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Abstract. This is the second of two papers in which we investigate the properties of
displacement functions of automorphisms of free groups (more generally, free products)
on the Culler-Vogtmann Outer space CVn and its simplicial bordification. We develop a
theory for both reducible and irreducible autormorphisms. As we reach the bordification
of CVn we have to deal with general deformation spaces, for this reason we developed
the theory in such generality. In first paper [13] we studied general properties of the
displacement functions, such as well-orderability of the spectrum and the topological
characterization of min-points via partial train tracks (possibly at infinity).

This paper is devoted to proving that for any automorphism (reducible or not) any
level set of the displacement function is connected. Here, by the “level set” we intend to
indicate the set of points displaced by at most some amount, rather than exactly some
amount; this is sometimes called a “sub-level set”.

As an application, this result provides a stopping procedure for brute force search
algorithms in CVn. We use this to reprove two known algorithmic results: the conjugacy
problem for irreducible automorphisms and detecting irreducibility of automorphisms.

Note: the two papers were originally packed together in the preprint [12] We decided
to split that paper following the recommendations of a referee.
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1. Introduction

We consider Fn the free group of rank n, usually with a basis B (a free generating set).
We are interested in the automorphism group, Aut(Fn) and the Outer automorphism
group, which is defined as Out(Fn) = Aut(Fn)/ Inn(Fn).

That said, as the reader will notice, in this paper all results are about general deforma-
tion spaces, and our statements are of the form “let [φ] ∈ Out(Γ)” or “let X ∈ Ogr(Γ)

∞
”

and so on. Let’s briefly explain the notation and why we need to work in such generality.
The reason is that classical Culler-Vogtmann space CVn is perfect for studying irreducible
automorphisms, but if one is interested in possibly reducible automorphisms, some more
general space is needed. If for instance an automorphism φ is represented by a simplicial
map f on a finite graph X, it may happen that in X we have a collection of subgraphs
A1, ..., Ak so that ∪iAi is preserved by f . In this case it may be necessary to study both
the invariant collection and the quotient obtained by collapsing any Ai to a point. So
the typical object we have to deal with is a deformation space of finite unions of graphs
of groups. Concretely, our proofs boil down to induction proofs where the inductive step
needs to deal with both the (disconnected) collection ∪iAi and the map(s) that f induces
there, as well as the quotient graph of groups obtained by ‘collapsing’ the Ai in X, but
keeping track of the fundamental group of the collapsed part; this leads to a graph of
groups with trivial edge groups. So, even though our main focus is CVn, it turns out
to be no more complicated to deal with arbitrary free products and their deformation
spaces, and our proofs need in fact to deal with the case of a finite graph of groups, with
trivial edge groups, which may not be connected. This is what Γ refers to. We direct the
reader to Section 3, and in particular Remark 3.8 for more discussion on this.

Nevertheless, since our general theorems specialise to results about classical CVn and
Out(Fn), in this introduction we will stick as much as possible to that classical setting.

In recent years there has been a great deal of attention given to the Lipschitz metric
on CVn, see [1], [2], [3] for instance. It has been considered even more generally in [25].

In the first part, [13], we proved results concerning the Lipschitz metric on a class of
deformation spaces, of which a key example is the Culler-Vogtmann space of a free group,
CVn. We showed that, given an automorphism of a free group, the points of minimal
displacement - for a given automorphism, the distance between a point in CVn and its
image - correspond to the points which support partial train track maps, thus generalizing
known results about irreducible automorphisms.

In [23] it is shown that, in the irreducible case, these points of minimal displacement
(equivalently, the points which support train track maps) form a connected subset of CVn
and this is used to solve the conjugacy problem. Our results here arise out of a desire to
generalize those results to the reducible case, and we also employ Peak Reduction as a
key tool.

The generalization of this result for arbitrary, possible reducible, automorphisms, re-
quires some care, however. To start with, given an automorphism φ, one can define the
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infimum over all displacements of points in CVn, to obtain λ(φ). However, in general
there might exist no points in CVn which are displaced by this amount. Our point of
view is to pass to the simplicial bordification of CVn, otherwise known as the free splitting
complex, FSn. One can define displacements for points in FSn, though in some cases
these will be infinite. (A point in CVn is a marked graph, and a point in FSn arises by
collapsing a subgraph. These induced points will have finite displacement exactly when
the subgraphs are φ-invariant1). However, the infimum of all displacements of points in
FSn will, in general, be less than those in CVn.

Bearing in mind these complications, and the fact that in the whole paper we work
with more general deformation spaces, our main Theorem, which is a special case of
Theorem 5.3, is the following:

Theorem (Connectivity of Level Sets). Let [φ] ∈ Out(Fn). Let λ(φ) be the
infimum of displacements, with respect to the Lipschitz metric, of all points in
CVn. Then the set of points of FSn which are displaced by exactly λ(φ), is
connected.

