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Stable complexity and simplicial volume of manifolds
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Abstract

Let the Δ-complexity σ(M) of a closed manifold M be the minimal number of simplices in a
triangulation of M . Such a quantity is clearly submultiplicative with respect to finite coverings,
and by taking the infimum on all finite coverings of M normalized by the covering degree, we can
promote σ to a multiplicative invariant, a characteristic number already considered by Milnor
and Thurston, which we denote by σ∞(M) and call the stable Δ-complexity of M .

We study here the relation between the stable Δ-complexity σ∞(M) of M and Gromov’s
simplicial volume ‖M‖. It is immediate to show that ‖M‖ � σ∞(M) and it is natural to ask
whether the two quantities coincide on aspherical manifolds with residually finite fundamental
groups. We show that this is not always the case: there is a constant Cn < 1 such that ‖M‖ �
Cnσ∞(M) for any hyperbolic manifold M of dimension n � 4.

The question in dimension 3 is still open in general. We prove that σ∞(M) = ‖M‖ for any
aspherical irreducible 3-manifold M whose JSJ decomposition consists of Seifert pieces and/or
hyperbolic pieces commensurable with the figure-eight knot complement. The equality holds
for all closed hyperbolic 3-manifolds if a particular three-dimensional version of the Ehrenpreis
conjecture is true.

1. Introduction

Following Milnor and Thurston [40], a numerical invariant α(M) associated to any closed
n-manifold M is a characteristic number if, for every degree-d covering M

d→ N , we have
α(M) = d · α(N). Two important characteristic numbers are the Euler characteristic χ(M)
and the simplicial volume ‖M‖ introduced by Gromov [19], which equals (up to a constant
factor depending on n) the volume of M when M is a hyperbolic manifold.

In [40], Milnor and Thurston introduce various characteristic numbers, including the
following one. Let σ(M) be the Δ-complexity of M , that is, the minimal number of tetrahedra
in a triangulation of M . We employ here the word ‘triangulation’ in a loose sense, as is
customary in geometric topology: a triangulation is the realization of M as the glueing of
finitely many simplices via some simplicial pairing of their facets. The Δ-complexity is clearly
not a characteristic number: for every degree-d covering M

d→ N , we have

σ(M) � d · σ(N),

but such inequality is very often strict, that is, we typically get σ(M) < d · σ(N). We can,
however, easily promote σ to a characteristic number as follows. We define the stable Δ-
complexity σ∞(M) of M by setting

σ∞(M) = inf
M̃

d→M

{
σ(M̃)

d

}
,
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where the infimum is taken over all finite coverings M̃
d→ M of any finite degree d. Stable

Δ-complexity is easily seen to be a characteristic number, that is, we have

σ∞(M) = d · σ∞(N),

for every finite covering M
d→ N . The characteristic number σ∞ was first defined by Milnor

and Thurston [40]. The following easy inequalities are established in Subsection 2.2.

Proposition 1.1. Let M be a closed manifold. We have

‖M‖ � σ∞(M) � σ(M).

The main question we address here is the following.

Question 1.2. For which closed manifolds M do we have ‖M‖ = σ∞(M)?

Among the motivations for studying such a problem, we mention the following (open)
question of Gromov.

Question 1.3 [20, p. 232]. Let M be an aspherical closed manifold. Does ‖M‖ = 0 imply
χ(M) = 0?

It turns out that if ‖M‖ = σ∞(M) on aspherical manifolds, then one could easily answer
Gromov’s question, owing to the following simple fact, proved below in Subsection 2.2.

Proposition 1.4. Let M be a closed manifold. If σ∞(M) = 0, then χ(M) = 0.

It is tempting to guess that ‖M‖ = σ∞(M) at least when M is hyperbolic, because π1(M)
is residually finite and hence M has plenty of finite coverings of arbitrarily large injectivity
radius. However, we show here that this guess is wrong.

Theorem 1.5. In every dimension n � 4, there is a constant Cn < 1 such that ‖M‖ �
Cnσ∞(M) for every closed hyperbolic n-manifold M .

A similar result holds if we replace stable complexity with stable integral simplicial volume
(see Section 2 and Theorem 2.1). We mention for completeness the following converse inequality,
proved below in Subsection 2.5.

Proposition 1.6. In every dimension n � 2, there is a constant Dn > 1 such that
σ∞(M) � Dn‖M‖ for every closed hyperbolic n-manifold M .

Theorem 1.5 does not hold in dimensions 2 and 3. In dimension 2, it is easy to prove that
σ∞(S) = ‖S‖ for any closed hyperbolic surface S (see Proposition 2.3). In dimension 3, we
have the following.
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Theorem 1.7. There is a sequence Mi of closed hyperbolic 3-manifolds such that

σ∞(Mi)
‖Mi‖

−→ 1.

The main difference between dimensions 2, 3, and higher depends on the fact that the regular
ideal hyperbolic n-simplex Δn can tile Hn only in dimensions 2 and 3. The key observation we
use to prove Theorem 1.5 is that the dihedral angle of Δn does not divide 2π when n � 4.

In dimension 3, Question 1.2 for hyperbolic 3-manifolds remains (as far as we know) open.
Our ignorance on this point can be expressed as follows: we do not know of any closed hyperbolic
3-manifold M for which σ∞(M) = ‖M‖, and we do not know of any closed hyperbolic
3-manifold M for which σ∞(M) �= ‖M‖. We refer the reader to Section 6 for a brief discussion
about some possible approaches to, and reformulations of, this problem.

However, we do know various non-hyperbolic 3-manifolds for which Question 1.2 has a
positive answer.

Theorem 1.8. Let M be an irreducible manifold with infinite fundamental group, which
decomposes along its JSJ decomposition into pieces, each homeomorphic to a Seifert manifold
or a hyperbolic manifold commensurable with the figure-eight knot complement. Then

σ∞(M) = ‖M‖.

In particular, if M is a graph manifold with infinite fundamental group, then we have
σ∞(M) = ‖M‖ = 0. If M = DN is the double of the complement N of the figure-eight knot,
then we have σ∞(M) = ‖M‖ = 2‖N‖ = 4 (the simplicial volume of bounded manifolds is
defined in Section 2).

It is absolutely necessary to restrict ourselves to manifolds with infinite fundamental group,
since a manifold M with finite fundamental group has only finitely many coverings and hence
σ∞(M) > 0, whereas ‖M‖ = 0 (since the simplicial volume is a characteristic number and
vanishes on simply connected manifolds [19, 27]).

To prove Theorem 1.8, we slightly modify the definition of σ∞ by using spines instead of
triangulations in the spirit of Matveev complexity [38]. The resulting invariant, which we
denote by c∞(M), is another characteristic number defined for any compact manifold M of
any dimension, possibly with boundary. When M is an irreducible 3-manifold with infinite
fundamental group, we get c∞(M) = σ∞(M). On more general 3-manifolds, we have ‖M‖ �
c∞(M) � σ∞(M) and c∞ has better behaviour than σ∞. For instance, we get c∞(M) = 0 on
any 3-manifold M with finite fundamental group (in contrast with σ∞) and we can prove the
following.

Theorem 1.9. The invariant c∞ is additive on connected sums and on the pieces of the
JSJ decomposition.

Note that the simplicial volume is also additive on connected sums and on the pieces of the
JSJ decomposition [45]. To deduce Theorem 1.8 from Theorem 1.9, it suffices to check that
c∞(M) = ‖M‖ when M is an S1-bundle over a surface or the complement of the figure-eight
knot, two special cases that are easy to deal with.



980 S. FRANCAVIGLIA, R. FRIGERIO AND B. MARTELLI

1.1. Structure of the paper

We introduce in Section 2 the simplicial volume, stable integral volume, and stable Δ-
complexity, and prove some basic properties. Section 3 is devoted to dimension n � 4 and
hence to the proof of Theorem 1.5. In Section 4, we introduce the stable complexity c∞ and
in Section 5 we turn to 3-manifolds, thus proving Theorems 1.7–1.9. Section 6 contains some
concluding remarks and open questions.

2. Preliminaries

We introduce in this section three characteristic numbers: the well-known simplicial volume
introduced by Gromov [19], a less-known variation which uses integral homology instead
of real homology which we call stable integral volume, and the stable Δ-complexity, first
introduced by Milnor and Thurston [40] and studied in this paper. A further characteristic
number called stable complexity uses spines instead of triangulations and is introduced in
Section 4.

2.1. Simplicial volume

Let M be a compact connected oriented n-manifold (possibly with boundary), and
let [M,∂M ]Z be the integral fundamental class of M , that is, the generator of
Hn(M,∂M ; Z) ∼= Z corresponding to the orientation of M . The inclusion Z ↪→ R induces a
map Hn(M,∂M ; Z) → Hn(M,∂M ; R) which sends [M,∂M ]Z into the real fundamental class
[M,∂M ] ∈ Hn(M,∂M ; R) of M . Following Gromov [19], we define the simplicial volume ‖M‖
and the integral simplicial volume ‖M‖Z of M as follows:

‖M‖ = inf

{
k∑

i=1

|λi|,
[

k∑
i=1

λiσi

]
= [M,∂M ] ∈ Hn(M,∂M ; R)

}
∈ R,

‖M‖Z = inf

{
k∑

i=1

|λi|,
[

k∑
i=1

λiσi

]
= [M,∂M ]Z ∈ Hn(M,∂M ; Z)

}
∈ Z.

The (integral) simplicial volume does not depend on the orientation of M and the (integral)
simplicial volume of a non-orientable manifold is defined as half the volume of its orientable
double covering (hence the integral version may be a half-integer). Moreover, the (integral)
simplicial volume of a disconnected manifold is the sum of the simplicial volumes of its
components.

As mentioned above, the simplicial volume is a characteristic number, that is, it is
multiplicative under finite coverings [19]. On the contrary, the integral simplicial volume is
only submultiplicative: every characteristic number vanishes on manifolds that admit finite non-
trivial self-coverings, for example, on S1, while ‖M‖Z � 1 for every closed orientable manifold.
We may therefore define the stable integral simplicial volume ‖M‖Z

∞ as follows:

‖M‖Z

∞ = inf
M̃

d→M

{
‖M̃‖Z

d

}
.

As observed in Proposition 6.1, the stable integral simplicial volume bounds from above (up
to a constant depending only on the dimension) the Euler characteristic, so it can be exploited
to study Gromov’s Question 1.3. However, in Section 6, we will prove the following analogue
of Theorem 1.5.
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Theorem 2.1. For every n � 4, there exists a constant Cn < 1 such that the following
holds. Let M be a closed orientable hyperbolic manifold of dimension n � 4. Then

‖M‖ � Cn‖M‖Z

∞.

It is folklore that the simplicial volume of a manifold is equal to the seminorm of its rational
fundamental class (see [6], for a complete proof). As a consequence, integral cycles may be
used to approximate the simplicial volume via the following equality, which holds for every
compact orientable n-manifold M :

‖M‖ = inf

{∑k
i=1 |λi|
|h| ,

[
k∑

i=1

λiσi

]
= h · [M,∂M ]Z ∈ Hn(M,∂M ; Z), h ∈ Z \ {0}

}
.

