both v− and v+ have valence at least three, and they are identified in
X to the same vertex v which therefore has valence at least four.

For any subdivision of the set of germs of edges at v in two subsets
of at least two germs, we can form a different i-simplex, having X in
one of its faces, by separating such subsets and inserting a new edge
between them. Clearly, different subdivisions give different i-simplices,
and we have at least three such subdivisions because the valence of v
is at least four. �

2.4. Roses and Multi-thetas. Our result will be based on a detailed
study of isometries of two particular classes of marked graphs. Namely
roses and multi-theta graphs.

Definition 2.8. A rose simplex is a simplex ∆ of CVn whose under-
lying graph is a rose, i.e. a bouquet of n copies of S1. Edges of such a
graph are also called petals. The centre of ∆ is the symmetric graph,
that is to say one whose petals all have the same length.

One should note that in the definition above, the centre is only de-
fined by specifying that the edges have the same length without saying
what that length is. We shall usually take a representative whose petals
all have length 1 but the reader should be aware that as long as all the
petals have the same length, the point in CVn will be the same.

By Lemma 2.4, rose simplices are those simplices of lowest dimension
of CVn.
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Definition 2.9. A multi-theta simplex is a simplex ∆ of CVn whose
underlying graph has only two vertices and n + 1 edges joining them
(such graph is called a multi-theta.) The centre of ∆ is the symmetric
graph, that is to say, the one whose edges have all same length.

Figure 1. A multi-theta graph in CV4

Definition 2.10. A rose-face of a simplex ∆ of CVn is a rose simplex
which is a face of ∆.

Formally speaking, simplices are open, so the rose-face of a simplex
is not subset of it. Nonetheless, it is readily checked that any isometry
of a simplex extends to its faces and rose-faces, though it may permute
them. As we are interested in studying isometries, by abuse of notation,
we will consider the rose-faces of a simplex as subsets of it.

Remark 2.11. Let ∆ be a simplex of CVn with underlying graph X.
Then any rose-face of ∆ is obtained by collapsing a maximal tree T
of X, and different trees give rise to different faces. Therefore rose-
faces of ∆ are in correspondence with maximal trees of X (for instance,
in case of multi-theta simplices, rose-faces are in correspondence with
edges).

2.5. Distances and stretching factors. We recall here the defini-
tions of — both the symmetric and non-symmetric — Lipschitz dis-
tances on CVn. These are defined via stretching factors of maps be-
tween points of outer space. Stretching factors, outer space and related
topics are widely studied by many authors, and literature on the matter
is huge (see for instance [4, 13, 16, 21, 9, 11, 14, 17, 10, 18, 19].)

Definition 2.12. For any two points X and Y in CVn, normalised to
have volume one, we define the right stretching factor as

ΛR(X,Y ) = sup
γ

LX(γ)

LY (γ)

where the supremum is taken over all loops (or, equivalently over all
conjugacy classes in Fn.) Similarly, the left stretching factor is

ΛL(X,Y ) = ΛR(Y,X) = sup
γ

LY (γ)

LX(γ)
.
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Definition 2.13. For any two points X and Y in CVn, normalised to
have volume one, the right and left distances are defined by

dR(X,Y ) = log(ΛR(X,Y )) dL(X,Y ) = log(ΛL(X,Y )).

Definition 2.14. For any two points X,Y ∈ CVn, not necessarily
normalised, the symmetric bi-Lipschitz metric, is defined by

d(X,Y ) = dR(X,Y ) + dL(X,Y ) = log sup
γ

LX(γ)

LY (γ)
sup

γ

LY (γ)

LX(γ)
.

We refer to [11] for a detailed discussion on such metrics. We re-
call some basic facts. Firstly, the suprema in definitions are actually
maxima. Also, we recall that Out(Fn) acts faithfully by isometries on
CVn (for n ≥ 3, in rank two the kernel of the action is Z2) endowed
with any of above metrics. Finally we note that the symmetric metric
is scale invariant, while the non-symmetric ones require normalisation.

The main tool for studying such distances is the so-called sausages
lemma, which allows us to quickly compute stretching factors, and
which we will use extensively throughout the paper (see [11] for the
proof).

Definition 2.15 (Almost simple closed curves). Let X be a point of
CVn. A simple closed curve (s.c.c. for short) is an embedding of
S1 to X. A figure-eight curve is an embedding to X of the bouquet
S1∧S1 of two circles. A barbell curve is roughly speaking an embedding
to X of the space: O—O. More precisely, let Q = {(x, y) ∈ R

2 :
sup(|x|, |y|) = 1}, then a barbell curve is an immersion c : Q → X
such that c(x, y) = c(x′, y′) if and only if x = x′ and |y| = |y′| = 1.

An almost simple closed curve (a.s.c.c. for short) is a curve which
is either an s.c.c., or a figure-eight or a barbell curve.

Lemma 2.16 (Sausages Lemma). For any two marked metric graphs
X and Y

sup
γ

LY (γ)

LX(γ)

is realised by an a.s.c.c. of X. Moreover, If both X and Y are roses,
then the supremum is realised by petals.

We notice that the Sausages Lemma not only allows to actually com-
pute distances, but is also important from a theoretical view-point.
Indeed, the fact that lengths of a.s.c.c. determine distances, and there-
fore points of outer space, is a key-point in the proof of Theorem 1.1
(see in particular Theorems 6.7 and 6.2).

Another simple but somehow surprising result that we will need in
the sequel is the following (whose proof can be found in [11]).

Lemma 2.17. Suppose σ is a d-geodesic between two points X and Y of
CVn. Let Z be a point in σ. A loop γ0 is maximally (resp. minimally)
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stretched from X to Y — that is to say, it realises supγ LY (γ)/LX(γ)
— if and only if the same is true from X to Z and from Z to Y .

3. Schema of proof of Theorem 1.1

We briefly describe here the strategy for proving our main result.
We recall that we aim to show that any isometry Φ of CVn is induced
by some element of Out(Fn).

(1) For topological reasons, Φ maps simplices to simplices. More-
over it maps rose simplices to rose simplices and multi-theta
simplices to multi-theta simplices.

(2) Computation of isometry group of rose simplices (it will be R
n
⋊

a finite group.)
(3) For a point X in a simplex ∆ of CVn, the asymptotic behaviour

of distances from X to points in rose-faces of ∆ determine
lengths of simple closed curves of X. This being true not only
for points of ∆ but also for points in any other simplex having
the same rose-faces as ∆.

(4) For a point X in a simplex ∆ (or in other simplices sharing
rose-faces with ∆) the lengths of simple closed curves and the
asymptotic behaviour of distances from X to points in rose-
faces of ∆, determine lengths of almost simple closed curves of
X (whence asymptotic distances determine lengths of a.s.c.c.)

(5) Study of isometries of multi-theta simplices. We show that any
isometry of a multi-theta simplex fixes its centre. How:
(a) Study of those pairs of points joined by a unique geodesic,

showing that for any point X in the interior of ∆, there is
a standard set of “rigid” geodesics emanating from X.

(b) Show that for any point other than the centre, there is at
least one more “rigid” geodesic, while for the centre, the
standard set is all we have. This characterises the centre
of ∆ from a metric point of view.

(c) Finally, for the centre of any rose-face of ∆ there is a unique
“rigid” geodesic joining it to the centre.

(d) In particular, any isometry fixes the centre, and if it does
not permute rose faces, it fixes also such “rigid” geodesics.

(6) Combining this with the knowledge of isometries of roses, we
get that if an isometry of a multi-theta simplex, ∆, does not
permute its rose-faces, then it point-wise fixes them and hence
point-wise fixes ∆ by 4 above (and we always can reduce to the
situation where Φ leaves some multi-theta ∆ and all its rose
faces invariant, by composing with an appropriate element of
Out(Fn)).

(7) Show that any isometry that fixes a multi-theta simplex, also
fixes all rose simplices of CVn (not only its faces.)
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(8) Show that simplices that are possibly permuted by Φ share
their rose-faces, and that simplices that share rose-faces “have
the same set of simple closed curves and the same set of almost
simple closed curves”. As asymptotic distances from rose-faces
determine points in such simplices, it follows a posteriori that
they cannot be permuted.

4. Topological constraints for homeomorphisms

In this section we prove first step of our strategy, that isometries of
CVn respect its simplicial and incidence structure. That result does not
require any metric structure, just the fact that isometries are homeo-
morphisms.

Lemma 4.1. Any homeomorphism of CVn maps k-dimensional sim-
plices to k-dimensional simplices.

Proof. The proof goes by induction on the codimension. Open top
dimensional simplices coincide with smooth points (Lemma 2.7.)

Clearly, to be a smooth point is invariant under homeomorphisms.
Again, by Lemma 2.7, open top-dimensional simplices are exactly con-
nected components of set of smooth points. Therefore homeomor-
phisms map open top-dimensional simplices to open top-dimensional
simplices.

Suppose the claim true for dimensions greater than i. By induction,
any homeomorphism Φ of CVn induces a homeomorphism of i-skeleton
CVi

n. Open codimension-(n − i) simplices are now connected com-
ponents of smooth part of CVi

n, and therefore Φ maps i-simplices to
i-simplices. �

Lemma 4.2. Any homeomorphism of CVn maps rose-simplices to rose-
simplices, and multi-theta simplices to multi-theta simplices.