Remark. As stated in the abstract we generally intend the “level set” to be the set of
points displaced by at most some amount; this is sometimes referred to as a “sub-level
set”. The subsequent Theorem has precisely this kind of statement. Hence the statement
above is more properly a statement about the minimally displaced set, although our
proofs deal with both at the same time.

However, note that λ(φ) is the infimum of displacements in CVn; however, it might not
be the infimum of displacements of points in FSn.

Moreover, our techniques allow us to regenerate paths from FSn to CVn without dis-
turbing the displacements by very much. Hence, as part of the same Theorem 5.3, we
also prove:

Theorem Let [φ] ∈ Out(Fn). Let λ(φ) be the infimum of displacements, with
respect to the Lipschitz metric, of all points in CVn. Then, for any ε > 0 the set
of points of CVn which are displaced by at most λ(φ) + ε, is connected.

In the case where the automorphism is irreducible, there are points in CVn which are
displaced by exactly the minimum, λ(φ). Moreover, every point on the boundary has
infinite displacement (Remark 3.19) and hence the connectivity of the level set becomes
a statement about CVn, as in Corollary 5.4:

Corollary Let [φ] ∈ Out(Fn) be irreducible. Let λ(φ) be the infimum of dis-
placements, with respect to the Lipschitz metric, of all points in CVn. Then the
set of points of CVn which are displaced by λ(φ), is connected.

Remark 1.1. Given an automorphism, φ, of the free group, one can construct a relative
train track representative for φ. The quantity, λ(φ) is then simply the maximum Perron-
Frobenius eigenvalue of any stratum.

More generally, if we are given a φ-invariant free factor system, then one can build
a relative train track representative of φ which sees this free factor system as an in-
variant subgraph. There is a corresponding deformation space where one collapses this

1See [13] or Section 3.4 for more details on this point.
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subgraph, and the minimum displacement in that deformation space is the maximum
Perron-Frobenius eigenvalue of any stratum above the invariant subgraph.

We can think of FSn as a union of such deformation spaces, with the displacements
being infinite when the collapsed object is not invariant. This is why the minimum dis-
placement in FSn need not be equal to that in CVn - they are different if one can collapse
an invariant subgraph which carries all the maximum Perron-Frobenius eigenvalues.

A simple example is the following. Consider this automorphism, φ, of the free group
on a, b, c:

c 7→ ca
b 7→ ba
a 7→ aba

This is then a relative train track map, with two strata, the bottom one given by a, b and
the top one by c.

Let λ be the larger eigenvalue of the matrix[
2 1
1 1

]
.

This is the Perron-Frobenius eigenvalue of the bottom stratum, with the top stratum
having 1 as its Perron-Frobenius eigenvalue. It is then easy to see that λ(φ) = λ, but
there are points in FSn which are fixed by φ and so have multiplicative displacement 1;
namely, take the point obtained by collapsing a, b. That is, the graph of groups with one
edge, one vertex, a trivial edge group and a vertex group generated by a and b.

Naturally, since our results generalize those of [23], we obtain a solution of the conjugacy
problem for irreducible automorphisms in the same way. However, it seems that our
techniques allow for a more elementary interpretation, and also opens up the possibilty for
attempting the algorithm in the reducible case. However, there are further complications
that arise in the reducible case, due to the fact that the minimally displaced set enters
the thin part, and so we do not easily obtain bounds on the number of points we need to
enumerate.

In any case, we can describe this algorithm in the irreducible case, with explicit con-
stants, rather straightforwardly. Moreover, we also provide an algorithm to detect irre-
ducibility; this result was first proved in [21] and improved in [22] (also, see [6] and [7]
which give another algorithm for detecting irreducibility).

Finally, it may be worth noting that, thank to the generality of Theorem 5.3, our
algorithms easily generalise to a class of groups bigger than just free groups; concretely,
groups of the kind G1 ∗ · · · ∗ Gp ∗ Fn where the Gi are finite groups (see Theorem 2.11
and Section 9.1).

Acknowledgements: We would like to thank both the Università di Bologna and the
Universitat Politécnica de Catalunya, for their hospitality during several visits. We would
also like to thank the referee of the earlier paper [12], as well as the current referee for
their patience and extraordinary efforts in improving this paper, with their many helpful
comments and suggestions.
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2. Algorithms

In order to motivate the detailed discussion which follows, we provide here the two
algorithms for solving conjugacy in the irreducible case and for detecting irreducibility.
We present these algorithms as naively as possible, in order to make them more accessi-
ble. That is, one could understand and implement them without any knowledge of the
Lipschitz metric, Culler-Vogtmann space or partial train track maps. As such we have
made no attempt to streamline the algorithms in any way; they are brute force searches
in an exponential space.