Note, however, that this equality does not seem to be useful in order to attack Gromov’s
Question 1.3.

2.2. Stable Δ-complexity

We work in the PL category, so every manifold in this paper will be tacitly assumed to have
a piecewise-linear structure. As mentioned in Section 1, a (loose) triangulation of a closed n-
dimensional manifold M is the realization of M as the glueing of finitely many n-simplices via
some simplicial pairing of their facets. The Δ-complexity σ(M) of M is the minimal number
of simplices needed to triangulate M . The stable Δ-complexity of M is then

σ∞(M) = inf
M̃

d→M

{
σ(M̃)

d

}
.

We can easily establish the inequalities

‖M‖ � σ∞(M) � σ(M) (1)

stated in Proposition 1.1. The assertion σ∞(M) � σ(M) follows from the definitions. In order
to prove the other inequality, we may suppose that M is oriented. Let T be a triangulation
of M with m = σ(M) simplices, and let s1, . . . , sm be suitably chosen orientation-preserving
parametrizations of the simplices of T . We would like to say that s1 + · · · + sm represents the
fundamental class in Hn(M ; Z); however, this singular chain is not necessarily a cycle. We can
fix this problem easily by averaging each si on all its permutations. That is, we define for any
simplex s the chain

alt(s) =
1

(n + 1)!

∑
τ∈Sn+1

(−1)sgn(τ)s ◦ τ̄ ,

where τ̄ is the unique affine diffeomorphism of the standard n-simplex Δn corresponding to
the permutation τ of the vertices of Δn. Now it is immediate to verify that the chain z =
alt(s1) + · · · + alt(sm) is a cycle which represents the fundamental class of M . Moreover, the
sum of the absolute values of the coefficients of z is at most m, and this implies the inequality
‖M‖ � σ(M). The fact that ‖M‖ � σ∞(M) now follows from the fact that the simplicial
volume is multiplicative under finite coverings.

It is also easy to prove a stronger version of Proposition 1.4.

Proposition 2.2. Let M be a closed n-dimensional manifold. We have

|χ(M)| � 2n+1σ∞(M).
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Proof. A triangulation T of M endows M with a cellular structure with at most 2n+1 · t
cells, where t is the number of the simplices of T . Since the Euler characteristic χ(M) can
be computed as the alternating sum of the number of simplices in a triangulation of M , this
readily implies that |χ(M)| � 2n+1σ(M) for every n-manifold M . Since χ is a characteristic
number, also the stronger inequality |χ(M)| � 2n+1σ∞(M) holds.

2.3. Surfaces

In the two-dimensional case, the answer to Question 1.2 is well known. In fact, considering
triangulations of finite coverings is the standard way to compute the (upper bound for the)
simplicial volume of surfaces of negative Euler characteristic.

Proposition 2.3. Let S be a closed compact surface. If S = S2 (respectively S = RP2),
then σ∞(S) = 2 (respectively σ∞(S) = 1) and ‖S‖ = 0. Otherwise, we have

σ∞(S) = ‖S‖ = 2|χ(S)|.

Proof. Of course, we have σ(S2) = 2, so σ∞(S2) = 2 and σ∞(RP2) = 1. Moreover, since S2

admits a self-map of degree bigger than 1 we have ‖S2‖ = 0, whence ‖RP2‖ = 0 because the
simplicial volume is a characteristic number.

Let us now suppose that χ(S) � 0. Of course, it is sufficient to consider the case when S is
orientable. Then, the equality σ∞(S) = ‖S‖ = 2|χ(S)| is well known (see, for example, [3]).

2.4. The simplicial volume of hyperbolic manifolds

The simplicial volume of a manifold is deeply related to several geometric properties of the
Riemannian structures that the manifold can support. Concerning hyperbolic manifolds, the
following result due to Gromov and Thurston shows that the simplicial volume is proportional
to the Riemannian volume. Let M be a complete finite-volume hyperbolic n-manifold. If M
is non-compact, then it admits a natural compactification M̄ such that M̄ is a manifold with
boundary and ∂M̄ is a finite collection of closed (n − 1)-manifolds, each of which supports a
flat Riemannian metric. We denote by vn the volume of the ideal regular hyperbolic simplex
in Hn. The following result is due to Thurston [46] and Gromov [19] (detailed proofs can be
found in [3, 7, 43] for the closed case, and in [5, 12, 15, 16] for the cusped case).

Theorem 2.4 (Gromov, Thurston). Let M be a complete finite-volume hyperbolic
manifold with compactification M̄ (so M̄ = M if M is closed). Then

‖M̄‖ =
vol(M)

vn
.

2.5. Converse inequality

We prove here Proposition 1.6. The proof was communicated to us by Juan Souto, and closely
follows ideas of Thurston [46, Theorem 5.11.2] and Gromov [19, Section 2.1].

Proposition 2.5. In every dimension n � 2, there is a constant Dn > 1 such that
σ∞(M) � Dn‖M‖ for every closed hyperbolic n-manifold M .
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Proof. Let R > 0 be any fixed positive real number. Since π1(M) is residually finite, we
may replace M with a finite cover (which we still call M) with injectivity radius bigger than
3R.

Let S ⊂ M be a maximal set of points that are pairwise at distance at least R. Consider the
Dirichlet tesselation of M into polyhedra determined by S, where every point x0 ∈ S gives rise
to the polyhedron

Px0 = {y ∈ M | d(x0, y) � d(x, y) ∀x ∈ S}.

This is indeed isometric to a convex polyhedron because the injectivity radius of M is
sufficiently big. We have B(x0, R/2) ⊂ Px0 ⊂ B(x0, R). The number of polyhedra is therefore
bounded above by

vol(M)
vol(B(x0, R/2))

.

A facet F of Px0 corresponds to some point xF ∈ S such that d(x, x0) = d(x, xF ) for all
x ∈ F ; since d(x0, xF ) < 2R, the number of facets of Px0 is smaller than or equal to the
number of points in S ∩ B(x0, 2R), which is in turn smaller than or equal to the ratio between
vol(B(x0, 3R)) and vol(B(x0, R/2)).

Therefore, the number of facets of each Px is uniformly bounded and hence the possible
combinatorial types for Px vary on a finite set which depends only on the dimension n and on
R. Choose for each possible combinatorial type a triangulation that induces on every facet a
triangulation that is symmetric with respect to every combinatorial isomorphism of the facet:
these symmetric triangulations necessarily match to give a triangulation of M . Let T be the
maximal number of simplices of the triangulated combinatorial types. Our original manifold
M has a triangulation with at most

T

vol(B(x0, R/2))
· vol(M) =

Tvn

vol(B(x0, R/2))
· ‖M‖

simplices.

3. Higher dimensions

This section is devoted to the proof of the following theorem.

Theorem 3.1. For every n � 4, there exists a constant Cn < 1 such that the following
holds. Let M be an n-dimensional closed orientable hyperbolic manifold. Then

vol(M) � Cnvnσ(M).

Putting together this result with Theorem 2.4, we get the following.

Corollary 3.2. We have ‖M‖ � Cnσ(M) for every closed orientable hyperbolic n-
manifold M of dimension n � 4.

Since the simplicial volume is a characteristic number, Corollary 3.2 implies in turn
Theorem 1.5.

Corollary 3.3. We have ‖M‖ � Cnσ∞(M) for every closed hyperbolic n-manifold M of
dimension n � 4.
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3.1. Straight simplices

We recall that every pair of points H̄n is connected by a unique geodesic segment (which has
infinite length if any of its endpoints lie in ∂H̄n). A subset in H̄n is convex if whenever it
contains a pair of points, it also contains the geodesic segment connecting them. The convex
hull of a set A is defined as usual as the intersection of all convex sets containing A.

A (geodesic) k-simplex Δ in H̄n is the convex hull of k + 1 points in H̄n, called vertices. A
k-simplex is:

(i) ideal if all its vertices lie in ∂Hn;
(ii) regular if every permutation of its vertices is induced by an isometry of Hn;
(iii) degenerate if it is contained in a (k − 1)-dimensional subspace of Hn.

Let vn be the volume of the regular ideal simplex in H̄n.

Theorem 3.4 [22, 42]. Let Δ be a geodesic n-simplex in H̄n. Then vol(Δ) � vn, and
vol(Δ) = vn if and only if vn is ideal and regular.

A singular k-simplex in Hn is of course a continuous map σ : Δk → Hn from the standard
k-simplex Δk ⊂ Rk+1 to hyperbolic space. The corresponding straight simplex σst : Δk → Hn

is defined as follows: set σst(v) = σ(v) on every vertex v of Δk, and extend using barycentric
coordinates (which exist in Hn, using the hyperboloid model). The image of σst is the convex
hull of the images of the vertices of Δk via σ, hence it is a geodesic simplex.

Using again barycentric coordinates, for every singular k-simplex in Hn, we can define a
homotopy H(σ) : Δk × [0, 1] → Hn between σ and σst by setting H(σ)(p, t) = tσ(p) + (1 −
t)σst(p). The following lemma readily descends from the definitions and from the fact that
barycentric coordinates commute with the isometries of Hn.

Lemma 3.5. Let σ : Δk → Hn be a singular simplex, and g be an isometry of Hn. Then

(1) (g ◦ σ)st = g ◦ σst and H(g ◦ σ) = g ◦ H(σ);
(2) if h < k and i : Δh → Δk is an affine inclusion of Δh onto an h-dimensional face of Δk,

then (σ ◦ i)st = σst ◦ i and H(σ ◦ i) = H(σ) ◦ (i × Id).

Henceforth, M will always be an oriented hyperbolic closed n-dimensional manifold. Let
σ : Δk → M be a singular simplex in M . The straightening σst : Δk → M is defined by lifting
the map σ to the universal covering Hn, straightening it, and then projecting it back to M .
By Lemma 3.5, this operation does not depend on the chosen lift.

The algebraic volume of a singular n-simplex σ : Δn → M is

algvol(σ) =
∫
σst

dvol =
∫
Δn

(σst)∗dvol,

where dvol is the volume form on M . The absolute value |algvol(σ)| equals the volume of
the image of any lift σ̃st of σst to Hn. In particular, algvol(σ) vanishes if and only if σ̃st is
degenerate. When algvol(σ) �= 0, the straightened singular simplex σst is an immersion and the
sign of algvol(σ) depends on whether σst is orientation-preserving or not.

As we have said above, every geodesic n-simplex in Hn has volume smaller than the volume
vn of the regular ideal simplex. In particular, we always have

−vn � algvol(σ) � vn.
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Definition 3.6. A singular n-simplex σ in M is positive if algvol(σ) > 0, negative if
algvol(σ) < 0, and flat if algvol(σ) = 0. For ε > 0, the singular simplex σ is ε-big if

algvol(σ) � (1 − ε)vn,

and ε-small otherwise.