Proof. This is just a dimensional argument. Clearly, homeomorphisms
preserve dimension. By Lemma 2.4, n − 1-dimensional simplices are
exactly rose-simplices, and the first claim follows. If we look at n di-
mensional simplices, we see that multi-theta simplices are characterised
by having exactly n + 1 rose-faces. So the homeomorphic image of a
multi-theta simplex still is a multi-theta simplex. �

5. Isometries of roses

In this section, we compute the isometry groups of rose simplices. In
rank two, it is immediate to see that a rose simplex is isometric to R,
so its isometries are known. For the general case we prove,

Theorem 5.1. The isometry group of a rose-simplex R of CVn+1 is
R

n
⋊ F, where F is finite and stabilises the centre, and R

n acts transi-
tively. Moreover, for n ≥ 2, the group F is Sn+1 × Z2, where Sn+1 is
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the symmetric group on n+1 letters and is induced by permutations of
petals. For n = 1 (i.e. in the rank-two case) F = Z2 = S2.

Proof. Any point of R is determined by the lengths of its petals, that
we label e0, . . . , en. We identify the unprojectivised R with R

n+1 as
follows. To any (x0, . . . , xn) ∈ R

n+1 is associated the graph X such
that

LX(ei) = exi

Note that origin of R
n+1 corresponds to centre of R. Moreover,

scaling-equivalence on CVn+1 descends to relation

x ∼ y if and only if x − y = λ(1, . . . , 1).

The pull back of the (pseudo) metric d to R
n+1 is then

d
(

(x0, . . . , xn), (y0, . . . , yn)
)

= sup
i

(xi − yi) + sup
i

(yi − xi).

This immediately implies that translations of R
n+1 are isometries,

and that translations along vector (1, . . . , 1) are in fact the only ones
inducing the identity of the projectivised R. So we have that

R
n = R

n+1/ < (1, . . . , 1) >

acts freely and transitively on R.
Thus, it remains to determine the stabiliser of the origin.

Clearly, permutations of coordinates are isometries that fix origin.
Finally, we have the reflection

σ : (x0, . . . , xn) 7→ (−x0, . . . ,−xn).

In the rank-two case, that is to say when n = 1, we are studying
isometries of R that fix origin. Therefore in rank-two, the stabiliser of
the origin consists of the reflection about the origin and the identity:
note that this reflection (the map σ, above, in other words) is induced
by the map which interchanges the two petals of our rank 2 rose.

For n > 1, our claim is that the stabiliser of origin is

F = Sn+1× < σ > .

For that, we need some work. First of all, note that the (pseudo)
metric d on R

n+1 is induced by the (pseudo) norm

||x|| = d(0, x).

In order to make || · || a norm and d a metric, for any point x ∈ R
n+1

we choose the ∼-representative of x + R(1, . . . , 1) that has 0 as the
first coordinate. We can do that because (x0, . . . , xn) ∼ (x0, . . . , xn) −
x0(1, . . . , 1). This gives an isometry between R and R

n with the fol-
lowing metric (still denoted by d)

d
(

(x1, . . . , xn), (y1, . . . , yn)
)

:= d
(

(0, x1, . . . , xn), (0, y1 . . . , yn)
)

.

We give now a more explicit description of that metric.
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Lemma 5.2. For any set I ⊆ {1, . . . , n} let RI be the sector of R
n

such that either xi ≥ 0 for all i ∈ I and xi ≤ 0 for all i /∈ I, or vice
versa. Then, for x ∈ RI

||x|| = ||x||∞,I + ||x||∞,Ic

where ||x||∞,I = supi∈I |xi| and Ic is the complement of I in {1, . . . , n}.

Proof. This is a straightforward calculation. Indeed, by definition

||x|| = sup{0, sup
i=1,...,n

xi} + sup{0, sup
i=1,...,n

−xi}

and, when x ∈ RI , that equals ||x||∞,I + ||x||∞,Ic . �

Our next step is an idea that we will return to throughout the paper,
and it is that the “unique” geodesics are rather rare and allow one to
determine the possible isometries.

Remark 5.3. Note that l1-norms naturally present phenomena of non-
uniqueness of geodesics. Namely, consider two geodesic spaces (X1, d1)
and (X2, d2), and their cartesian product equipped with the sum met-
ric d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2). Then any geodesic
γ : [0, 1] → X1×X2 is of the form γ = (γ1, γ2), and, up to reparametri-
sation,

t 7→

{

(γ1(t), γ2(0)) t ∈ [0, 1]
(γ1(1), γ2(t − 1) t ∈ [1, 2]

t 7→

{

(γ1(0), γ2(t)) t ∈ [0, 1]
(γ1(t − 1), γ2(t) t ∈ [1, 2]

are two different geodesics whenever neither γ1 nor γ2 is the constant
map. This situation is exactly the one arising in each sector RI as
above, where, by Lemma 5.2, we have the sum of two l∞-norms.

Proposition 5.4. Let x = (x1, . . . , xn) ∈ R
n, equipped with the metric

d above. Then there exists a unique geodesic joining the origin to x if
and only if there exists a real number λ such that for all i, xi = λ or
xi = 0. This geodesic is given (up to reparametrisation) by the path γx

whose ith coordinate at time t is txi.
Equivalently, a point x = (x0, x1, . . . , xn) ∈ R

n+1 represents a point
in R

n joined to the origin by a unique geodesic if and only if there exist
λ, µ such that each xi is equal to either λ or µ.

Proof. The last statement follows trivially from the first, on taking the
representative with x0 = 0, obtained by subtracting one of λ or µ from
each coordinate.

Next, let O denote the origin of R
n. For any x, y let xy denote the

path whose ith coordinate at time t is xi + t(yi − xi), t ∈ [0, 1]. By
Remark 5.3, if there is a set of indices I such that ||x||∞,I ||x||∞,Ic 6= 0
then x is joined to O by at least two different geodesics. Thus, up to
rearranging coordinates and possibly applying the isometry σ above,
we can suppose 0 ≤ x1 ≤ · · · ≤ xn. Clearly, d(γx(s), γx(t)) = xn|t − s|,
so that γx = Ox is a geodesic. Suppose there is i such that 0 < xi <
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xn. Then, consider the point xε = (x1/2, . . . , xi/2 + ε, . . . , xn/2). For
small enough ε the path γε resulting on the union of Oxε and xεx is a
geodesic from x to O as d(γε(s), γε(t)) = xn|t − s|/2. Also, γε is not a
reparametrisation of γx because they differ in their middle points.

Conversely, suppose that there is i so that xj = 0 for j < i and
xj = xn for j ≥ i. Let γ be a geodesic between O and x. If there
is a time t such that the jth coordinate of γ(t) is different from 0 for
some j < i, then a direct calculation shows that d(0, γ(t))+d(γ(t), x) is
strictly bigger than xn (while d(O, x) = xn.) Thus, the jth coordinates
of γ(t) all vanish for j < i. The very same argument shows that for
j ≥ t the jth coordinate of γ(t) equals the nth one, this showing that
γx is the unique geodesic from 0 to x. �

Proposition 5.4 is a translation of the fact that two roses in the same
simplex are joined by a unique geodesic if and only if there are only
two possible stretching factors for petals.

We note that Proposition 5.4 gives us a collection of geodesics which
are permuted by any isometry fixing the origin. Using this fact, we
now proceed to calculate the stabiliser of the origin. Since we already
have that these geodesics must be permuted by any isometry fixing the
origin, we shall proceed by studying points on these geodesics at fixed
distance 1 from the origin. These are also permuted and will give us
the information we need about the stabiliser.

For any I ⊆ {1, . . . , n} we define points p+
I and p−I in R

n by

p±I = (x1, . . . , xn) : xi =

{

±1 i ∈ I
0 i ∈ Ic

such points are equivalents to points PI of R
n+1

PI = (x0, . . . , xn) : xi =

{

1 i ∈ I
0 i ∈ Ic

where p+
I is equivalent to P0∪I , and p−I is equivalent to PIc (the

complement here is made in {0, . . . , n}.)

Lemma 5.5. For any distinct I, J ⊆ {0, . . . , n} we have

d(PI , PJ) =

{

1 if I ⊆ J or J ⊆ I
2 otherwise

Moreover, if d(PI , PJ) = 2, then the points of R
n corresponding to PI

and PJ are joined by a unique geodesic if and only and I = J c.

Proof. The first part is a simple calculation. For the second part, we
use the fact that translations are isometries. Translate the point PI

to the origin and look at the image of PJ , which we call denote x =
(x0, . . . , xn). Then there will be a unique geodesic between PI and
PJ if and only if there is a unique geodesic between x and the origin.
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However, is clear what each xi will be. Namely,

xi =















0 if i ∈ I ∩ J
0 if i ∈ Ic ∩ J c

1 if i ∈ Ic ∩ J
−1 if i ∈ I ∩ J c

As d(PI , PJ) = 2, we cannot have either I ⊆ J or J ⊆ I and hence both
1 and −1 must be taken by some of the xi. So by Proposition 5.4, PI

and PJ will be joined by a unique geodesic if and only if no xi is equal
to zero, which is the same as saying I ∩ J = ∅ = Ic ∩ J c. Equivalently,
I = J c. �

As stated, by Proposition 5.4 any isometry that fixes the origin must
permute the PI ’s. For such an isometry F and I ⊂ {0, . . . , n}, we
denote by F (I) the set corresponding to point F (PI).

From Lemma 5.5 we get

(1)
(

I ⊆ J or J ⊆ I
)

⇔
(

F (I) ⊆ F (J) or F (J) ⊆ F (I)
)

and

(2) F (Ic) = F (I)c

Remark 5.6. The isometry σ corresponds to I 7→ Ic.

Lemma 5.7. For any isometry F , the cardinality |F (I)| is either |I|
or n + 1 − |I|.

Proof. By (1) sets I and F (I) must have the same numbers of subsets
and supersets. For I such number is 2|I| + 2n+1−|I| − 1, whence

2|I| + 2n+1−|I| = 2|F (I)| + 2n+1−|F (I)|.