However, we would stress that our point of view is fundamentally that these procedures
would be better run as path searches in Culler-Vogtmann space, enumerating optimal
maps and calculating displacements via candidates. That abundance of terminology
would make the algorithms much harder to describe, so we instead translate everything
to a more manageable setting; bases of Fn and generating sets for Out(Fn). However, the
technical point of view is more helpful in developing an intuition of the processes and is
likely the way to vastly improve the algorithmic complexity.

Let us now describe our algorithms, whose correctness is proved at the end of the
paper. First, we recall some terminology. In order to work algorithmically with Out(Fn)
we need a generating set. The best known of these is the set of Nielsen generators, but
it is more convenient for us to work with the following:

Definition 2.1 (CMT Automorphisms, [15] and [14]). A CMT automorphism of Fn is
one that is induced by a change of maximal tree. More precisely, fix a basis, B, of Fn.
Let R = RB be the marked rose corresponding to B; that is, R is a graph with one vertex
v and n edges called petals, and we have a fixed isomorphism between Fn and π1(R, v)
where each element of B corresponds to a petal of R under this isomorphism.

Let X be a graph with fundamental group of rank n, and let T, T ′ be two maximal
trees of X. Collapsing T and T ′ we obtain two roses RT and RT ′ . Let ρT , ρT ′ be the
corresponding projections from X to RT , RT ′ , and let αT , αT ′ be homeomorphisms from
R to RT , RT ′ respectively. Then the (outer) automorphism induced by changing the
maximal tree from T to T ′ is the (homotopy class of the) map α−1

T ′ ρT ′ρT
−1αT : R → R,

where the inverse denotes a homotopy inverse.
Thus the set of CMT automorphisms of Fn, relative to B, is the set of all such change

of maximal tree automorphisms.

The set of CMT automorphisms relative to B includes all Whitehead automorphisms,
(see [15, Theorem 5.5], and [27]) and is a finite set which generates Out(Fn). Note also
that in case T = T ′, by varying αT , αT ′ we obtain all graph automorphisms of R, including
inversions of generators, which therefore are CMT automorphisms. Also, note that the
property of being CMT, depends on a fixed chosen basis, B, of Fn (the petals of R).

Remark 2.2. The definition of CMT automorphisms just given is close to that given in
[27], but there is an alternative definition via CVn as follows. We call two marked roses,
R1, R2 adjacent if there is a simplex, ∆, in CVn, admitting faces, ∆1 and ∆2 such that
Ri belongs to ∆i. This is equivalent to saying there is a marked graph X, admitting two
maximal trees, T1, T2 whose collapse produces the marked graphs, R1, R2, respectively.
Then,

CMTR(Fn) = {[φ] ∈ Out(Fn) : φ(R) is adjacent to R}.
This is the same as the previous definition by setting R = RB, as above.
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Next we need a notion of size of an automorphism, which will provide a termination
criterion for our algorithms.

Definition 2.3. Let [φ] ∈ Out(Fn), and let B be a basis of Fn. Define ||φ||B to be

sup16=g∈Fn

||φg||B
||g||B

, where ||g||B denotes the cyclic reduced length of g with respect to B.

This supremum is a maximum and is realised by an element of cyclic length ≤ 2 (see
Lemma 4.1).

Remark 2.4. Note that for any constant, C, there are only finitely many [φ] ∈ Out(Fn)
such that ||φ||B ≤ C (see [8], Lemma 4.10).

This also follows since ||φ||B is really Λ(R, φ(R)) in disguise (see section 3.4) where
R = RB is the uniform marked rose corresponding to B with all edges length 1/n (so
that R has volume 1). The remark then follows from the fact that, for any given C, there
are only finitely many (marked, volume 1) roses, R1 such that Λ(R,R1) ≤ C, and the
stabiliser of any point, and in particular R, is finite.

Our first application is then as follows. (See Section 9 for the proof.)

Theorem 2.5. The following is an algorithm to determine whether two irreducible auto-
morphisms are conjugate.

Let [φ], [ψ] be two irreducible outer automorphisms of Fn, and B a basis of Fn.

• Choose any µ > max{||φ||B, ||ψ||B}.
• Inductively construct a finite set, S = Sφ,µ, as follows (which depends on both φ

and µ):
– Start with S0 = {φ}.
– Set K = n(3n− 3)µ3n−1.
– Inductively put Si+1 to be all possible automorphisms ζφiζ

−1, where φi is
any element of Si, ζ is any CMT automorphism, subject to the constraint
that ||ζφiζ−1||B ≤ K. (Since the identity is a CMT automorphism according
Definition 2.1, we have Si−1 ⊆ Si).