3.2. The straightening as a map

Now let T be a (loose) triangulation of an oriented hyperbolic closed manifold M , that is,
the realization of M as the union of m copies of the standard simplex Δn quotiented by an
orientation-reversing simplicial pairing of their (n − 1)-dimensional faces. Every simplex in T is
a copy of Δn and hence is the image of an orientation-preserving singular simplex σi : Δn → M .
Henceforth, if σ is a singular simplex in M , then we denote by |σ| ⊆ M the image of σ in M .

We define a map
strT : M −→ M,

which corresponds to the simultaneous straightening of all the simplices of T . If p ∈ M lies in
|σi|, then we choose a point q ∈ Δn such that σi(q) = p and set strT (p) = σst

i (q). Of course, if
the point p belongs to the (n − 1)-skeleton of T , then both the choice of σi and/or the choice
of the point q ∈ Δn are somewhat arbitrary. However, Lemma 3.5 ensures that strT is well-
defined, continuous, and homotopic to the identity of M . In what follows, when a triangulation
T is fixed and no ambiguities can arise, we will denote the map strT simply by str.

It is important now to note that the straightened simplices of T do not necessarily form
a triangulation of M in any reasonable sense: straightened simplices may degenerate and
overlap (and they often do, see Figure 1 and Remark 3.18). However, one important property
is preserved by the straightening: the positive simplices still cover the manifold M .

Lemma 3.7. Let σ1, . . . , σt be the simplices of a triangulation T of M . Then

M =
⋃

positive σi

|σst
i | = strT

⎛⎝ ⋃
positive σi

|σi|

⎞⎠ ,

so

vol(M) �
∑

positive σi

vol(|σst
i |).

Proof. Let M0 ⊆ M be the image via strT of the (n − 1)-skeleton of T and of the flat
simplices of T . The complement M \ M0 is open and dense and consists of topologically regular
values for the map strT , that is, the pre-image of every point in M \ M0 consists of finitely
many points where strT is a local homeomorphism and hence has local degree ±1. Since strT
has globally degree 1, every topologically regular value lies in the image of at least one positive
simplex. The conclusion follows since the image via strT of the positive simplices of T is
compact, whence closed.

3.3. Strategy of the proof of Theorem 3.1

We outline here the proof of Theorem 3.1. Let T be a triangulation of a closed hyperbolic
manifold M of dimension n � 4. We need to prove that vol(M) � Cnvnt where t is the number
of simplices in T and Cn < 1 is a constant depending only on the dimension n.

Suppose for simplicity that every simplex of T is positive. In that lucky case, the map strT
is a homeomorphism and the straightened triangulation is a genuine triangulation (which we
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qp

Figure 1. The local degree of the straightening map associated to the triangulation described
here (which may be thought of as a triangulation of a portion of the projective model of the

hyperbolic plane) is equal to 0 in p and to 2 in q.

still denote by T ) made of straight positive simplices. The key observation now is that, in
dimension n � 4, the ratio between 2π and the dihedral angle of an ideal regular geodesic
simplex is not an integer. Therefore, we may choose εn > 0 independently of T in such a way
that every (n − 2)-dimensional face E of T enjoys the following properties:

(1) the face E is contained in at least one εn-small simplex of T (see Lemma 3.16) and
(2) the number of εn-big simplices of T that contain E is uniformly bounded from above by

a universal constant.

These facts easily imply that the ratio between the number of εn-big simplices of T and the
total number t of simplices of T is smaller than some constant Kn < 1 independent of T .
Therefore, the volume of M is smaller than

t(vnKn + (1 − εn)vn(1 − Kn)) = tvn(Kn + (1 − εn)(1 − Kn)) = tvnCn,

with Cn = 1 − εn(1 − Kn) < 1.
We now need to refine this strategy to deal with negative and flat simplices. As we have

said above, the straightening of T may create degenerations and overlappings of simplices.
Degenerations and overlappings are volume-consuming, so it is reasonable to expect that the
inequality vol(M) � Cnt holds a fortiori in the presence of negative and flat simplices: the
generalization of the above argument, however, is not immediate.

Note, for instance, that both points (1) and (2) stated above do not hold for a general
triangulation T : a codimension (n − 2) face E may be incident to arbitrarily many arbitrarily
big positive simplices that wind many times around E (the local degree of the straightening
map around E can be arbitrarily big! See Figure 1, which is inspired by Francaviglia [13,
Example 2.6.4; 14, Example 4.1]). Of course, by winding many times around E, the simplices
overlap a lot and hence a lot of volume is wasted: we will need to estimate that loss of volume
to prove our theorem.

3.4. The volume of a simplex

We will need to estimate (from below) the overlapping regions of big simplices. To do so, we
first study their geometry.

For every n � 3 and k � n, we denote by Vk(H̄n) the space of unordered (k + 1)-tuples of
(not necessarily distinct) points of H̄n, that is, the topological space (H̄n)k+1/Sk+1, where
Sk+1 is the permutation group on k + 1 elements.

We also denote by Sk(H̄n) the set of k-dimensional geodesic simplices of H̄n, and we endow
Sk(H̄n) with the topology induced by the Hausdorff topology on closed subsets of H̄n. The
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convex hull defines a surjective map

Conv : Vk(H̄n) −→ Sk(H̄n).

We will often use the following notation.

Definition 3.8. If K is any subset of H̄n, then we denote by H(K) the smallest geodesic
subspace of H̄n containing K (if K consists of a single point of ∂Hn, then we set H(K) = K).

Of course, an element K in Vk(H̄n) or Sk(H̄n) is degenerate if dim H(K) < k. We denote by
V∗

k (H̄n) and S∗
k(H̄n) the set of non-degenerate elements of Vk(H̄n) and Sk(H̄n), respectively.

The proof of the following easy result is left to the reader.

Lemma 3.9. The map

Conv : V∗
k (H̄n) −→ S∗

k(H̄n)

is a homeomorphism.

We are mainly interested in the behaviour of the function

vol : Sk(H̄n) −→ R,

which maps every geodesic k-simplex into its k-dimensional volume.
Despite its natural definition, the function vol is not continuous on the whole Sk(H̄n): for

example, let K be any ideal regular simplex and g ∈ Isom(Hn) be a parabolic isometry that
fixes an ideal vertex p of K. Then limi→∞ gi(K) = {p} and therefore

lim
i→∞

vol(gi(K)) = vn �= 0 = vol
(

lim
i→∞

gi(K)
)

.

This shows that, in general, some care is needed in studying geometric properties of limits of
simplices. However, the following lemma ensures that the volume function is continuous on the
space of non-degenerate simplices.

Lemma 3.10. The restriction of vol to the set of simplices with at least three different
vertices is continuous. In particular, the restriction

vol : S∗
k(H̄n) −→ R+

is continuous.

Proof. By Lemma 3.9, the conclusion is an immediate consequence of Luo [35, Proposition
4.1] (see also [43, Theorem 11.4.2]).

3.5. The incentre and inradius of a simplex

Lemma 3.10 implies in particular that if a sequence Ki of elements in S∗
k(H̄n) converges to an

ideal regular k-simplex, then vol(Ki) → vk as i → ∞. We are interested in proving the converse
result: the shape of a simplex with large volume has to be similar to the shape of a regular
ideal simplex. However, we have observed above that a sequence of ideal regular simplices may
well converge to a degenerate simplex, so some care is needed here.

Consider a non-degenerate k-simplex K ∈ S∗
k(H̄n). For every point p ∈ K ∩ Hn, we denote

by rK(p) the radius of the maximal k-ball of H(K) centred in p and contained in K. Since the



988 S. FRANCAVIGLIA, R. FRIGERIO AND B. MARTELLI

volume of any k-simplex is smaller than vk and the volume of k-balls diverges as the radius
diverges, there exists a constant rk > 0 such that rK(p) � rk for every K ∈ S∗

k(H̄n) and p ∈ K.

Definition 3.11. Take K ∈ S∗
k(H̄n). The inradius r(K) of K is

r(K) = sup
p∈K∩Hn

rK(p) ∈ (0, rk]

(observe that r(K) > 0 since K is non-degenerate). The incentre inc(K) is the unique point
p ∈ K ∩ Hn such that rK(p) = r(K).

Lemma 3.12. The incentre is well-defined. The sphere centred in inc(K) of radius r(K) is
tangent to all the facets of K. The functions

inc : S∗
k(H̄n) −→ Hn, r : S∗

k(H̄n) −→ R

are continuous.

Proof. The map p → rK(p) is continuous, and if q is a (possibly ideal) vertex of K, then
we have limp→q rK(p) = 0. Therefore, the map rK : K → (0, rk] is proper, and this ensures the
existence of a point p ∈ K such that rK(p) = r(K).

Let Sp be the sphere centred in p of radius r(K): we prove that Sp is tangent to every (k − 1)-
face of K. Assume by contradiction that F is a (k − 1)-face of K such that Sp ∩ F = ∅, and
denote by v the (possibly ideal) vertex of K opposite to F . Let γ be the geodesic ray (or line, if
v is ideal) exiting from v and containing p. It is readily seen that the distance between γ(t) and
any (k − 1)-face of K distinct from F is an increasing function of t. If p = γ(t0), this implies
that there exists ε > 0 such that rK(γ(t0 + ε)) > rK(p) = r(K), which is a contradiction.

We exploit the hyperboloid model of Hn to determine the point p more explicitly, that is,
we fix the identification

Hn = {w = (w0, . . . , wn) ∈ Rn+1 : 〈w,w〉 = −1, w0 > 0},
where 〈·, ·〉 denotes the usual Minkowski product. Let H be the (k + 1)-dimensional linear
subspace of Rn+1 containing H(K). If F0, . . . , Fk are the (k − 1)-faces of K, for every i =
0, . . . , k, we denote by qi the dual vector of Fi, that is, the unique vector qi ∈ H such that
〈qi, qi〉 = 1, 〈qi, w〉 = 0 for every w ∈ Fi, and 〈qi, w〉 � 0 for every w ∈ K.

If w is any point of K, then the hyperbolic distance between w and the geodesic (k − 1)-plane
containing Fi satisfies the equality

sinh d(w,H(Fi)) = −〈w, qi〉.
Now let Hij ⊆ H be the hyperplane of H which is orthogonal to qi − qj . Recall that our point
p ∈ H lies at the same distance from the geodesic planes containing the faces of K, so

p ∈
⋂
i�=j

Hij . (2)

Since K is non-degenerate, the vectors q0 − qi, i = 1, . . . , k, are linearly independent, and this
readily implies that

⋂k
i�=j Hij is a one-dimensional linear subspace of H. Such a subspace cannot

meet the hyperboloid Hn in more than one point, and this concludes the proof that p is the
unique point of K such that rK(p) = r(K). Moreover, we have

sinh r(K) = −〈inc(K), qi〉 for every i = 0, . . . , k. (3)

This description of inc(K) also implies that inc(K) and r(K) continuously depend on K. In
fact, even when considering simplices with possibly ideal vertices, it is readily seen that each
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subspace Hi, whence each qi and each Hij , continuously depends on K. Owing to equations (2)
and (3), this implies that the maps inc : S∗

k(H̄n) → Hn and r : S∗
k(H̄n) → R are continuous.

We now need the following result proved by Luo.