Set x = min{|I|, n + 1 − |I|} and y = min{|F (I)|, n + 1 − |F (I)|}.
We have

2x(1 + 2k) = 2y(1 + 2h)

for some non-negative numbers k, h. Whence x = y and the claim
follows. �

Remark 5.8. Up to possibly composing with σ we may suppose, as we
do, that there is i0 such that |F ({i0})| = 1.

Lemma 5.9. If there is i0 such that |F ({i0})| = 1, then for all i we
have that |F ({i})| = 1.

Proof. Note that by (2), |F ({i0}
c)| = |F ({i0})

c| = n. Now consider
some i 6= i0, whence {i} ⊆ {i0}

c. If {i} = {i0}
c then n = 1 and

the lemma is proved. So we can suppose {i} 6= {i0}
c, so F ({i}) 6=

F ({i0}
c) = F ({i0})

c (latter equality is by (2).) Thus, by (1) and
Lemma 5.7 we have that F ({i}) is strictly contained in F ({i0})

c. We
therefore have |F ({i})| ≤ n− 1, which implies |F ({i})| = 1 because of
Lemma 5.7. �
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Remark 5.10. When |F ({i})| = 1 for all i, we can define an element
f of Sn+1 by

F ({i}) = {f(i)}.

We show now that the permutation F is actually induced by f .

Lemma 5.11. Suppose |F ({i})| = 1 for all i. For all I ⊆ {0, . . . , n}
we have

F (I) = {f(i) : i ∈ I}.

Proof. For any i ∈ I we have that {f(i)} is either contained in or
contains F (I), so we must have f(i) ∈ F (I). The same holds for
Ic. �

An immediate consequence of all these facts is the following fact.

Proposition 5.12. Up to possibly composing with σ and an element
of Sn+1, any isometry of R that fixes origin also fixes all points p±I .

Proof. Let F be an isometry of R fixing the origin. We shall also use F
to denote the induced permutation of {0, . . . , n}, so that F (PI) = PF (I).

By remark 5.8 and Lemma 5.9, we may suppose that for all i we
have |F ({i})| = 1. Hence by Lemma 5.11, F is induced by some
permutation, f . We can think of this permutation as an isometry of R
which permutes the petals of the rose. By composing F with the inverse
of this isometry, we get that F (I) = I for all subsets I of {0, . . . , n}.
Thus F fixes all the points PI and thus all the p±I . �

Next lemma is a simple case of a general asymptotic argument (see
Section 6 and compare in particular with Proposition 6.4).

Lemma 5.13. For any i = 1, . . . , n and t ∈ R, let xi(t) be the point
of rose R, identified with R

n, whose coordinates are zero except for ith

which is t:

xi(t) = (0, . . . , t, . . . , 0), t at the ith place

and let x0(t) = (t, . . . , t). Then, points of R are determined by distances
from points xi(t)’s.

Proof. Let y = (y1, . . . , yn) be a point of R. Clearly, for large enough
t, we have

d(y, xi(t)) = t − yi + max{0, sup
j 6=i

yj}.

Therefore, by knowing such distances, we know for each i

−yi + max{0, sup
j 6=i

yj}.

Note that the yi’s are all negative numbers if and only if such quantities
are all positive, and in that case they give exactly −yi. On the other
hand, if some non-positive quantity appears, then indices i for which
yi is maximum are characterised by the fact that ith quantity is not
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positive. Thus, varying i > 0 we know all differences yi − yj for any
i, j.

Finally, consider distances from x0(t) as t → −∞

d(y, x0(t)) = max{0, sup
i

(t − yi)} + max{0, sup
i

(yi − t)} = max
i

yi − t.

This gives knowledge of maxi yi, and since we know those indices for
which yi is maximum, and all differences yi−yj, we get all the yi’s. �

Note that such a result can be re-paraphrased by saying that Buse-
mann functions of ideal vertices determines points.

We are now able to finish proof of Theorem 5.1. Let φ be an isometry
of R. Up to composing with a translation of R

n, we can suppose that
φ fixes the origin. By Proposition 5.12 after possibly composing with
elements of Sn+1 × 〈σ〉, we can suppose that φ fixes all the points p±I .
Therefore, by Proposition 5.4, φ must fix all the points xi(t) and x0(t).
Lemma 5.13 now implies that φ is the identity. �

We conclude this part anticipating results of subsequent sections. We
have seen what the isometry group of a rose simplex is, and we have
seen in particular that there are isometries which are not induced by el-
ements of Out(Fn+1). This seems, a priori, to count as evidence against
our final result. However, no such isometry arises as the restriction of
a global isometry of CVn+1. Indeed, we will show that translations of
R

n and reflection σ are not restrictions of global isometries. On the
other hand, any isometry in Sn+1 is induced by a permutation of gen-
erators and hence by an element of Out(Fn+1) (see Sections 6 and 7,
in particular Remark 7.8 and Lemma 7.9).

Note that this is not enough to show that Isom(CVn+1) is Out(Fn+1).
Indeed, it could be possible that an isometry permutes simplices, and
second, that restrictions of an isometry to different simplices are re-
strictions of different elements of Out(Fn+1). We will see that this is
not the case (Section 7).

6. Asymptotic distances from roses and global isometries

In this section we generalise calculations made in Section 5 about the
asymptotic behaviour of distances. The underlying philosophy is that
Busemann functions of ideal vertices are enough to distinguish points
of outer space.

What we have in mind is to prove the following fact, that if an
isometry fixes all rose-simplices of CVn then it must be the identity.
This, together with results of next section, opens the way towards
Theorem 1.1.

The first point in proving that result is that a priori, an isometry
that fixes all rose-faces, could permute other simplices.
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For that, we have to understand simplices that are possibly not in-
variant under the action of such an isometry. Lemma 6.1 below will
tell us that any two putatively permuted simplices must have the same
rose-faces.

Then, our aim will be to show that a point X is determined by
asymptotic distances from points in the rose-faces of the simplex con-
taining X. More precisely, we show how such distances determine the
lengths, in X, of every almost simple closed curve.

We emphasise that the results we are proving here (out of necessity,
due to Lemma 6.1) depend only on the set of rose-faces, and not on
the simplex containing X.

That is to say, suppose X and Y are points of simplices ∆1 and
∆2 who share their rose-faces. If for any p in any rose-face we have
d(X, p) = d(Y, p), then we show that for any two a.s.c.c. γ1 and γ2

LX(γ1)/LX(γ2) = LY (γ1)/LY (γ2) (so lengths of a.s.c.c. are equal up
to scaling.) Of course, we need also to show that whenever ∆1 and ∆2

share rose-faces, then a loop γ is a.s.c.c. in ∆1 if and only if the same
happens in ∆2.

Since the distance from X to Y is computed using only a.s.c.c. (be-
cause of Lemma 2.16) we deduce that this implies X = Y .

We start by studying simplices possibly permuted by isometries that
fix roses.

Lemma 6.1. Let Φ be an isometry of CVn that fixes all rose-simplices.
If ∆ is any simplex of CVn, then ∆ and Φ(∆) have the same rose-faces.

Proof. Let R be a rose-face of ∆, then d(R, ∆) = 0, so

0 = d(R, ∆) = d(Φ(R), Φ(∆)) = d(R, Φ(∆)).

Thus, R is a rose-face also of Φ(∆). Using Φ−1 we get the converse.
�

Now, we show that two simplices that share rose-faces have the same
a.s.c.c.

Theorem 6.2. Let ∆1 and ∆2 be two simplices of CVn that share
their rose-faces. Then they have the same set of almost simple closed
curves. More precisely, if γ is a conjugacy-class in Fn, then its geodesic
representative in ∆1 is simple if and only if it is simple in ∆2, and it
is a figure-eight or bar-bell curve in ∆1 if and only if the same is true
in ∆2 (possibly bar-bells become figure-eight curves and vice versa.)

Proof. Let G1 and G2 be marked graphs corresponding to simplices ∆1

and ∆2. Any rose-face of ∆i is obtained by collapsing a maximal tree
in Gi.

We first prove that a loop is simple in G1 if and only if it is simple
in G2. Let γ be a simple loop in G1, and let e1 be an edge of γ. As
e1 is part of a simple loop, it does not disconnect G1. Extend γ \ e1
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to a maximal tree T1 in G1. Let R be the rose obtained by collapsing
T1. The class of γ in R is represented by a petal p (the image of e1.)
As ∆1 and ∆2 share rose-faces, R is obtained by collapsing a maximal
tree T2 in G2. So the class of γ in G2 is represented by an edge e2

corresponding to the petal p plus a path in T2. As T2 is a tree, such
path is unique and its union with e2 is simple. Thus, γ is represented
by a simple loop also in G2.

Now, we deal with figure-eight and barbell curves. Let γ be such a
curve in G1. Let α and β be the two simple loops of γ.

Lemma 6.3. Let R be any rose-face of G1, then α∪β is represented in
R by a union of petals, each petal appearing at most once. In particular
the representatives of α and β in R have no common petal.

Proof. Let T be the maximal tree of G1 collapsed in order to obtain
R. Since T is a tree, and it is maximal, it cannot contain the whole α,
nor the whole β. As α and β have no common edge, their images in R
share no petal. Moreover, since α and β are simple, no petal can occur
twice. �

Note that Lemma 6.3 would fail if α ∪ β were a theta curve. We
can now conclude proof of Theorem 6.2. Let eα be and edge of α and
eβ be an edge of β. As eα and eβ are part of simple loops with no
common edges, we have that eα ∪ eβ does not disconnect G1. Extend
γ \ (eα ∪ eβ) to a maximal tree T1, and let R be the rose obtained
by collapsing T1. Let T2 be the tree of G2 whose collapsing gives R.
The loop α is represented in G2 by an edge corresponding to eα, which
we still denote by eα, and a path σα in T2 joining the end-points of
eα. The same (with the same notation) for β. The paths σα and
σβ have connected intersection because T2 is a tree. It follows that
the representative of γ in G2 is either a figure-eight or a barbell, or a
theta-curve. We show now that the case of theta-curve cannot arise.