Lemma 3.13 [35, Proposition 4.2]. Let Ki be a sequence of elements in S∗
k(H̄n) such that

limi→∞ r(Ki) = 0. Then limi→∞ vol(Ki) = 0.

We can finally prove that simplices of large volume are close to ideal regular simplices.

Proposition 3.14. Let K∞ ∈ S∗
k(H̄n) be a fixed ideal regular simplex, and Ki be a

sequence of elements in S∗
k(H̄n) such that

lim
i→∞

vol(Ki) = vk.

Then there exists a sequence gi of isometries of Hn such that

lim
i→∞

gi(Ki) = K∞.

Proof. We consider the disc model for Hn and suppose that the origin O is the incentre of
K∞. Let H be the k-space containing K∞. We define the distance d(K,K ′) of two simplices
as the Hausdorff distance with respect to the Euclidean metric of the closed disc. For each i,
we pick an isometry gi of Hn such that:

(1) gi(Ki) has its incentre in O and is contained in H;
(2) gi is chosen among all isometries gi satisfying (1) in such a way that gi(Ki) has the

smallest possible distance from K∞ (such a choice is possible since the set of isometries
of Hn taking inc(Ki) to O and the geodesic subspace H(Ki) into H is homeomorphic
to O(k) and hence compact).

Since Sk(H̄n) is compact, in order to conclude, it is sufficient to show that every converging
subsequence of gi(Ki) converges to K∞. So, let us take a subsequence that converges to some
k-simplex K ′

∞. Lemma 3.13 ensures that the sequence of radii r(Ki) is bounded below by
a positive number, hence the intersection

⋂
i gi(Ki) contains a k-ball B ⊂ H centred in O.

Therefore, B ⊂ K ′
∞ and hence K ′

∞ is non-degenerate. We may now apply Lemma 3.10 and get

vol(K ′
∞) = lim

i→∞
vol(Ki) = vk.

By Theorem 3.4, the simplex K ′
∞ is ideal and regular, and assumption (2) easily implies that

K ′
∞ = K∞. This concludes the proof.

It is now easy to prove that in big simplices the incentre of a face is uniformly distant from
any other non-incident face.

Lemma 3.15. Let n � 3. There exist εn > 0 and δn > 0 such that the following holds for
any simplex Δ ∈ Sn(H̄n) with vol(Δ) � vn(1 − εn). Let E be any face of Δ and E′ be another
face of Δ which does not contain E. Then

d(inc(E), E′) > 2δn.
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Proof. There is only one regular ideal n-dimensional simplex Δreg up to isometries of H̄n.
Let 3δn > 0 be the minimal distance between inc(E) and E′ among all pairs of faces E,E′ of
Δreg such that E � E′.

We claim that there is a constant εn > 0 such that d(inc(E), E′) > 2δn for any pair of
faces E � E′ of any n-simplex Δ of volume bigger than vn(1 − εn). Suppose by contradiction
that there is a sequence Δi of n-simplices with limi→∞ vol(Δi) = vn, each Δi containing two
faces Ei � E′

i with d(inc(Ei), E′
i) � 2δn. By Proposition 3.14, up to replacing each Δi with an

isometric copy, we may assume that limi→∞ Δi = Δreg, limi→∞ Ei = E∗, and limi→∞ E′
i = E′

∗
for some faces E∗ � E′

∗ of Δreg. Using Lemma 3.12, we get

lim
i→∞

d(inc(Ei), E′
i) = d(inc(E∗), E′

∗) � 3δn,

hence a contradiction.

3.6. Dihedral angles

Let Δ ∈ S∗
n(H̄n) be a non-degenerate n-simplex, and E be an (n − 2)-dimensional face of Δ.

The dihedral angle α(Δ, E) of Δ at E is defined as usual in the following way: let p be a
point in E ∩ Hn, and H ⊆ Hn be the unique two-dimensional geodesic plane that intersects
orthogonally E in p. We set α(Δ, E) to be equal to the angle in p of the polygon Δ ∩ H of
H ∼= H2. It is easily seen that this is well-defined (that is, independent of p). For every n � 3,
we denote by αn the dihedral angle of the ideal regular n-dimensional simplex at any of its
(n − 2)-dimensional faces.

It is readily seen by intersecting the simplex with a horosphere centred at any vertex, that
αn equals the dihedral angle of the regular Euclidean (n − 1)-dimensional simplex at any of its
(n − 3)-dimensional faces, so αn = arccos(1/(n − 1)). In particular, we have α2 = arccos 1

2 =
π/3. Moreover, it is easily checked that 2π/6 < arccos 1

3 < 2π/5 and 2π/5 < arccos 1/n < 2π/4
for every n � 4. As a consequence, the real number 2π/αn is an integer if and only if n = 3,
and if we denote by kn ∈ N, n � 4, the unique integer such that

knαn < 2π < (kn + 1)αn,

then kn = 5 if n = 4 and kn = 4 if n � 5.

Lemma 3.16. Let n � 4. Then there exist an > 0 and εn > 0, depending only on n, such
that the following condition holds: if Δ ∈ S∗

n(H̄n) is an n-simplex such that vol(Δ) � (1 − εn)vn

and α is the dihedral angle of Δ at any of its (n − 2)-faces, then

2π

kn + 1
(1 + an) < α <

2π

kn
(1 − an).

Proof. It is very easy to show that the dihedral angles of a non-degenerate n-simplex
continuously depend on its vertices, so the conclusion follows from Proposition 3.14 and the
fact that 2π/(kn + 1) < αn < 2π/kn.

3.7. Proof of Theorem 3.1

In this subsection, we suppose that M is a closed orientable hyperbolic manifold of dimension
n � 4. We will prove that there exists a constant Cn < 1, only depending on n, such that if T
is any triangulation of M with |T | simplices, then vol(M) � Cnvn|T |.

Let us suppose that |T | = t, and let us denote by σ1, . . . , σt suitably chosen orientation-
preserving parametrizations of the simplices of T . Let us fix positive constants εn, δn, and an

that satisfy the conclusions of Lemmas 3.15 and 3.16.
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Recall that an n-simplex of T is ε-big if algvol(σ) � (1 − ε)vn. Let tb and ts be, respectively,
the numbers of εn-big and εn-small simplices in T , so that t = tb + ts. We begin with the
following easy lemma.

Lemma 3.17. Suppose that ts � t/12. Then

vol(M) �
(
1 − εn

12

)
tvn.

Proof. Our assumption implies that tb + (1 − εn)ts = t − εnts � (1 − εn/12)t. Moreover, if
σi is εn-small, then either it is negative or vol(|σst

i |) � (1 − εn)vn. Therefore, Lemma 3.7 implies
that

vol(M) �
∑

positive σi

vol(|σst
i |) � vn(tb + (1 − εn)ts) �

(
1 − εn

12

)
tvn.

Therefore, if ts � t/12, then we are done: henceforth, we assume that ts � t/12.
If E ⊆ M is an (n − 2)-dimensional face of T , then we denote by v(E) the number of εn-big

simplices (counted with multiplicities) of T which are incident to E. We say that E is full if
v(E) � kn + 1, we denote by Full(T ) the set of full (n − 2)-dimensional faces of T , and we set

ef = |Full(T )|, N =
∑

E∈Full(T )

v(E).

Remark 3.18. Observe that if E is full, then str(E) is a face of a non-degenerate n-simplex,
so it is itself non-degenerate. In particular, the point inc(str(E)) is well-defined. On the other
hand, Lemma 3.16 implies that any non-full (n − 2)-dimensional face of T is incident to at
least one εn-small simplex. Note that it is possible to construct triangulations containing full
(n − 2)-dimensional faces incident to no εn-small simplices. In this case, the map str is locally
a branched covering (whose degree grows with ε−1

n ). See Figure 1 for an example where str has
local degree 2 at some (n − 2)-dimensional face.

Recall that kn = 5 if n = 4 and kn = 4 if n � 5. For later purposes, we point out the following
lemma.

Lemma 3.19. We have

N � 5t.

Proof. Recall that the number of (n − 2)-dimensional faces of an n-simplex is n(n + 1)/2.
Let enf be the number of (n − 2)-dimensional faces of T that are not full. Remark 3.18 implies
that enf � n(n + 1)ts/2. Moreover, by definition, every (n − 2)-dimensional face of T that is
not full is incident to at most five εn-big simplices of T (counted with multiplicities), so

t
n(n + 1)

2
= (tb + ts)

n(n + 1)
2

� N + 5enf + ts
n(n + 1)

2
� N + 3tsn(n + 1).

Since ts � t/12, this implies that N � tn(n + 1)/4, whence the conclusion since n � 4.
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We now decompose M into the union of three subsets M1,M2,M3. The first subset M1

consists of δn-balls centred at the inradii of the (straightened) full faces:

M1 =
⋃

E∈Full(T )

B(inc(str(E)), δn).

The subset M2 is the union of all εn-big (straightened) simplices minus M1, and M3 is the
union of all the εn-small simplices:

M2 = str

⎛⎝ ⋃
εn-big σ

|σ|

⎞⎠ \ M1, M3 = str

( ⋃
εn-small σ

|σ|
)

.

Recall from Lemma 3.7 that every point of M lies in str(|σ|) for some simplex σ of T (in fact,
σ may also be chosen to be positive, but this is not relevant here). Therefore, we have

vol(M) � vol(M1) + vol(M2) + vol(M3). (4)

The reason for considering these three regions is roughly the following: if there are many εn-
small simplices, then some volume is ‘lost’ in M3; on the other hand, if there are many εn-big
simplices, then they must wind and overlap a lot along the full faces of T and some volume is
‘lost’ in M1: in all cases the volume of M will be strictly smaller than Cntvn for some constant
Cn < 1.

Let us estimate vol(Mi), i = 1, 2, 3. We set ηn = vol(B(p, δn)), where p is any point of Hn.
We have of course

vol(M1) � efηn. (5)

Now let σ be an εn-big simplex of T , and ν be the number of (n − 2)-dimensional faces of σ
(considered as an abstract n-simplex) that project into a full (n − 2)-dimensional face of T . If
σ̃st is a lift of σst to Hn, then, by Lemma 3.15, the hyperbolic balls of radius δn centred in the
incentres of the (n − 2)-dimensional faces of |σ̃st| are pairwise disjoint. Moreover, each of these
balls does not intersect any (n − 1)-dimensional face of |σ̃st| that does not contain its centre.
Together with Lemma 3.16, this implies that the volume of str(|σ|) \ M1 is at most

vn − νηn
1 + an

kn + 1
.

Summing up over all the εn-big simplices of T , we get

vol(M2) � tbvn − ηn(1 + an)
N

kn + 1
. (6)

Finally, we obviously have

vol(M3) � tsvn. (7)

Putting together the inequalities (4)–(7), we get the inequality

vol(M) � tvn + ηn

(
ef − (1 + an)

N

kn + 1

)
. (8)

We now conclude by considering separately the cases ef � t/2 and ef � t/2.

Lemma 3.20. Suppose that ts � t/12 and ef � t/2. Then

vol(M) � tvn

(
1 − ηn

3vn

)
.
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Proof. Recall that kn + 1 � 6 and N � 5t (see Lemma 3.19), so our estimate (8) yields

vol(M) � tvn + ηn

(
ef −

5t

6

)
� tvn − ηn

t

3
= tvn

(
1 − ηn

3vn

)
.

Lemma 3.21. Suppose that ts � t/12 and ef � t/2. Then

vol(M) � tvn

(
1 − anηn

2vn

)
.

Proof. Recall that every full (n − 2)-dimensional face is incident to at least kn + 1 εn-big
simplices of T , so N � (kn + 1)ef . Plugging this inequality into (8), we get

vol(M) � tvn + ηn(ef − (1 + an)ef) = tvn − anηnef � tvn − anηnt

2
.

We can summarize the results proved in Lemmas 3.17, 3.20, and 3.21 in the following
statement, which provides a quantitative version of Theorem 3.1.

Theorem 3.22. Let M be a closed orientable hyperbolic manifold of dimension n � 4, and
let

Cn = max
{

1 − εn

12
, 1 − ηn

3vn
, 1 − anηn

2vn

}
< 1.

Then

vol(M) � Cnvnσ(M).

4. Stable complexity

As anticipated in Section 1, by replacing triangulations with spines we get another characteristic
number c∞ which equals σ∞ on any irreducible 3-manifold with infinite fundamental group,
but which is better-behaved and closer to the simplicial volume in many cases (see, for example,
Propositions 4.6 and 4.7). We define here the characteristic number c∞ and prove some basic
properties.

4.1. Complexity

The complexity c(M) of a compact manifold M was defined by Matveev [38] in dimension 3
and generalized by the last author in all dimensions [36]. We recall briefly its definition.

Let Δ = Δn+1 be the (n + 1)-simplex and Πn be the cone over the (n − 1)-skeleton of Δ.
The polyhedron Πn

k = Πn−k × Dk has a centre c = (d, 0) with d ∈ Πn−k being the centre of
the cone. A compact (n − 1)-dimensional polyhedron X is simple if every point x of X has a
star neighbourhood PL-homeomorphic to Πn

k , via a homeomorphism that sends x to c.
In a simple two-dimensional polyhedron, every point has a neighbourhood of one of the

three types shown in Figure 2. Points of type (1) are called vertices. The points of type (2)
and (3) form, respectively, some manifolds of dimensions 1 and 2: their connected components
are called, respectively, edges and regions. Note that an edge can be a circle and a region can
be an arbitrary (connected) surface. A simple n-dimensional polyhedron is stratified similarly.

Let M be a compact n-manifold, possibly with boundary. A subpolyhedron X ⊂ int(M) is
a spine of M if M \ X consists of an open collar of ∂M and some (possibly none) open balls.
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Figure 2. Neighbourhoods of points in a simple polyhedron.

Definition 4.1. The complexity c(M) of M is the minimal number of vertices in a simple
spine for M .

The following facts, already proved in [36, 38], are immediate.

Theorem 4.2. The following inequalities hold:

(i) c(M) � σ(M) for any closed manifold M ;
(ii) c(M) � d · c(N) for any finite covering M

d→ N of compact manifolds.

Proof. By dualizing a triangulation T of M , we get a simple spine of M with one vertex
at the barycentre of each simplex of T , hence c(M) � σ(M). The pre-image of a simple spine
of N along the covering map is a simple spine of M with d vertices lying above each vertex of
N , hence c(M) � d · c(N).

We summarize the properties of c in dimension 3 that we will need below. If F ⊂ int(M)
is a closed surface in the interior of a compact 3-manifold M , then we denote by M//F the
manifold M with an open tubular neighbourhood of F removed.

Theorem 4.3 (Matveev [38]). The complexity c of compact orientable 3-manifolds satisfies
the following properties:

(i) c(M) = σ(M) for any closed irreducible 3-manifold M distinct from S3, RP3, and
L(3, 1);

(ii) c(M#N) = c(M) + c(N) for any compact 3-manifolds M and N ;
(iii) c(M//F ) � c(M) for any irreducible compact 3-manifold M and any incompressible

closed surface F ⊂ int(M).

4.2. Stable complexity

Theorem 4.2 says that c(M) � d · c(N) for any finite covering M
d→ N between compact

manifolds [36, 38]. We can then mimic the construction of σ∞ and define the stable complexity
c∞(M) of a compact manifold M as

c∞(M) = inf
M̃

d→M

{
c(M̃)

d

}
.

The stable complexity is of course a characteristic number and we get

c∞(M) � σ∞(M),

for any closed manifold M by Theorem 4.2.
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The following result refines Proposition 1.1.

Proposition 4.4. Let M be a closed n-manifold and suppose that π1(M) is virtu-
ally torsion-free (this condition is automatically satisfied if n = 2 and if n = 3 owing to
geometrization). Then

‖M‖ � c∞(M) � σ∞(M).

Proof. As we have just said, the right inequality is in fact true for any closed M . Concerning
the left inequality, we have ‖N‖ � c(N) for any closed manifold N with virtually torsion-free
fundamental group [36]. Since this group-theoretical property extends to every finite index
subgroup of π1(M), for every degree-d covering M̃ → M of M , we get

‖M‖ =
‖M̃‖

d
� c(M̃)

d
,

and therefore ‖M‖ � c∞(M).
If N is a closed 3-manifold, then the inequality ‖N‖ � c(N) can be proved directly (without

geometrization) building on the following facts:

(i) both c and ‖ · ‖ are additive on connected sums [19, 38];
(ii) if M ∈ {S3, RP3, S2 × S1, L(3, 1)}, then c(M) = 0 (see [38]);
(iii) if M is irreducible and not in the above list, then c(M) = σ(M) ([38], see Theorem 4.3).

Turning to dimension 3, we will prove below an appropriate version of Theorem 4.3 for c∞.
First of all, the characteristic numbers c∞ and σ∞ coincide on the 3-manifolds we are mostly
interested in, as the following proposition shows.

Proposition 4.5. Let M be a closed irreducible 3-manifold with |π1(M)| = ∞. Then
c∞(M) = σ∞(M).

Proof. Every finite-index covering N of M is irreducible with |π1(N)| = ∞ and hence
c(N) = σ(N). Therefore, c∞(M) = σ∞(M).

We will show in the next section that c∞ is also additive on connected sums and monotonic
with respect to cutting along incompressible surfaces. More than that, we will show that
c∞ is also additive on JSJ decompositions. Note that c is certainly not additive on JSJ
decompositions, since there are only finitely many irreducible 3-manifolds of any given
complexity c (because c = σ there), whereas infinitely many 3-manifolds can share the ‘same’
JSJ decomposition (in the weak sense that they share the same geometric blocks, but assembled
via different maps).

4.3. Surfaces and elliptic manifolds

The following propositions describe examples where the stable complexity is equal to the
simplicial volume and strictly smaller than the stable Δ-complexity.
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Proposition 4.6. If S is a compact surface, then c∞(S) = ‖S‖ = 2χ−(S), where χ−(S) =
min{−χ(S), 0}. Therefore, if S is closed, then we have σ∞(S) > c∞(S) if χ(S) > 0 and σ∞(S) =
c∞(S) if χ(S) � 0.

Proof. Let us first recall that the equality ‖S‖ = 2χ−(S) (which was stated in Proposi-
tion 2.3 for closed surfaces) also holds for surfaces with boundary. In fact, if S is a disk or an
annulus, then the pair (S, ∂S) admits a self-map of degree bigger than 1, so ‖S‖ = χ−(S) = 0.
If S is a Möbius strip, then S is covered by the annulus, and so again ‖S‖ = χ−(S) = 0. In the
remaining cases, the interior of S admits a complete finite-volume hyperbolic structure, so we
may apply Theorem 2.4 to get

‖S‖ =
Area(int(S))

v2
=

2π|χ(S)|
π

= 2χ−(S),

where vol(int(S)) = 2π|χ(S)| by the Gauss–Bonnet Theorem, and v2 = π since the maximal
area of hyperbolic triangles is equal to π.

Let us now come to the statement of the proposition. If S is either S2, RP2, an annulus,
or a Möbius strip, then S has a spine without vertices (a circle) and hence c(S) = 0. Every
other surface S with non-empty boundary has a simple (that is, trivalent) spine with 2χ−(S)
vertices, and hence

‖S‖ � c∞(S) � c(S) � 2χ−(S) = ‖S‖.

This proves the first statement when S has non-empty boundary or χ(S) > 0. If S is closed
with χ(S) � 0, then, by Proposition 1.1, we have

‖S‖ � c∞(S) � σ∞(S) = ‖S‖ = 2χ−(S),

whence the conclusion.

Proposition 4.7. If M is an elliptic n-manifold, then c∞(M) = ‖M‖ = 0 and σ∞(M) > 0.

Proof. For every n � 1, we have c(Sn) = 0 (see [36, 38]) and ‖Sn‖ = 0, since Sn admits
a self-map of degree bigger than 1. Since every elliptic manifold is covered by Sn, we get
c∞(M) = ‖M‖ = 0. On the other hand, σ(M) > 0 for every manifold M and hence σ∞(M) > 0
whenever M has finite fundamental group, and hence only finitely many coverings.

5. 3-Manifolds

We study here the stable complexity c∞ of 3-manifolds. We first show that c∞ is additive on
connected sums and JSJ decompositions: while additivity on connected sums is easy, to prove
additivity on JSJ decompositions, we make an essential use of a couple of lemmas established
by Hamilton [23]. As a corollary, we compute c∞ on any irreducible 3-manifold whose JSJ
decomposition consists of Seifert pieces and hyperbolic manifolds commensurable with the
figure-eight knot complement.

We end this section by exhibiting a sequence of closed hyperbolic 3-manifolds Mi (with
bounded volume) for which the ratio between c∞(Mi) and ‖Mi‖ tend to 1.

5.1. Minimizing sequences and disconnected coverings

We define the following natural notion.
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Definition 5.1. Let M be a compact manifold. A minimizing sequence of coverings fi :
Mi

di→ M is a sequence such that c(Mi)/di → c∞(M).

Of course, every manifold M has a minimizing sequence. Given a minimizing sequence
fi : Mi

di→ M , we can replace each Mi with any manifold Ni covering Mi and we still get
a minimizing sequence. In particular, if M is a 3-manifold with |π1(M)| = ∞, then we can
always take a minimizing sequence such that di → ∞ because π1(M) is residually finite [24].

Let η(M) be an invariant that is submultiplicative under finite coverings, like c(M), σ(M), or
‖M‖Z. We have defined in this paper the stable version η∞(M) of η(M) by taking the infimum
of η(N)/d among all finite coverings N

d→ M . We have implicitly assumed in this definition
that both M and N are connected, as this hypothesis is typically embodied in the definition
of ‘covering’. If we discard this hypothesis, thus allowing both M and N to be disconnected,
then we actually get the same stable function η∞.