Indeed, suppose representative of γ in G2 is a theta-curve. This is
equivalent to saying that σα∩σβ contains at least one edge e0. Clearly,
e0 does not disconnect G2. We can therefore find a maximal tree T0

not containing e0. Collapsing T0 we get a rose R with a petal p0 cor-
responding to e0. In R, loops representing α and β share petals p0.
By Lemma 6.3 R cannot be obtained from G1, in contradiction with
hypothesis that ∆1 and ∆2 have same rose-faces. �

Our next goal is to show that asymptotic distances from rose-faces
determine points. First, we show how to determine lengths of simple
closed curves using distances from rose-faces. After, we will deal with
a.s.c.c.

Proposition 6.4 (Distances from roses determine simple loops). Let
G1 and G2 be the underlying graphs of two simplices ∆1 and ∆2 having
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the same rose-faces. Let X1, X2 ∈ ∆1 ∪ ∆2 such that d(X1, Y ) =
d(X2, Y ) for any point Y of any rose face of ∆1 (or ∆2).

Now fix a conjugacy class γ0 which is a simple loop in G1 (and
hence G2) and suppose that X1, X2 are the representatives for which
LX1(γ0) = LX2(γ0) = 1.

Then, for any conjugacy class γ in Fn which is represented by a
simple loop in G1,

LX1(γ) = LX2(γ).

Recall that γ is simple in G1 if and only if it is simple in G2 because
of Theorem 6.2. Proposition 6.4 will follow from next lemma.

Lemma 6.5. Let R be a rose simplex in CVn and let e, e0 be petals
in the underlying graph of R. Set Yt to be the ray in R, consisting of
roses in R all of whose edges except e, e0 have length 1, and such that
at time t

LYt
(e) = t LYt

(e0) =
1

t
.

Now consider an X ∈ ∆, where ∆ is a simplex of CVn whose under-
lying graph is G and such that R is a rose-face of ∆.

Let γ be the simple closed curve in X corresponding to e0. Also let γe

be an a.s.c.c. in X which minimises LX(γe)
ne(γe)

, where ne(γe) is the number

of times γe crosses e (when projected to R.) Then,

(3) LX(γ) = C(e,X) lim
t→∞

ed(X,Yt)

t2

where C(e,X) = LX(γe)
ne(γe)

as above.

NOTE: The ray Yt depends only on the edges e, e0, and the rose
simplex R.

Proof. Let T be the maximal tree in G corresponding to the projection
of ∆ to R. We can find lifts of the edges e, e0 in G. We continue to
call these edges e and e0.

Now consider the ray Yt. We let t → ∞ and study the asymptotic
behaviour of d(X,Yt).

We claim that for sufficiently large t, the loop γ is maximally shrunk
from X to Yt. Indeed, if σ = e1 . . . ek is a loop, then

(4)
LYt

(σ)

LX(σ)
=

∑

i:ei=e0

1

t
+

∑

i:ei=e

t +
∑

i:ei /∈(T∪e∪e0)

1

∑

i LX(ei)
.

Since T is a tree, it cannot contain loops. Thus, if in σ there is some
e0 6= ei /∈ T the above stretching factor is bounded below uniformly
on t. On the other side, if σ = γ, the stretching factor goes to zero as
t → ∞. Finally, if in σ there is no edge ei /∈ T ∪e0, then σ is a multiple
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of γ because T is a tree, and so γ is the only way to obtain a simple
loop from e0 by adding edges of T .

Now, we look for maximally stretched loops. As above, we compute
LYt

(σ)/Lx(σ) for a generic a.s.c.c. σ using (4). If σ does not contain e,
then there is an upper bound to the stretching factor and, as t → ∞,
it is readily checked that if (4) is maximised, then for big enough t the
ratio of LX(σ) over the number of occurrences of e in σ is minimised,
hence

LX(σ)

ne(σ)
=

LX(γe)

ne(γe)
:= C(e,X).

It follows, that for sufficiently large t, if σ is maximally stretched we
have

(5) d(X,Yt) = log
LYt

(σ)

LX(σ)

LX(γ)

LYt
(γ)

= log
LX(γ)

LX(σ)
t(ne(σ)t + b + ne0(σ)

1

t
)

where ne(σ), ne0(σ) are either 1 or 2 as σ is a.s.c.c., b is the number
of edges of σ not belonging to T ∪ e0 ∪ e. Whence,

LX(γ)

LX(σ)
= lim

t→∞

ed(X,Yt)

ne(σ)t2

so

LX(γ) = LX(σ)
ne(σ)

limt→∞
ed(X,Yt)

t2

= LX(γe)
ne(γe)

limt→∞
ed(X,Yt)

t2

= C(e,X) limt→∞
ed(X,Yt)

t2
.

and the lemma is proved. �

Proof of Proposition 6.4. Let X be a point of either ∆1 or ∆2. Let
γ and η be two simple closed curves in G1. Choose an edge e0 in γ
(but not in η) and an edge f0 in η (but not in γ). We can then find
a maximal tree T in G which extends γ ∪ η − (e0 ∪ f0). Let R be
the corresponding rose face of ∆. Note that in any rose within this
simplex γ and η each project to a single petal, which we will call e0

and f0 (these petals are also the projections of those edges).
Now assume that n ≥ 3 so that we can find yet another petal, e,

distinct from e0, f0.
By Lemma 6.5, there is a ray Yt such that,

LX(γ) = C(e,X) lim
t→∞

ed(X,Yt)

t2
.

Similarly, there is a ray Zt such that,

LX(η) = C(e,X) lim
t→∞

ed(X,Zt)

t2
.



THE ISOMETRY GROUP OF OUTER SPACE 22

Hence,

(6)
LX(γ)

LX(η)
= lim

t→∞

ed(X,Yt)

ed(X,Zt)
.

Moreover, by Lemma 6.5, this last equation must hold for any X which
has R as a rose face (where we simply interpret γ, η as conjugacy classes
of Fn) and thus certainly for any X ∈ ∆1 ∪ ∆2. Thus, for the X1, X2

in the statement of the Proposition,

LX1(γ)

LX1(η)
=

LX2(γ)

LX2(η)

for any two loops γ, η which are simple in G1 (and hence G2). Putting
η = γ0 proves Proposition 6.4 when n ≥ 3.

Now consider the case n = 2. Note that here, distinct simplices have
different collections of rose faces (so we need not worry about ∆2).
When the underlying graph of X is a rose, there are exactly two simple
loops in X, γ and η and Lemma 6.5 produces exactly two different

rays Yt with limits, as in 6, LX(γ)
LX(η)

and LX(η)
LX(γ)

and the order of these is

independent of X. So Proposition 6.4 is true in this case.
Similarly, if the underlying graph of X is a barbell, then there is

exactly one rose face and exactly two simple loops, γ, η. Again, the

limits from 6 will give LX(γ)
LX(η)

and LX(η)
LX(γ)

and the lemma is again true in

this case.

Finally, if the underlying graph of X is a theta curve, then X has ex-
actly 3 edges, x, y, z, 3 rose faces and 3 simple closed curves, xy, xz, yz.
There are then 6 possible rays as in Lemma 6.5. However, each limit,

lim
t→∞

ed(X,Yt)

t2
,

is equal to one of LX(xy)
C(z,X)

, LX(xz)
C(y,X)

, LX(yz)
C(x,X)

. Also note that C(x,X) is simply

the length of the shortest simple loop in X which crosses x, since an
a.s.c.c. in X is actually a simple loop. Hence, C(x,X) is equal to either
LX(xy) or LX(xz).

Thus, if xy is the shortest simple loop in X, then LX(xy)
C(z,X)

will be the

smallest of the three limits, C(x,X) = C(y,X) = LX(xy) and con-
versely. From these observations, the Proposition follows easily. Take
X1, X2 with the same distances to rose faces. Then the limits above,
for X1, X2 respectively, produce the same ordered results (however, the
C terms need to be evaluated in different Xi’s).

Nevertheless, if without loss of generality, xy is the shortest loop
in X1, then the limit LX1(xy)/C(z,X1) will be least, and thus so will
LX2(xy)/C(z,X2) and hence xy must also be the shortest loop in X2.
The Proposition now readily follows. �
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Remark 6.6. We note that the constant C depends on X and on
e, but not on γ or e0. Such a dependence is thus cancelled when we
consider the ratio LX(γ)/LX(η), which therefore actually depends only
on asymptotic distances from X to rose-faces.

We now have sufficient tools for proving that asymptotic distances
from X to rose-faces determine the lengths of all a.s.s.c., whence de-
termine X.

Theorem 6.7. Let ∆1 and ∆2 be simplices of CVn with the same set
of rose-faces. Let G1 and G2 be the underlying graphs of ∆1 and ∆2

respectively. Let γ0 be a simple loop in G1 (whence its representative in
G2 is a simple loop as well.) For any class [X] of metric graphs in ∆1∪
∆2 consider the representative X so that LX(γ0) = 1. Now consider two
such representatives, X1, X2 ∈ ∆1 ∪ ∆2 such that d(X1, Y ) = d(X2, Y )
for any Y in any rose face of ∆1. Then, for any a.s.c.c. γ in G1 (and
hence G2),

LX1(γ) = LX2(γ).

Proof. The proof is in the same spirit as Proposition 6.4, but the situ-
ation now it is a little more complicated.

Let X be a point in either ∆1 or ∆2. It will be sufficient to show that
we can calculate the length of any a.s.c.c. in X by only using distances
to rose faces.

By Proposition 6.4, we know that lengths in X of simple loops are
determined via asymptotic distances to particular sequences of points,
not depending on X. Thus, we can suppose that we already know
the lengths of all simple loops in X, because we have normalised so
that LX(γ0) = 1. Thus what remains is to deal with figure-eight and
barbell curves. Clearly, the length of a figure-eight is determined via
Proposition 6.4. On the other hand, Theorem 6.2 tells that a figure-
eight curve in ∆1 may become a barbell in ∆2. For this reason we
treat figure-eight and barbell curves at the same time, considering a
figure-eight as a barbell whose central segment is reduced to a point.

In order to do this, we proceed as in Proposition 6.4; for any given
barbell curve, we build an appropriate sequence of points Yt in some
rose-face, such that the asymptotic distances from Yt determine the
length of the barbell.

Remark 6.8. At this point, the reader should be aware of the subtle
difference in the argument from that in Proposition 6.4. Indeed, the
points Yt we constructed in Lemma 6.5 do not depend on X, but just
on e0 (hence on γ) and e. Here, the ray Yt we shall define will actually
depend on X, or at least seem to, and thus present a logical obstacle to
our argument.

More precisely, the ray Yt here will depend on lengths of simple loops
in X. Intuitively speaking, the ray Yt escapes to infinity in a rose face
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and the “slope” of the this ray is determined by the lengths of simple
loops in X. However, this is sound because of Proposition 6.4. So for
any barbell curve, the ray we chose for computing its length is the same
for both X1 and X2, thus barbells have same lengths in X1 and X2, and
Theorem 6.7 will be proved.

The rank-two case is easy and left to the reader (just use the following
argument without the need to introduce the edge e and the loop γe.)
Suppose n ≥ 3.

Let γ be a barbell curve, possibly degenerate to a figure-eight curve,
say in G1. Let γ1 and γ2 be the two simple loops of γ, and let e1 ∈ γ1

and e2 ∈ γ2 be two edges. Clearly, G1 \ (e1 ∪ e2) is connected. Extend
γ \ (e1 ∪ e2) to a maximal tree T , and consider the rose RT obtained
by collapsing T . Since n > 2 there is an edge e /∈ (T ∪ γ). Also, there
is a simple loop not containing e (for instance, γ1.)

In RT we still denote by e, e1, e2 the petals corresponding to e, e1, e2

respectively.
Now, look at simplex ∆2. Since RT is a rose-face also of G2, it

is obtained by collapsing a maximal tree T ′ in G2. Therefore, petals
e, e1, e2 correspond to edges of G2 \ T ′, and the representative of γ in
G2 is disjoint from e.

Now let Yt be the point of RT whose petals have length 1 except
e, e1, e2 for which we set

LYt
(e) = t LYt

(e1) =
LX(γ1)

t
LYt

(e2) =
LX(γ2)

t
.

We now let t → ∞. If σ = l1 . . . lk is a loop, then (replace T with T ′

if X ∈ ∆2)

(7)
LYt

(σ)

LX(σ)
=

∑

i:li=e1

LX(γ1)

t
+

∑

i:li=e2

LX(γ2)

t
+

∑

i:li=e

t +
∑

i:li /∈(T∪e1∪e2)

1

∑

i LX(ei)
.

Note that by Lemma 2.16, the loop σ minimising the equation above
is realised by an a.s.c.c. in Yt (note this statement is independent
of t) and inspection of the equation 7 shows that the only possible
candidates are e1, e2 and e1e2. It is then easy to see that e1e2 is a loop
which realises the minimum, and this is exactly the realisation of γ
in Yt. (Note that when the barbell is actually a figure-eight, all three
loops give the same answer, but our statement remains true.)

As in Lemma 6.4, one also checks that, for large enough t, any max-
imally stretched loop σ from X to Yt (i.e. one that maximises 7) must
minimise the ratio of LX(σ) over the number of occurrences of e in σ,
among all loops. Such a ratio is exactly the constant C(e,X) intro-
duced in Lemma 6.4.

Distances may then be computed, and we obtain an expression of
the form,
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d(X,Yt) = log
LYt

(σ)

LX(σ)

LX(γ)

LYt
(γ)

= log
LX(γ)

LX(σ)

t(at + b + c1
t
)

LX(γ1) + LX(γ2)
.

where a is the number of occurrences of e in σ. Thus

LX(γ)

LX(γ1) + LX(γ2)
=

LX(σ)

a
lim
t→∞

ed(X,Yt)

t2
= C(e,X) lim

t→∞

ed(X,Yt)

t2

Since LX(γ1) and LX(γ2), are known, we just need to determine
C(e,X), which is given by Lemma 6.5 in terms of asymptotic dis-
tances. Namely, if (Zt) is the sequence of points given by Lemma 6.5
for computing the length of γ1 we get LX(γ1) = C(e,X) limt e

d(X,Zt)/t2.
If one likes exact formulae, one would have to introduce sequences

(Z1
t ) and (Q1

t ), given by Lemma 6.5 for the ratio LX(γ1)/LX(γ0); then
look at sequences (Z2

t ) and (Q2
t ), given by Proposition 6.4 for the ratio

LX(γ2)/LX(γ0), and get (remembering the normalisation LX(γ0) = 1,
and noting that the edge e may occur in γ0 so that all the sequences
below may be different)

LX(γ) = lim
t→∞

ed(X,Yt)

ed(X,Zt)

ed(X,Z1
t )

ed(X,Q1
t )

(
ed(X,Z1

t )

ed(X,Q1
t )

+
ed(X,Z2

t )

ed(X,Q2
t )

)

�

Finally, we are able to deal with global isometries of CVn, proving
that isometries are determined by their restrictions to rose-simplices.

Theorem 6.9. The only isometry of CVn that fixes all rose-simplices
is the identity.

Proof. Let Φ be such an isometry. Let X be a point of a simplex ∆1

of CVn, and let ∆2 = Φ(∆1). By Lemma 6.1, ∆1 and ∆2 share their
rose-faces. By Theorem 6.2 simple loops in ∆1 are also simple in ∆2. In
particular we can choose a simple loop γ0 and consider representatives
of metric graphs of ∆1 and ∆2 by imposing that the length of γ0 is 1.

By Theorem 6.2, ∆1 and ∆2 have the same almost simple closed
curves. Since Φ fixes points in rose simplices, for any Y in a rose-
face of ∆1, we have d(X,Y ) = d(Φ(X), Φ(Y )) = d(Φ(X), Y ). Then,
Theorem 6.7 says that the lengths of almost simple closed curves are
the same in X and Φ(X). Therefore, the Sausages Lemma 2.16 implies
X = Φ(X) (whence ∆1 = ∆2). �

7. Isometries of multi-theta simplices and their
extensions

Recall that our main result is that isometries of Outer Space are
all induced by automorphisms of the free group. By Theorem 6.9, it
is enough to show that up to composing with automorphisms, we can
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reduce to the case of isometries that point-wise fix every rose-simplex,
and we do that by studying isometries of multi-theta simplices.

Our first main result of this section is that isometries of multi-theta
simplices are induced by permutations of edges. Thus we have no
translations or inversions as in rose-simplices. In particular this also
shows that translations and inversions of rose-simplices cannot arise as
restrictions of global isometries of CVn.

Then, we will prove that situation is in fact even more rigid. Indeed,
we show that if two isometries coincide on a multi-theta simplex, then
they coincide on all rose-simplices of CVn (not only on faces of that
simplex). This will basically conclude Theorem 1.1.

We start by proving following theorem.

Theorem 7.1. Let ∆ be a multi-theta simplex, and let Φ be an isometry
of ∆. Then Φ fixes the centre of ∆ (recall definition 2.9). Moreover,
if Φ leaves invariant all the rose-faces of ∆, then it actually fixes them
point-wise, and in that case Φ is the identity map on ∆.

Before proving Theorem 7.1, we need to establish some preliminary
technical lemmas. We follow the strategy sketched in schema of Sec-
tion 3, focusing on the study of those pairs of points that are joined
by a unique geodesic. We recall that Outer Space is not a geodesic
space; nevertheless, in any simplex, segments (for the linear structure
of the simplex) are geodesic. More precisely, if we are in CVn, then the
points within a multi-theta simplex ∆ are specified by n + 1 positive
reals (giving an open n-simplex, since one further needs to projec-
tivise), corresponding to the lengths of the n + 1 edges. Then, given
x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1) we can consider the segment
xy := (1 − t)x + ty in ∆. This turns out to be a geodesic with respect
to the symmetric Lipschitz metric. See [11] for details and proofs.

However geodesics, even within a given simplex, are in general not
unique. Our strategy is broadly to determine sufficiently many “unique”
geodesics.

Definition 7.2. A geodesic segment σ of CVn is rigid if for any two
points on it, the restriction of σ is the unique (unparameterised) geo-
desic joining them.

We fix now a multi-theta simplex ∆, and we denote by e0, . . . , en the
(oriented) edges of underlying graph of ∆. Any point x in ∆ is thus
determined by lengths Lx(ei) of ei in x. As usual, we denote by ēi the
edge ei with the inverse orientation.

We begin by describing a set of standard rigid geodesics of ∆.
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Lemma 7.3 (Standard rigid geodesics). Let x 6= y be metric graphs in
∆. For any i let λi be the stretching factor of ei from x to y:

λi =
Ly(ei)

Lx(ei)
.