More precisely, we define a (possibly disconnected) degree-d covering as a map p : M → N
between (possibly disconnected) topological spaces where every point in N is contained in
some open set U such that p−1(U) =

⋃d
i=1 Ui and p|Ui

: Ui → U is a homeomorphism. We re-
define η∞(M) for any (possibly disconnected) manifold M as the infimum of η(M)/d over
all (possibly disconnected) degree-d coverings of M . It is easy to verify that this slightly
modified definition of η∞(M) coincides on a connected manifold M with the one we have
introduced beforehand using only connected coverings, and that we get an additive function
η∞(

⊔
i∈I Mi) =

∑
i∈I η∞(Mi) on the connected components of disconnected manifolds.

In this section (and nowhere else), we allow implicitly all coverings to be disconnected: this is
a natural framework when one cuts a 3-manifold along surfaces, and might get a disconnected
3-manifold as a result.

5.2. Connected sums and incompressible surfaces

Additivity on connected sums easily lifts from c to c∞. We subdivide the proof into two steps.

Proposition 5.2. Let M be a 3-manifold and S ⊂ int(M) be a 2-sphere. We have
c∞(M//S) = c∞(M).

Proof. We know [38] that if N is a 3-manifold and S ⊂ int(N) is a sphere, then c(N//S) =
c(N), so the same result for c∞ follows easily.

If p : M̃ → M is a covering, then the pre-image S̃ = p−1(S) is a union of spheres, and hence
c(M̃//S̃) = c(M̃). Every covering M̃

d→ M induces a covering M̃//S̃
d→ M//S with c(M̃) =

c(M̃//S̃), hence c∞(M//S) � c∞(M). Conversely, every covering N
d→ M//S gives rise to a

covering N ′ d→ M , where N ′ is obtained from N by gluing the 2d boundary spheres in pairs.
In particular, c(N ′) = c(N) and hence we also get c∞(M//S) � c∞(M).

Corollary 5.3. Let M,N be any compact 3-manifolds. We have

c∞(M#N) = c∞(M) + c∞(N).

Proof. Cutting and gluing along 2-spheres does not vary c∞. Capping a boundary 2-sphere
with a 3-disc D3 also does not modify c∞ since c∞(D3) = c(D3) = 0.
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Another property that lifts easily from c to c∞ is monotonicity under the operation of cutting
along incompressible surfaces.

Proposition 5.4. Let S ⊂ int(M) be an incompressible surface in an irreducible 3-
manifold M . We have

c∞(M//S) � c∞(M).

Proof. If p : M̃ → M is a covering, then the manifold M̃ is irreducible and the pre-
image S̃ = p−1(S) of S is a (possibly disconnected) incompressible surface in M̃ . Therefore,
c(M̃//S̃) � c(M̃) by Theorem 4.3, and c∞(M//S) � c∞(M).

When the incompressible surface is a torus, we actually get an equality. To prove this non-
trivial fact (which does not hold for c and heavily depends on geometrization), we will need to
construct appropriate coverings of irreducible 3-manifolds, using some techniques introduced
by Hempel in his proof that the fundamental group of an irreducible 3-manifold is residually
finite [24], and further developed in a recent paper by Hamilton [23].

5.3. Characteristic coverings

Recall that a characteristic subgroup of a group G is a subgroup H < G which is invariant by
any automorphism of G. For a natural number x ∈ N, the x-characteristic subgroup of Z × Z is
the subgroup x(Z × Z) generated by (x, 0) and (0, x). It has index x2 if x > 0 and ∞ if x = 0.
The characteristic subgroups of Z × Z are precisely the x-characteristic subgroups with x ∈ N.
It is easy to prove that a subgroup of Z × Z of index x contains the x-characteristic subgroup.

A covering p : T̃ → T of tori is called x-characteristic if p∗(π1(T̃ )) is the x-characteristic
subgroup of π1(T ) ∼= Z × Z. A covering p : M̃ → M of 3-manifolds bounded by tori is
x-characteristic if the restriction of p to each boundary component of M̃ is x-characteristic.

Lemmas 5 and 6 from [23] state the following.

Lemma 5.5 (Hamilton). Let M1, . . . ,Mn be a finite collection of compact, orientable
3-manifolds with boundary whose interiors admit complete hyperbolic structures of finite
volume. Let m be a positive integer. Then there exist a positive integer x and finite-index
normal subgroups Ki � π1(Mi) such that Ki ∩ π1(Tij) is the characteristic subgroup of index
(mx)2 in π1(Tij) for each component Tij of ∂Mi. Hence, the covering of Mi corresponding to
Ki is (mx)-characteristic.

Lemma 5.6 (Hamilton). Let M be a compact, orientable Seifert fibred space with non-
empty, incompressible boundary. Then there exists a positive integer v such that, for each
multiple m of v, there is a finite m-characteristic covering space Mm of M .

We will use these lemmas to prove the following result, which concerns this question: given
one covering on each piece of the JSJ decomposition of an irreducible 3-manifold M , can we
glue them together to a covering of M? The answer is of course negative in general, since
there is no way to glue arbitrary coverings that behave very differently along the tori of the
JSJ decomposition; however, Lemmas 5.5 and 5.6 can be used to replace the given coverings
with some bigger x-characteristic coverings, and (as noted by Hempel [24]) such coverings
can indeed be glued together (but one needs to take multiple copies of each covering to glue
everything properly).
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Proposition 5.7. Let an irreducible orientable 3-manifold M with (possibly empty)
boundary consisting of tori decompose along its JSJ decomposition into some pieces
M1, . . . ,Mh. Let pi : M̃i → Mi be a finite covering for every i. There exist a natural number n,
a finite covering qi : Ni → M̃i for every i, and a finite covering p : N → M such that p−1(Mi)
consists of copies of Ni covering Mi along pi ◦ qi. Moreover, each pi ◦ qi is n-characteristic.

Proof. Up to taking a bigger covering, we can suppose that pi is regular for every i. The
pre-image of a boundary torus Tij ⊂ ∂Mi consists of finitely many tori T 1

ij , . . . , T
l
ij , and the

restriction of pi to each T k
ij , k = 1, . . . , l, gives isomorphic coverings (because pi is regular). In

particular, Hij = (pi)∗(π1(T k
ij)) is a subgroup of π1(Tij) which does not depend on k. Let dij

be the index of Hij in π1(Tij).
By geometrization, every Mi is either hyperbolic or Seifert. For every Seifert block Mi,

there is some integer vi such that the conclusion of Lemma 5.6 applies. Now let m be the
least common multiple of all integers dij and vi. Let us apply Lemma 5.5 to the hyperbolic
blocks of the JSJ decomposition of M : there is an integer x such that every hyperbolic block
Mi has an (mx)-characteristic covering. By Lemma 5.6, every Seifert block Mi also has an
(mx)-characteristic covering.

Therefore, every block Mi has an (mx)-characteristic covering, determined by some subgroup
Ki < π1(Mi) which intersects every π1(Tij) in its (mx)-characteristic subgroup. Recall that our
original covering p : M̃i → Mi is determined by some other subgroup Hi < π1(Mi) intersecting
every π1(Tij) in a subgroup Hij of some index dij . A subgroup of index dij contains the
(dij)-characteristic subgroup and hence the (mx)-characteristic subgroup since dij divides mx.
Therefore, Ki ∩ Hi also intersects every π1(Tij) in its (mx)-characteristic subgroup, and hence
it induces an (mx)-characteristic covering Ni → M̃i → Mi.

Summing up, we have shown that every covering M̃i → Mi has a bigger (mx)-characteristic
covering Ni → M̃i → Mi, where the constant mx is fixed. Hempel [24] proved that K-
characteristic coverings (with fixed K) can be glued together. Namely, there is a finite covering
N → M such that its restriction to Mi consists of finite copies of the covering Ni → Mi.

Corollary 5.8. Let M be an irreducible orientable 3-manifold. For every integer n0, there
is a bigger integer n > n0 and a covering p : N → M whose restriction over any torus of the
JSJ decomposition of M is a disjoint union of n-characteristic coverings.

Proof. Take a block M1 of the JSJ decomposition of M . Owing to geometrization, the
fundamental group π1(M1) is residually finite, hence there is a covering M̃1 → M1 which
restricts on some boundary torus of M̃1 to a covering of degree bigger than n2

0. Apply
Proposition 5.7 to this covering: the result is an n-characteristic covering N → M with n > n0.

5.4. JSJ decompositions

We will prove below that c∞ is additive on JSJ decompositions. We start by proving the
following.

Lemma 5.9. Let an irreducible orientable 3-manifold M with (possibly empty) boundary
consisting of tori decompose along its JSJ decomposition into some pieces M1, . . . ,Mh. We
have

c∞(M) � c(M1) + · · · + c(Mh).
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A B C D

Figure 3. We colour in grey the regions of the inserted portions Y × (−1, 1). There are four
types of vertices A, B, C, and D in the spine Q, according to the colours of the incident regions.

A C

B D

Figure 4. The cellularization of T induced by the collar map T → Pi, and the spine Y of T
coloured in grey. The four types of vertices A, B, C, D.

Proof. Given some simple spines P1, . . . , Ph for M1, . . . ,Mh, it is easy to construct a simple
spine Q for M . Set P = P1 � · · · � Ph. Recall that Mi \ Pi consists of an open collar of ∂Mi plus
maybe some open balls. Therefore, M \ P consists of one product neighbourhood T × (−1, 1)
of each torus T of the decomposition, plus maybe some open balls. To build a spine for M ,
it suffices to choose a simple spine Y for T (that is, Y is a one-dimensional polyhedron with
only 3-valent vertices and T \ Y consists of open discs) and add to P one product Y × (−1, 1)
inside each such product neighbourhood T × (−1, 1). If Y ⊂ T is in generic position, then the
resulting polyhedron Q is still simple. Now M \ Q consists of open balls only: those that were
in M \ P , plus one for each torus of the decomposition. Therefore, Q is a spine for M .

Colour in grey the regions in the products Y × (−1, 1). It is easy to check that there are
now four types A,B,C,D of vertices in Q according to the colours of the incident regions,
as shown in Figure 3. The vertices of type A are those of P . Let vA, vB, vC , and vD be the
number of vertices of type A, B, C, and D in Q. Consider one inserted piece Y × (−1, 1) ⊂
T × (−1, 1) inside a collar separating two (possibly coinciding) polyhedra Pi and Pj . Pull back
the cellularization of Pi on T via the collar, as in Figure 4: the four types of vertices are also
shown in the figure.

Corollary 5.8 ensures that, for every n0 > 0, there is a natural number n > n0 and a covering
p : N

d→ M whose restriction over each torus T of the JSJ decomposition is a disjoint union of
some h distinct n-characteristic coverings. We thus have d = hn2. The pre-image Q̃ = p−1(Q) ⊂
N is a simple spine of N , and we give each region of Q̃ the same colour of its image in Q. We
thus get dvA, dvB , dvC , and dvD vertices of type A, B, C, and D, respectively.

Let T ⊂ M be one torus of the decomposition. One component T̃ of p−1(T ) is shown in
Figure 5, containing the lifted spine Ỹ . If T \ Y consists of one disc only as in Figure 4,
now T̃ \ Ỹ consists of n2 discs. As shown in the figure, we can replace Ỹ with a simpler
spine Ỹ ′ ⊂ Ỹ ⊂ T̃ , whose complement in T̃ consists of only one disc. We then modify Q̃ by
substituting the product Ỹ × (0, 1) with Ỹ ′ × (0, 1). The resulting polyhedron Q̃′ ⊂ Q̃ is still
a spine of N , with less vertices than Q̃.
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Figure 5. A 3-characteristic covering T̃ of some torus T of the JSJ decomposition. The spine Y

lifts to the grey spine Ỹ shown in the left picture. We can eliminate most of its edges and still
get a spine Ỹ ′ of T̃ .

We estimate the number of vertices for Q̃′. Recall that d = hn2. It is clear from the picture
that, after the removal of such coloured faces, the number of vertices of type A, B, C, and D
is, respectively, not greater than dvA, 2hnvB , hvC , and 2hnvD. Therefore,

c(N) � dvA + 2hn(vB + vD) + hvC .

Suppose that in our construction we started with some spines P1, . . . , Ph with minimal
number of vertices for M1, . . . ,Mh. Then vA equals c(M1) + · · · + c(Mh) and we get

c∞(M) � c(N)
d

� vA +
2(vB + vD)

n
+

vC

n2
.

Since, for every n0, there is n > n0 which satisfies this inequality, we get

c∞(M) � vA = c(M1) + · · · + c(Mh).

Finally, we can prove the following.

Proposition 5.10. Let an irreducible orientable 3-manifold M with (possibly empty)
boundary consisting of tori decompose along its JSJ decomposition into some pieces
M1, . . . ,Mh. We have

c∞(M) = c∞(M1) + · · · + c∞(Mh).

Proof. We already know that, by cutting along incompressible surfaces, we cannot increase
the stable complexity, hence c∞(M) � c∞(M1) + · · · + c∞(Mh). We need to prove the converse
inequality.

Let pj
i : M j

i

dj
i→ Mi be a minimizing sequence of coverings for Mi, for each i = 1, . . . , h. By

hypothesis, we have
c(M j

i )
dj

i

−→ c∞(Mi),

as j → ∞ for each i = 1, . . . , h.
Fix j. By Proposition 5.7, up to replacing each pj

i with a bigger covering (which we still

denote by pj
i ), we can suppose that there is a covering p : M j dj

→ M which restricts on Mi to
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some kj
i disjoint copies of pj

i for every i. We necessarily have dj = kj
i d

j
i . Lemma 5.9 implies

that

c∞(M j) � kj
1c(M

j
1 ) + · · · + kj

hc(M j
h).

We divide both expressions by dj and get

c∞(M) � c(M j
1 )

dj
1

+ · · · + c(M j
h)

dj
h

.

Since pj
i are minimizing sequences for all i, by sending j → ∞ we get

c∞(M) � c∞(M1) + · · · + c∞(Mh).

5.5. Seifert manifolds

We have proved that the stable complexity of an irreducible 3-manifold is the sum of the stable
complexity of the pieces in its JSJ decomposition. We can therefore concentrate our attention
on Seifert and hyperbolic manifolds.

Proposition 5.11. Let M be a compact Seifert manifold, with or without boundary. We
have c∞(M) = 0.

Proof. A Seifert manifold has a finite covering M which is an S1-bundle over an orientable
surface Σ with some Euler number e � 0. If the manifold has boundary, then e = 0 and the
bundle is a product Σ × S1. Since this manifold covers itself with arbitrarily high degree, it
clearly has stable complexity zero. If the manifold M is closed, then we denote it by (Σ, e). Its
complexity is at most [37]

c(Σ, e) � max{0, e − 1 + χ(Σ)} − 6(χ(Σ) − 1) � e + 6χ−(Σ) + 6.

A degree-d covering of surfaces Σ̃ d→ Σ induces a covering (Σ̃, de) d→ (Σ, e). By unwrapping the
fibre, we can construct another covering (Σ̃, e) d→ (Σ̃, de) and, by composing them, we get

(Σ̃, e) d2

−→ (Σ, e).

Therefore,

c∞(Σ, e) � c(Σ̃, e)
d2

� e + 6χ−(Σ̃) + 6
d2

=
e + 6dχ−(Σ) + 6

d2
−→ 0,

as d → ∞.

Corollary 5.12. A graph manifold has stable complexity zero.

5.6. Hyperbolic 3-manifolds

We can now turn to hyperbolic 3-manifolds. Note that, since c∞ is a characteristic number,
once we know the stable complexity of a manifold, we also know the stable complexity of any
manifold in its commensurability class. We start by extending Proposition 4.4 to the cusped
case.
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Proposition 5.13. Let M be a compact 3-manifold, whose interior admits a complete
hyperbolic structure with finite volume. We have

‖M‖ � c∞(M).

Proof. The closed case was considered in Proposition 4.4, so we suppose M has boundary.
As shown by Matveev [39], if N is a compact 3-manifold whose interior admits a complete
hyperbolic structure with finite volume, then the complexity c(N) equals the minimal number
of tetrahedra in an ideal triangulation of N . Moreover, by straightening the simplices of such an
ideal triangulation, it is easily seen that vol(N) � vnc(N), whence ‖N‖ � c(N) by Theorem 2.4.
Therefore, ‖N‖ � c(N) for every covering N of M , and we conclude as in Proposition 4.4.

We can calculate c∞ only on one (very special) commensurability class of hyperbolic cusped
3-manifolds.

Proposition 5.14. If M is commensurable with the figure-eight knot complement,

‖M‖ = c∞(M).

Proof. The figure-eight knot complement N is obtained by gluing two ideal regular
tetrahedra, each of volume v3. We have vol(N) = 2v3 and hence ‖N‖ = 2. We also have
c(N) = 2. The (very special) equality c(N) = ‖N‖ together with ‖N‖ � c∞(N) � c(N) implies
c∞(N) = ‖N‖. Since both c∞ and ‖ · ‖ are characteristic numbers, they coincide on the whole
commensurability class of N .

Finally, we can say something concerning Dehn filling.

Proposition 5.15. Let N be any compact 3-manifold and M be obtained from N by
Dehn filling one boundary torus of N . We have

c∞(M) � c(N).

Proof. The proof is similar to that of Lemma 5.9. Given a simple spine P of N , it is easy to
construct a spine Q of M . Recall that N \ P consists of a collar of the boundary plus possibly
some open balls. Then M \ P consists of a collar of the boundary (if non-empty), plus possibly
some open balls, plus an open solid torus V created by the Dehn filling. Let D be a meridian
disc of V , and take Q = P ∪ D. If D is generic, then the resulting polyhedron Q is still simple.
Now V \ D is an open ball and hence Q is a spine of M .

As in the proof of Lemma 5.9, colour the added disc D grey. There are now three types (A,
B, and D) of vertices in Q, as shown in Figure 3. Let vA, vB , and vD be the number of vertices
of type A, B, and D, respectively.

Since π1(M) is residually finite [24], for every n > 0 there is an h > 0 and a regular covering
p : M̃

hn→ M such that p−1(V ) consists of h open solid tori Ṽ1, . . . , Ṽh, each winding n times
along V via p. The covering has degree d = hn. The spine Q of M lifts to a spine p−1(Q) = Q̃
of M̃ , which contains dvA, dvB , and dvD vertices of type A, B, and D, respectively. The disc
D lifts to n discs inside each Ṽi. These n discs subdivide Ṽi into n open balls. We now remove
from Q̃ some n − 1 of these n discs, leaving only one disc D̃i ⊂ Ṽi, whose complement in Ṽi is
a single open ball. If we do such removals for every i = 1, . . . , h, then we are left with a spine
Q̃′ ⊂ Q̃ with fewer vertices.
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The number of vertices of type A, B, and D in Q̃ is at most dvA, hvB, and hvD, respectively.
Therefore,

c(M̃) � dvA + h(vB + vD).

Suppose that P has the minimal number of vertices for N . Then vA equals c(N) and we get

c∞(M) � c(M̃)
d

� vA +
vB + vD

n
.

Since this equality holds for every n > 0, we get c∞(M) � c(N).

Note that we do not know if c∞(M) is smaller than c∞(N). However, this result is enough
to deduce the following corollary, which implies in turn Theorem 1.7, since σ∞(M) = c∞(M)
for every closed hyperbolic 3-manifold M .

Corollary 5.16. Let Mi be any sequence of distinct Dehn fillings on the figure-eight knot
complement. We have

c∞(Mi)
‖Mi‖

−→ 1.

Proof. Let N be the figure-eight knot complement. We have c∞(Mi) � c(N) = 2 for all i.
By Thurston’s Dehn filling Theorem [46], we also get vol(Mi) → vol(N) and hence ‖Mi‖ →
‖N‖ = 2. Since c∞(Mi)/‖Mi‖ � 1, the conclusion follows.

6. Concluding remarks

In this section, we show how our arguments can be adapted to prove that the stable integral
simplicial volume is strictly bigger than the simplicial volume for closed hyperbolic manifolds
of dimension at least 4. Moreover, we describe some possible approaches to prove or disprove
that σ∞(M) = ‖M‖ for every (or some) closed hyperbolic 3-manifold M .

6.1. Stable integral simplicial volume and Gromov’s Question 1.3

Proposition 2.2 holds (with a similar proof) also for the stable integral simplicial volume.

Proposition 6.1. Let M be a closed n-dimensional manifold. We have

|χ(M)| � (n + 1) · ‖M‖Z

∞.

Proof. Using Poincaré duality, it is not difficult to prove the following inequality [31],
similar to the one we used in the proof of Proposition 2.2:

n∑
i=0

bi(M) � (n + 1) · ‖M‖Z (9)

(see also [34, Example 14.28]). As a consequence, we get |χ(M)| � (n + 1)‖M‖Z and

|χ(M)| � (n + 1) · ‖M‖Z

∞,

since the Euler characteristic is a characteristic number.
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Therefore, if ‖M‖Z
∞ were equal to ‖M‖ for any aspherical manifold M , then we could answer

positively Gromov’s Question 1.3. However, as for σ∞, the two characteristic numbers differ
at least on hyperbolic manifolds of dimension n � 4.

Theorem 6.2. For every n � 4, there exists a constant Cn < 1 such that the following
holds. Let M be a closed orientable hyperbolic manifold of dimension n � 4. Then

‖M‖ � Cn‖M‖Z

∞.

Proof. Just as in the proof of Theorem 1.5, it is sufficient to show that

vol(M)
vn

� Cn‖M‖Z,

for some constant Cn < 1 independent of M . Let us now briefly describe how the proof of
Theorem 3.1 can be adapted to achieve this goal.