If the set of such stretching factors contains exactly two elements, none
of them with multiplicity 2, then the segment between x and y is rigid.

Proof. This is a consequence of Lemma 2.16 and Lemma 2.17.
Indeed, up to rearranging edges, we can suppose λ0 = · · · = λk = µ

and λk+1 = · · · = λn = λ for two numbers µ < λ. By scaling the
graph y by µ, we may reduce to the case where λ0 = · · · = λk = 1 <
λk+1 = · · · = λn = λ. In particular, we have scaled y so that the edges
e0, . . . , ek have the same length in both x and y.

Let z be a point in a geodesic joining x and y. We claim that, up
possibly to scaling, the edges e0, . . . , ek are not stretched from x to
z, while the edges ek+1, . . . , en are stretched all by the same amount
between 1 and λ. That is to say, we scale z so that the length of e0 in
z is equal to the length of e0 in both x and y. Now we claim that if z
belongs to a geodesic joining x and y, then it belongs to the segment
between x and y, which therefore is rigid.

Let us examine our claim. First, suppose k > 1. Then, the loops
eiēj with i, j ≤ k are minimally stretched from x to y. Thus, by
Lemma 2.17 the same must be true from x to z. In particular all such
loops are stretched the same from x to z. As we have at least three
such loops (because k > 1) this implies that the edge-stretching factors
Lz(e0)/Lx(e0), . . . , Lz(ek)/Lx(ek) all coincide.

This fact is also trivially true if k = 0, while the case k = 1 is
impossible because the multiplicity of µ was supposed different from 2.
So, up possibly to scaling, the edges e0, . . . , ek are not stretched from
x to z (they have the same length in each metric graph).

The same argument, now with maximally stretched loops, shows
that edges ek+1, . . . , en are all stretched the same amount (as above,
k 6= n − 2 because the multiplicity of λ is not 2) and by an amount
which is between 1 and λ. �

Note that rigid segments of type just described, always emanate from
any point x of ∆. Indeed it suffices to consider a set I of edges and
consider a point y whose edge-lengths equal those of x for edges in I
and, say, double those of x for remaining edges. As above, this will be
a rigid geodesic which obviously extends to a rigid geodesic ray. This
is why we call such geodesic “standard”.

One can think these geodesics as being a standard set in the tangent
space at x. Our objective now is to see that points of ∆ can have more
rigid geodesics emanating from them, and that such a set of “rigid”
directions is minimal when x is the centre of ∆. We notice that this
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is a substantial difference with respect to case of rose-simplices, which
are homogeneous as there is transitive action of translations.

Lemma 7.4 (Rigid geodesics from the centre, in the case of rank at
least 3). Suppose x is the centre of ∆. If n ≥ 3, then any rigid geodesic
through x is of the type described in Lemma 7.3.

Proof. We scale x so that its edges have length one. We have to show
that for any point y, if the segment xy is rigid, then the set of edge-
stretching factors contains exactly two elements, none of them with
multiplicity two.

Suppose first that we have two edge-stretching factors, one of them
with multiplicity two. Up to scaling y and rearranging edges, we can
suppose that the stretching factors of edges ei are 1 for i = 0, . . . , n−2
and λ for i = n − 1, n. We show that in that case the segment from x
to y is not rigid.

Without loss of generality we can suppose λ > 1. Let z be the middle
point of such segments, that is to say

1 = Lz(e0) = · · · = Lz(en−2) Lz(en−1) = Lz(en) =
1 + λ

2
.

Since λ > 1, the loops eiēj with i, j < n − 1 (whose existence is
guaranteed because n ≥ 3) are minimally stretched, and en−1ēn is
maximally stretched, both from x to y, form x to z and from z to y.

Moreover, since the inequalities in play are all strict, the same re-
mains true if we slightly perturb the length of en (note that maximally
and minimally stretched loops have no common edges). That is to say,
if zε denote the graph whose edge-lengths equal those of z except for
en, for which we set Lzε

(en) = Lz(en) + ε, for small enough ε, it is
still true that loops eiēj with i, j < n− 1 are minimally stretched, and
en−1ēn is maximally stretched, both from x to y, form x to zε and from
zε to y. This implies

d(x, zε) + d(zε, y) = d(x, y).

Thus, as segments are geodesics, the union σε of segments xzε and zεy
is a geodesic between x and y. On the other hand it is clear that zε does
not belong to segment xy, so σε is different from xy which is therefore
not rigid.

It now remains to show that if we have at least three different stretch-
ing factors, then we can find a geodesic between x and y which is not
a segment. As above, we can scale y, and rearrange edges so that
1 = λ0 ≤ λ1 ≤ · · · ≤ λn.

Since Lx(ei) = 1 for all i, the minimally stretched loops from x to
y are all the eiēj for which λi = λ0 = 1 and λj = λ1, and maximally
stretched ones are those eiēj for which λi = λn−1 and λj = λn.

Let z be the middle point of the segment from x to y. Let λ ∈
{λi} be an edge-stretching factor such that 1 6= λ 6= λn. Let zε be a
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metric graph whose edge-lengths equal those of z, except that for edges
stretched by λ, for which differ by ε

Lzε
(ei) =

{

Lz(ei) λi 6= λ
Lz(ei) + ε λi = λ

and let σε be the union of segments xzε and zεy.
It is clear — because we have at least three stretching factors — that

zε does not belong to the segment xy, whence σε 6= xy. If we show that
σε is a geodesic we are done. As above, it is enough to show that

d(x, zε) + d(zε, y) = d(x, y).

For that, we have to prove that there are loops γ0 and γ1 that are
respectively minimally and maximally stretched from x to zε and from
zε to y. This easily follows, for small enough ε, by the choice of λ.
Indeed, it suffices (since the other cases are easier) to look at the sit-
uation when the stretching factors are 1, λ, . . . , λ, λn. Here, min. and
max. lops-stretching factors form x to y are (1 + λ)/2 and (λ + λn)/2,
realised by e0ēi and eiēn for i = 1, . . . , n. Such loops are therefore min
and max stretched both from x to z and from z to y, and perturbing
λ a little such loops remain min. and max. stretched. �

Now, we show how Lemma 7.4 provides (in rank bigger than two)
a metric characterisation of the centre of ∆ as the point having the
minimum number of rigid geodesics passing through it.

Lemma 7.5. For any point x other than centre of ∆, there is at least
one rigid geodesic emanating from x which is not of the type described
in Lemma 7.3.

Proof. We denote by xi the lengths Lx(ei). Up to scaling x and rear-
ranging edges, we can suppose that

1 = x0 ≥ x1 ≥ · · · ≥ xn.

We want to find stretching factors

1 = λ0 ≤ λ1 ≤ · · · ≤ λn

at least three of them being different, such that segment between x and
point y corresponding to graph whose edges have length λixi, is rigid.
As three of the λi are different, this will prove the lemma.

Let us start by making the simplifying assumption that xn 6= x1.
Stretching factors, from x to y, of loops eiēj are

λixi+λjxj

xi+xj
, and if

1 = λ0 ≤ λ1 ≤ · · · ≤ λn, an immediate calculation shows that whenever
j ≥ i we have

1 + λixi

1 + xi

≤
λixi + λjxj

xi + xj

≤
λjxj + λnxn

xj + xn

.
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This implies that if we are searching for minimally (respectively max-
imally) stretched loops, we can restrict to loops of the form e0ēi (re-
spectively eiēn.)

The idea is now to force such loops to have the same stretching
factors. We impose conditions

λ1 =
1 + x1

x1

and, for i > 0

(8)
1 + λixi

1 + xi

=
1 + λ1x1

1 + x1

=
2 + x1

1 + x1

We remark that the assumption on λ1 is for simplifying calculations,
we only need λ1 > 1.

We can solve these equations getting

λi =
(2 + x1)(1 + xi)

(1 + x1)xi

−
1

xi

= 1 +
1 + xi

(1 + x1)xi

thus λi ≥ λ1, with equality if and only if xi = x1, and λi ≤ λj for
j ≥ i, with equality if and only if xi = xj. In particular, under our
simplifying assumption, we have λ0 = 1 < λ1 < λn, so at least three of
the λi’s are different.

So we get numbers λi’s with the requested properties. Now, let y be
the point of ∆ given by

Ly(ei) = λixi

and let z be any point in a geodesic between x and y, scaled so that
Lz(e0) = 1. We define µi by

Lz(ei) = µixi.

Loops e0ēi are minimally stretched from x to y. Thus, we must have
that such loops are minimally stretched from x to z and from z to y.
This forces the edge-stretching factors µi to satisfy condition (8), which
allows us to obtain µi as a function of µ1 exactly as λi is obtained from
λ1. This implies that, if z′ is the point in the geodesic line between x
and y with first edge-stretching factor equal to µ1, we have that z = z′.

So that z belongs the segment xy which is hence rigid, and not of
the type described in Lemma 7.3.

We are now left with the case in which xn = x1 so xi = xj for any
i, j 6= 0. As we are supposing that x is not the centre of ∆, we must
have x0 6= x1. Up to scaling x and rearranging edges, this case is
equivalent to

(x0, . . . , xn) = (1, . . . , 1, c)

with c > 1.
We choose y of the form

y = (1, λ, . . . , λ, µc)
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Stretching factors of simple loops are

1 + λ

2
,

1 + µc

1 + c
, λ,

λ + µc

1 + c
.

Now, we impose conditions

µc = 1,
1 + λ

2
=

1 + µc

1 + c

which imply that λ 6= µ because c 6= 1, and λ < 1. Whence

1 + λ

2
=

1 + µc

1 + c
> max(λ,

λ + µc

1 + c
).