Let z =
∑m

i=1 εiσi be an integral cycle representing the fundamental class of M , and suppose
that εi = ±1 for every i (so we do not exclude the case where σi = σj for some i �= j). We may
also assume that z realizes the integral simplicial volume of M , so ‖M‖Z = m. The cycle z
defines a function f from the disjoint union of m copies of the standard n-dimensional simplex
to M . Since z is a cycle, there exists a complete pairing of the (n − 1)-dimensional faces of
these standard simplices such that paired faces can be identified by a simplicial isomorphism
that is compatible with f . These data define a pseudomanifold X endowed with a (loose)
triangulation T with m simplices and a map g : X → M induced by f . By construction, the
sum of the simplices of T defines an n-cycle z′ ∈ Zn(X, Z), and g∗(z′) = z. We can now mimic
the construction described in Subsection 3.2 and homotope g into a map str(g) : X → M which
sends each simplex of T into the support of a straight simplex in M . As a consequence, we may
still define positive, negative, ε-big, and ε-small simplices of T , and full (n − 2)-dimensional
faces of T . The estimates described in Subsection 3.7 still hold, and this provides the needed
constant Cn < 1 such that vol(M) � Cnvnm = Cnvn‖M‖Z.

6.2. L2-Betti numbers

As already mentioned in Section 1, Gromov was primarily interested in the comparison of
the simplicial volume with the Euler characteristic. In [20, 21], he suggested the use of L2-
invariants to attack this problem. More precisely, in [20, p. 232], he observed that Question 1.3
may be reduced to Question 6.3, which is formulated in terms of L2-Betti numbers.

The L2-Betti numbers were first defined analytically by Atiyah in terms of the heat kernel
in the context of cocompact group actions on manifolds [2]. Since then, the range of definition
and application of L2-Betti numbers was impressively widened; see, for example, [8, 9, 11, 18,
33]. A comprehensive introduction to L2-Betti numbers may be found in Lück’s book [34].

One of the most important features of L2-Betti numbers is that they can be defined both
analytically and combinatorially. In the topological-combinatorial setting, the L2-invariants are
mainly based on the study of the action of the fundamental group of a space on the cellular
chain complex of its universal covering. Here, if M is a closed manifold, then we denote by
b
(2)
k (M) the kth L2-Betti number b

(2)
k (M̃, π1(M)) as defined in [34, Chapter 6], where M̃ is the

universal covering of M and π1(M) acts as usual on M̃ . In [20], Gromov asked the following
question.

Question 6.3 [20, p. 232]. Let M be a closed aspherical manifold such that ‖M‖ = 0. Is
it true that b

(2)
k (M) = 0 for every k ∈ N?
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In order to explain how Question 6.3 is related to Question 1.3, let us briefly mention some
important properties of L2-Betti numbers:

(1) they are characteristic numbers, that is, they are multiplicative with respect to finite
coverings [34, Theorem 1.35];

(2) b
(2)
k (M) is a sort of stable version of the kth Betti number bk(M) of M ; more precisely,

it is proved in [32] that if π1(M) = G admits a sequence of nested normal subgroups
G ⊇ G1 ⊇ G2 ⊇ · · · of finite index such that

⋂
i∈N

Gi = {1}, then

b
(2)
k (M) = inf

M̃i
di→M

{
bk(M̃i)

di

}
,

where M̃i
di→ M is the covering associated to Gi (see also [4] for an extension of this

result to the case when Γi is not supposed to be normal in Γ);
(3) if M is n-dimensional, then b

(2)
k (M) = 0 for k > n and

n∑
i=0

(−1)ib
(2)
i (M) = χ(M)

(see [34, Theorem 1.35]).

By property (3), a positive answer to Question 6.3 would lead to a positive answer to
Question 1.3.

6.3. Integral foliated simplicial volume

In order to study Question 6.3, Gromov introduced in [21] a new invariant, the integral foliated
simplicial volume ‖M‖Z,F of M (see [44] for a precise definition and all the properties of
‖M‖Z,F that we are mentioning below). The integral foliated simplicial volume satisfies the
inequalities

‖M‖ � ‖M‖Z,F � ‖M‖Z.

Moreover, the integral foliated simplicial volume is a characteristic number, so

‖M‖ � ‖M‖Z,F � ‖M‖Z

∞.

As stated by Gromov [21] and proved by Schmidt [44], the integral foliated simplicial volume
can be used to bound from above the sum of the L2-Betti numbers of a closed manifold.
More precisely, if M is a closed n-manifold, then the following L2-analogous of inequality (9)
holds [31]:

n∑
i=0

b
(2)
i (M) � (n + 1)‖M‖Z,F .

In particular, a closed manifold with vanishing integral foliated simplicial volume has vanishing
L2-Betti numbers (whence has vanishing Euler characteristic). However, the problem of
whether the vanishing of the simplicial volume implies the vanishing of the integral foliated
simplicial volume, at least in the case of aspherical manifolds, is still open. In fact, as far as
we know, no example is known of a closed aspherical n-manifold M such that ‖M‖ �= ‖M‖Z,F .
Therefore, we ask here the following question.

Question 6.4. May our proof of Theorem 6.2 be adapted to show that

‖M‖Z,F > ‖M‖,
for every closed hyperbolic manifold M of dimension greater than 3?
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6.4. The three-dimensional case

Let us now concentrate on our unsolved question.

Question 6.5. Does the equality

‖M‖ = σ∞(M)

hold for every closed hyperbolic 3-manifold M?

In their recent proof of the Ehrenpreis conjecture [29], Kahn and Markovic showed that
every closed orientable hyperbolic surface S has a finite covering which decomposes into pairs of
pants whose boundary curves have length arbitrarily close to an arbitrarily big constant R > 0.
Question 6.5 is equivalent to some sort of three-dimensional version of Kahn and Markovic’s
result. Namely, the discussion carried out in the previous sections shows that ‖M‖ = σ∞(M)
if and only if the following condition holds: for every ε > 0, R > 0, there exists a finite covering
M̃ with a triangulation T̃ such that the shape of at least (1 − ε)|T̃ | simplices of T̃ is ε-close to
the shape of a regular positive simplex with edge-length bigger than R. Let us briefly describe
some possible strategies to approach Question 6.5.

6.5. How to answer Question 6.5 in the positive

Corollary 5.16 says that it is possible to make the ratio σ∞(M)/‖M‖ arbitrarily close to 1
by Dehn filling the figure-eight knot complement along arbitrarily long slopes (the length of
a slope is measured with respect to a fixed toric horocusp section). This fact can be easily
generalized to any manifold M covering the figure-eight knot complement.

Proposition 6.6. Let Mi be a sequence of manifolds covering the figure-eight knot. For
each i, let αi = (α1

i , . . . , α
ki
i ) be a set of slopes on the ki boundary components of Mi, and �i

be their minimal length with respect to some horocusp section. Let Ni be the closed manifold
obtained by filling Mi along αi. If �i → ∞, then Ni is hyperbolic for all sufficiently big i and
we have

σ∞(Ni)
‖Ni‖

−→ 1.

Proof. Since �i tends to infinity, the main result of Hodgson and Kerckhoff [26] ensures that
Ni is hyperbolic for all sufficiently big i (in fact, geometrization and Agol’s and Lackenby’s
results [1, 30] imply that Ni is hyperbolic provided that �i > 6). The estimates on volume
change under Dehn filling of Neumann and Zagier [41] or Futer, Kalfagianni, and Purcell [17,
Theorem 1.1] show that vol(Ni)/vol(Mi) → 1. Let Mi cover the figure-eight knot complement
with degree di. Then Mi is triangulated with 2di regular ideal tetrahedra and vol(Mi) = 2div3,
so ‖Mi‖ = vol(Mi)/v3 = 2di. Therefore, ‖Ni‖/2di → 1.

Since Mi is triangulated with 2di ideal tetrahedra, we have c(Mi) � 2di (we actually have an
equality, but this is not important here). Proposition 5.15 implies that c∞(Ni) � c(Mi) � 2di.
Since ‖Ni‖ � c∞(Ni), we get c∞(Ni)/‖Ni‖ → 1. Finally, we have c∞(Ni) = σ∞(Ni) because
Ni is irreducible.

This result leads naturally to the following definition. Let Hl be the set of all hyperbolic
manifolds that may be obtained from some covering of the figure-eight knot complement by
Dehn filling some slopes having length bigger than l (with respect to some horocusp section).
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Question 6.7. Let M be a closed hyperbolic manifold. Is it true that, for every l, there is
a finite-degree covering M̃ of M lying in Hl?

In other words, does M virtually lie in all sets Hl? A positive answer to this question would
prove that ‖M‖ = σ∞(M). Note that every manifold is a Dehn filling of some cover of the
figure-eight knot, because the figure-eight knot is universal [25], and hence every 3-manifold
lies in some Hl.

Remark 6.8. Ehrenpreis asked [10] whether any two closed Riemann surfaces with χ < 0
have finite coverings with arbitrarily small distance, with respect to some natural metric on
the moduli spaces of Riemann surfaces. This question (which was recently answered in the
affirmative [29]) can be generalized to categories of manifolds of any dimension and of any
kind, provided that they are equipped with a distance function: we call such a question an
Ehrenpreis problem. The filtration Hl easily defines a distance d which translates Question 6.7
into an Ehrenpreis problem (the distance of two distinct manifolds M and N is the smallest
1/l such that M,N ∈ Hl).

We may specialize our question to the following.

Question 6.9. Let M be a closed hyperbolic manifold. Is it true that, for every l, there is a
finite-degree covering M̃ of M and a branched covering M̃ → S3 branched over the figure-eight
knot with ramification indices bigger than l?

In other words, does M virtually cover S3 with branching locus equal to the figure-eight
knot, with arbitrarily large ramification indices? A large ramification index gives a long filling
slope on the covering of the figure-eight knot complement, hence a positive answer to this
question would also imply a positive answer to Question 6.7 and thus would prove the equality
‖M‖ = σ∞(M).

6.6. How to answer Question 6.5 in the negative

If M is a closed hyperbolic n-manifold and zi ∈ Zn(M, R) is a sequence of representatives of the
fundamental class of M , then we say that zi is minimizing if the L1-norm of zi approaches ‖M‖
as i tends to infinity. In order to get a negative answer to Question 6.5, one may probably profit
from Jungreis’ characterization of minimizing sequences of fundamental cycles for M (see [28]).
Every cycle zi in such a sequence lifts to a locally finite cycle z̃i in Hn. After straightening, z̃i

is a locally finite sum of straight simplices in Sn(Hn).
Jungreis considers a suitable space M(Sn(H̄n)) of measures on the set of geodesic simplices

with vertices in H̄n. Every z̃i may be thought of as a locally finite linear combination of
atomic measures concentrated on the lifts of the simplices of zi. Therefore, z̃i may be identified
with an element in M(Sn(H̄n)), and Jungreis’ result implies that the sequence z̃i converges in
M(Sn(H̄n)) to a measure μ that is concentrated on the subset of regular ideal simplices, and is
invariant with respect to the action of the group G of orientation-preserving isometries of Hn.
Roughly speaking, the G-invariance of μ implies that if n is big, then the simplices of zi must
be almost homogeneously distributed in M . Of course, such a behaviour of zi is strongly in
contrast to the possibility that zi is represented by a triangulation. In order to give a negative
answer to Question 6.5, one could prove that Jungreis’ result is not compatible with the fact
that zi is represented by a virtual triangulation, that is, it is obtained by suitably rescaling
the push-forward of a triangulation of a finite covering.
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