So all the loops e0ēi are maximally stretched from x to y (and in
particular, stretched by the same amount). Now we argue as before:
the same must be true for any point z on any geodesic from x to y,
and this forces z to be of the form (once scaled so that Lz(e0) = 1)

z = (1, λ̄, . . . , λ̄, µ̄c)

with
1 + λ̄

2
=

1 + µ̄c

1 + c
.

As above, this implies that z belongs to the segment xy, which is
then rigid and it is not of the type described in Lemma 7.3 because
1 6= λ 6= µ 6= 1. �

Lemma 7.6 (Rigid geodesics in rank two). Let x 6= y be two marked
metric graphs in ∆. Suppose n = 2, so that ∆ has exactly three different
(unoriented) simple loops. Then the segment xy is rigid if and only if
two of the three simple loops are stretched the same from x to y.

Proof. The proof use same arguments of higher rank case, but takes in
account the peculiarities of rank two.

If the three simple loops are stretched by three different factors, then
for any point w close enough to the middle point z of xy, the maximally
and minimally stretched loops do not change from x to w from w to y
and from x to y. So that xy is not rigid.

On the other hand, if two simple loops are stretched by the same
factor, we may rearrange the edges so that e0 is the edge shared by
such loops, and scale graphs so that Lx(e0) = Ly(e0) = 1. Moreover,
as we have only three simple loops, e0ē1 and e0ē2 are either maximally
or minimally stretched from x to y. So the same must be true from x
to z and from z to y for any point z in a geodesic between x and y. If
x = (1, a, b) and y = (1, λa, µb), we have

1 + λa

1 + a
=

1 + µb

1 + b

and the same relation holds for the edge stretching factors of point z
which therefore belongs to the segment xy. �
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Lemma 7.7. For any rose-face of ∆ there is a unique rigid geodesic
from the centre of ∆ to that face.

Proof. By Lemma 7.4 and 7.6, a rigid geodesic emanating from the
centre is of the type described in Lemma 7.3 (and 7.6 in the rank-2
case). A rose-face corresponds to collapsing an edge, say e0. So in a
rigid geodesic from the centre to that face we have λ0 = t and λi = 1
for i > 0, with t ∈ [1, 0]. Therefore such geodesic is unique. �

Now, we continue with proof of Theorem 7.1. We begin by examining
the first claim in the rank-two case. Since permutations of edges of
∆ are isometries that fix its centre and permute its rose-faces, up to
composing Φ with such a permutation we can suppose that Φ does not
permute rose-faces of ∆. If the restriction of Φ to a rose-face has a
translational part, then for any point x in that face we see that the
distance of Φn(x) from at least one of the remaining two rose faces of
∆ goes to infinity, this being impossible because Φ is an isometry. It
follows that Φ fixes the centres of rose-faces of ∆. Explicit calculations
(using Lemma 7.6, see the Appendix) show that the centre of ∆ is the
unique point which is joined to the centres of the three rose-faces by
rigid geodesics. Thus Φ fixes the centre of ∆, and the first claim of
Theorem 7.1 is proved for n = 2.

If n ≥ 3, Lemma 7.4 and Lemma 7.5 imply that any isometry Φ of ∆
must fix its centre, so first claim of theorem is proved. Moreover, if Φ
does not permute rose-faces, then by Lemma 7.7 it must fix point-wise
rigid geodesics emanating from x and going to rose-faces. In particular,
Φ fixes centres of rose-faces.

Remark 7.8. Note that we have proved that if Φ does not permute
rose-faces of ∆, then its restriction to any rose-face has no translational
parts, which is to say that it fixes the centre of rose-face.

Therefore, by Theorem 5.1, restriction of Φ to rose-faces of ∆ is an
element of Sn × 〈σ〉. In the next lemma we show that such an element
must be the identity. We first introduce some terminology.

Let Ri denote the rose-face of ∆ obtained by collapsing edge ei, and
let Ci denote its centre. Also, for i 6= j we let Γi

j(ǫ) denote the point
of Rj all of whose petals have length 1 except for ei which has length
ǫ. For i 6= j, straightforward calculations show

(9) d(Ci, Γ
k
j (2)) =







log 6 i = k in any rank
log 6 i 6= k in rank bigger that 2
log 3 i 6= k in rank 2

and
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(10) d(Ci, Γ
k
j (0.5)) =







log 3 i = k in any rank
log 8 i 6= k in rank bigger that 2
log 6 i 6= k in rank 2

Note that in the rank-2 case, for i 6= j 6= k we have Γk
j (2) = Γi

j(0.5),
up to scaling.

Lemma 7.9. Let Φ be an isometry of a multi-theta simplex ∆ which
fixes the centres of its rose-faces. Then Φ is the identity on each rose
face.

Proof. By Theorem 5.1, the restriction of Φ to any rose face is an
element of Sn ×〈σ〉. Hence the image of the point Γi

j(2) is either Γk
j (2)

or Γk
j (0.5) for some k. However, by (9) and (10), since each Ci is fixed

by Φ the distances to Γi
j(2) are preserved and we must have that Γi

j(2)
is actually fixed by Φ. Since this is true for every i 6= j, and since the
only element of Sn × 〈σ〉 which fixes all these is the identity, we get
that Φ restricts to the identity on any Rj. �

We can now finish proof of Theorem 7.1. We proved that any isom-
etry of ∆ fixes it centre, and that if it does not permute rose-faces
Ri, then it fixes their centres Ci. By Lemma 7.9 this implies that Φ
point-wise fixes rose-faces of ∆. Now let x ∈ ∆. For any y in some Ri,
we have d(x, y) = d(Φ(x), y) (because Ri is fixed.) Therefore, Theo-
rem 6.7 tells us that lengths of a.s.c.c. in x and Φ(x) coincide. Thus,
by Lemma 2.16 we have d(x, Φ(x)) = 0. It follows that Φ is the identity
of ∆, and the proof of Theorem 7.1 is concluded. �

We come now the other main result of this section, that is that for
an isometry of CVn, what happens on a single multi-theta simplex
determines the isometry on the whole CVn. The first step is to show
that if an isometry of a multi-theta simplex is the identity on a rose-
face, then it is the identity of the multi-theta simplex. Our claim will
follow then by an argument of connection.

Lemma 7.10. Let Φ be an isometry of a multi-theta simplex ∆ which
restricts to the identity on one of the rose-face of ∆. Then Φ restricts
to the identity on each rose-face of ∆.

Proof. Let R0 be the rose-face fixed by hypothesis. By Lemma 7.9,
it is sufficient to show that Φ fixes each centre Ci. By first claim of
Theorem 7.1, we know that the centre of ∆ is fixed. By Lemma 7.7,
there is a unique rigid geodesic from the centre to each rose face, ending
in Ci. Hence, the Ci are permuted by Φ.

However, the stabiliser in Out(Fn) of ∆ contains a subgroup isomor-
phic to Sn+1, by simply permuting the edges of the underlying graph
of ∆, and this subgroup will induce every permutation of the n + 1
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rose-faces of ∆. Hence, by Lemma 7.9, Φ is equal to the restriction of
some element of Sn+1 (in fact, some such element which fixes the edge
corresponding to the fixed rose-face). But the only element of this sort
which restricts to the identity in a rose face is the identity. (This also
follows from (9) and (10)).

�

Theorem 7.11. Let Φ be an isometry of CVn that point-wise fixes a
multi-theta simplex. Then it point-wise fixes all rose and multi-theta
simplices of CVn.

Proof. We start by doing a simple calculation. Let ∆ be a multi-theta
simplex of CVn, with edges oriented and labelled e0, e1, . . . , en. For an
edge e, we denote by e the edge e with inverse orientation. Let Ri be
rose face of ∆ obtained by collapsing ei. We will label the edges of Ri,
ei
0, e

i
1, . . . , e

i
i−1, e

i
i+1, . . . , e

i
n.

Now let us explicitly write down the homotopy equivalences between
R0 and Ri in terms of these edges. The map from R0 to Ri is given by
the following,

(11)
e0

j 7→ ei
je

i
0, j 6= i

e0
i 7→ ei

0.

Similarly, the map from Ri to R0 is given by,

(12)
ei

j 7→ e0
je

0
i , j 6= 0

ei
0 7→ e0

i .

This in particular implies that the sub-complex of CVn consisting
of multi-theta and rose-simplices is connected, as we realised Nielsen
automorphisms passing from a rose-face to another in a multi-theta
simplices.

Now, it would seem that we are done simply by starting from our ini-
tial fixed multi-theta simplex and extending our results, via Lemma 7.10,
over the whole of CVn. The only problem is that we do not know, a
priori, that Φ does not induce some non-trivial permutation of the
multi-theta simplices. Therefore, we need to rule out this possibility.

Remark 7.12. The next Lemma is an “elementary” proof of the fact
that permutations of multi-theta simplices do not occur. The calcula-
tions it involves are somewhat tedious and the reader may prefer to
invoke the result of Bridson and Vogtmann [6] asserting that simplicial
actions on the spine of CVn (see [6] for definitions and details) come
from automorphisms (for n ≥ 3). Then, she could show that isometries
naturally induce such actions on the spine, and since the spine encodes
the combinatoric of roses and multi-theta incidences, get the desired
result. We present here the proof of Lemma 7.13 as follows because it
is self-contained and more in the spirit of the techniques of the present
work.
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Lemma 7.13. Let ∆ be a multi-theta simplex, R a rose face of it.
Suppose that ∆1, . . . , ∆k are all the other multi-theta simplices in CVn

which are incident to R. Let Φ be an isometry of CVn which point-wise
fixes ∆ (and therefore R). Then Φ leaves each ∆i invariant.

Proof. Consider our multi-theta simplex ∆ which is given by a graph
with 2 vertices and n + 1 edges, ordered and labelled e0, . . . , en+1. As
usual, for an edge e we denote by e the one with inverse orientation.
Moreover, we chose orientations so that the ei’s share the same initial
vertex (so they also share the terminal vertex). We will let R denote
the rose simplex obtained by collapsing the edge e0.

It is now an easy exercise to see that there are 2n−1 multi-theta
simplices incident to R. Therefore, the result is trivial in CV2 and we
shall restrict our attention to CVn for n ≥ 3.

We shall describe the set of multi-thetas incident to R by listing
the homotopy equivalences from ∆. Specifically, choose some I ⊆
{1, . . . , n} and consider the homotopy equivalence on ∆ given by,

e0 7→ e0

ei 7→ ei, i 6∈ I
ei 7→ e0eie0, i ∈ I

It is then clear that the set of all multi-thetas incident to R will
be given by these maps. However, we note that replacing I by its
complement gives the same simplex, so we have counted each twice.
From now we will make a choice between I and Ic so that |I| ≥ |Ic|
(or I = ∅) — if |I| = |Ic| the choice will be arbitrary. Hence if I is
not empty it will have at least two elements, and its complement will
be non-empty. Let ∆I denote the multi-theta simplex obtained via the
map above. This gives us our 2n−1 multi-thetas, with ∆ = ∆∅.

Now, we will show that the distances from ∆ will determine the
∆I . Note that since we are dealing with multi-theta graphs, by the
Sausages Lemma (2.16) the maximally and minimally stretched loops
can be taken to be simple closed curves, which are straightforward to
enumerate. Below, we present a list of curves. On the left side, we
have curves in ∆ and on the right side their image in ∆I so that each
simple closed curve in either ∆ or ∆I appears somewhere on the list
(up to orientation). Throughout, we have that i, j 6= 0.

∆ ∆I

eie0 7→ eie0, i 6∈ I
eie0 7→ e0ei, i ∈ I
eiej 7→ eiej, i, j 6∈ I

7→ e0eieje0, i, j ∈ I
7→ e0eie0ej, i ∈ I, j 6∈ I

eie0eje0 7→ eiej, i ∈ I, j 6∈ I
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Now let us assign edge lengths and calculate distances. For each
∆I 6= ∆, we will let all edge lengths equal 1, since we know that isome-
tries preserve the centres. Next choose some J ⊆ {1, . . . , n} and let
∆(J, 1/3) be the graph ∆ where each edge has length 1 except for the
ej which has length 1/3 for all j ∈ J . Moreover, let us stipulate that
J 6= ∅, {1, . . . , n}. It is then an easy exercise to check the stretch-
ing factors for each of the simple loops in ∆(J, 1/3) and ∆I . Clearly,
this depends on the relationship between J and I. We list below, the
possible stretching factors between ∆(J, 1/3) and ∆I , with the condi-
tion which allows it. Some stretching factors can occur in more than
one way, in which case we have removed the redundancy (an empty
condition means the stretching factor is always realisable).

So distance is computed by taking the log of the ratio of the max-
imum over the minimum of the allowed factors. Recall that by the
choice we made for I, we always have |I| ≥ 2 and |Ic| ≥ 1.

Stretching factor Condition
1

3/2
3 |I ∩ J | ≥ 2 or |Ic ∩ J | ≥ 2
2 |I ∩ J c| ≥ 1 and |Ic ∩ J c| ≥ 1
3 |I ∩ J | ≥ 1 and |Ic ∩ J c| ≥ 1
3 |I ∩ J c| ≥ 1 and |Ic ∩ J | ≥ 1
6 |I ∩ J | ≥ 1 and |Ic ∩ J | ≥ 1

1/2 |I ∩ J c| ≥ 1 and |Ic ∩ J c| ≥ 1
3/5 |I ∩ J | ≥ 1 and |Ic ∩ J c| ≥ 1
3/5 |I ∩ J c| ≥ 1 and |Ic ∩ J | ≥ 1
3/4 |I ∩ J | ≥ 1 and |Ic ∩ J | ≥ 1

We now apply these conditions to calculate the distances from ∆(J, 1/3)
to ∆I when J has exactly 2 elements. Specifically,

• If |J | = 2, |J ∩ I| = |J ∩ Ic| = 1, and |Ic| ≥ 2, then maximal
and minimal stretching factors are 6 and 1/2, so the distance is
log 12.

• If |J | = 2, |J ∩ I| = |J ∩ Ic| = 1, and |Ic| = 1, then the max
and min stretching factors are 6 and 3/5, whence the distance
is log 10.

• If |J | = 2 and J ⊆ I or J ⊆ Ic, then the maximal stretching
factor is always 3, and the distance is log 5 or log 6, depending
on the sizes of I and Ic.

Hence, we may determine I and Ic. More precisely, the set {1}∪{i 6=
1 : d(∆({1, i}, 1/3), ∆I) = log 5} ∪ {i 6= 1 : d(∆({1, i}, 1/3), ∆I) =
log 6} is equal to either I or Ic.

Note that this doesn’t let us distinguish which one we picked, but
since ∆I only depended on the pair I, Ic, this is sufficient to distinguish
the simplex and proves Lemma 7.13. �
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Now Theorem 7.11 follows. �

8. Proof of Theorem 1.1 and main results

We prove here results stated in Section 1.

Proof of Theorem 1.1. Our claim is that the isometry-group of outer
space of rank-n free group, is just Out(Fn) (for n ≥ 3). Clearly,
Out(Fn) acts faithfully on CVn for n ≥ 3 and this action is by isome-
tries (see for instance [11]). Thus, we have an inclusion of Out(Fn) into
the group of isometries of CVn. For n = 2, we still have an isometric
action, but this is no longer faithful. However, up to this small kernel
(a group of order 2 consisting of the identity and the automorphism
which inverts each basis element), we still have a map from Out(F2) to
the isometry group of CV2.

Our goal is to show that this exhausts the isometry group of CVn

(in either case).
Let Φ be an isometry of CVn. We shall compose Φ with elements of

Out(Fn) until we obtain the identity.
By Lemma 4.2, Φ maps multi-theta simplices to multi-theta sim-

plices. Therefore, since the action of Out(Fn) on multi-theta simplices
is transitive, we may suppose that Φ leaves invariant a multi-theta
simplex ∆. In fact, the stabiliser in Out(Fn) of ∆ will induce any per-
mutation of the n + 1 rose faces of ∆ and so we may also assume that
Φ leaves both ∆ and every rose-face of ∆ invariant.

Theorem 7.1 then implies that Φ is the identity of ∆. Then, by
Theorem 7.11 Φ point-wise fixes all rose-simplices. And Theorem 6.9
implies that Φ is the identity. �

Proof of Theorem 1.2. Let us denote by IsomR(CVn) the group of isome-
tries of CVn for the non-symmetric metric dR, and by Isom(CVn) the
group of isometries of CVn for the symmetric metric d.

Let Φ be an isometry of CVn for dR. Then

∀x, y dR(x, y) = dR(Φx, Φy).

Since dL(x, y) = dR(y, x), we have that Φ is also an isometry for dL,
whence Φ is an isometry for the symmetric Lipschitz metric d. Thus,
IsomR(CVn) ⊆ Isom(CVn).

As for the symmetric case, one has that Out(Fn) ⊆ IsomR(CVn)
(with a small adjustment for rank 2). By Theorem 1.1 we have that
Isom(CVn) = Out(Fn). Thus

Out(Fn) ⊆ IsomR(CVn) ⊆ Isom(CVn) = Out(Fn).

The same for dL. (The argument for rank 2 is the same.) �
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Proof of Corollary 1.3. Every homomorphism from Γ to Out(Fn) has
finite image by [5], and every finite subgroup of Out(Fn) has a fixed
point in its action on CVn by [7]. �

Appendix A. Rigid geodesics in rank two

Here we explicitly calculate rigid geodesics emanating from centres
of rose-simplices and pointing into theta-simplices, for the rank-two
case. Showing that for any theta-simplex, its centre is the unique point
simultaneously joined to centres of all rose-faces by rigid geodesics.

We fix a theta-simplex ∆ and we parametrise its points by (projec-
tive classes of) triples of positive numbers (x, y, z). Such simplex is a
triangle with vertices removed, as can be seen by taking representatives
unitary volume.

Let (1, 0, 1) be the centre of a rose face of ∆ and let (1, z, y) be a
point joined to it by a rigid segment, scaled so that x = 1. Stretching
factors are

1 + z, z + y,
1 + y

2

(the loop with stretching factor z + (1 + y)/2 is not relevant)
By Lemma 7.6 we must have only two stretching factors from (1, 0, 1)

to (1, z, y). Possible cases are 1 + z = z + y, 1 + z = 1+y
2

, z + y = 1+y
2

.
If

1 + z = z + y

then y = 1 and this is the rigid geodesic going to the centre of ∆. If

1 + z =
1 + y

2

then y = 1 + 2z, then (1, y, z) = (1, z, 1 + 2z). We want to know where
such geodesic hits other rose-faces. Letting z → ∞ and scaling by z
we get (1/z, 1, 2 + 1/z) which ends up to the point (0, 1, 2). Finally,

z + y =
1 + y

2

gives z = (1 − y)/2, so that (1, y, z) = (1, (1 − y)/2, y). Letting y → 0
we get (1, 0.5, 0). The picture of rigid geodesics through the centres is
therefore as follows
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