– End this process when Si = Si+1, and let this final set be S.
• Then ψ is conjugate to φ if and only if ψ ∈ S.

Of course, one would like to also be able to decide when an automorphism is irreducible
when it is given by images of a basis, for instance. In order to do so, we recall the definition
of irreducibility.

Definition 2.6 (See [5]). An (outer) automorphism, [φ] of Fn is called reducible if there
are free factors, Fn1 , . . . , Fnk

, Fn∞ such that Fn = Fn1 ∗ . . . Fnk
∗ Fn∞ and each φ(Fni

) is
conjugate to Fni+1

(subscripts taken modulo k). If k = 1 we further require that Fn∞ 6= 1.
(In general φ(Fn∞) is not conjugate to Fn∞). Otherwise [φ] is called irreducible.

Equivalently, [φ] is reducible if it is represented by a homotopy equivalence f , on a core
graph X, such that X has a proper subgraph X0, with non-trivial fundamental group,
such that f(X0) = X0. (Being represented by f means that there is an isomorphism,
τ : Fn → π1(X) such that φ = τ−1f∗τ).

We add the following, which constitutes an obvious way that one can detect irreducibil-
ity by inspection.

Definition 2.7. Consider Fn with basis B and let [φ] be an outer automorphism of Fn.
We say that [φ] is visibly reducible with respect to B, or simply visibly reducible, if
there exist disjoint subsets B1, . . . , Bk of B such that φ(〈Bi〉) is conjugate to 〈Bi+1〉 (with
subscripts taken modulo k). If k = 1 we also require that B1 6= B.
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More generally, we say that a homotopy equivalence on the rose is visibly reducible if
it is visibly reducible with respect to the basis given by petals.

This is, in fact, easy to check by classical methods due to Stallings, [26].

Lemma 2.8. If [φ] is visibly reducible, then it is reducible. Moreover, there is an algo-
rithm to determine if [φ] is visibly reducible with respect to B.

Proof. The first statement is clear, since each subset of a basis generates a free factor, and
disjoint subsets generate complementary free factors. Since there are only finitely many
subsets to check, we simply need to determine if the conditions that φ(〈Bi〉) is conjugate
to 〈Bi+1〉 hold. But this can readily be checked since two subgroups of a free group are
conjugate if and only if the core of their Stallings graphs are equal, [26]. �

We can now describe our second algorithm. (See Section 9 for the proof.)

Theorem 2.9. The following is an algorithm to determine whether or not an outer
automorphism of Fn is irreducible.

Let [φ] ∈ Out(Fn), and B a basis of Fn. Construct S = Sφ as above. Namely,

• Choose any µ > ||φ||B.
• Inductively construct the finite set, S = Sφ,µ:

– Start with S0 = {φ}.
– Set K = n(3n− 3)µ3n−1.
– Inductively put Si+1 to be all possible automorphisms ζφiζ

−1, where φi is
any element of Si, ζ is any CMT automorphism, subject to the constraint
that ||ζφiζ−1||B ≤ K. (Since the identity is a CMT automorphism according
Definition 2.1, we have Si−1 ⊆ Si).

– End this process when Si = Si+1, and let this final set be S.
• Let S+ be the set of all possible automorphisms ζφiζ

−1, where φi is any element
of S, ζ is any CMT automorphism, with no other constraint.
• If some ψ ∈ S+ is visibly reducible with respect to B, then φ is reducible. Other-

wise, φ is irreducible.

Remark 2.10. In both Theorems 2.5, and 2.9, the set S is a subset of the set of automor-
phism classes with ||φ||B ≤ K, which is finite (Remark 2.4). Therefore both algorithms
stop in a finite, effectively computable, time.

We also explain, in Section 9.1, how to implement essentially the same algorithms in
the case where one has a free product of finite groups with a free group.

Theorem 2.11. Let G = G1∗ . . .∗Gp∗Fn be a free product where the Gi are finite groups
and Fn is a free group of rank n. Let G = {{Gi}, n} be the free splitting induced from the
finite groups Gi. Then the following problems are algorithmically decidable:

• Deciding whether a given [φ] ∈ Out(G) is irreducible (relative to G),
• Deciding whether two G-irreducible automorphisms, [φ], [ψ] are conjugate in Out(G).

Remark 2.12. Note that any automorphism of G preserves G, so Out(G) = Out(G) in
this case.
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3. Preliminaries and notation (from [13])

Throughout the paper, we use the definitions and notation of [13]. We briefly recall
them here, referring the reader to [13] for a detailed discussion.

Before of that, we wish to recall the reasons for giving new definitions and working
in a so general setting. Our principal motivation was to study outer automorphisms
of free groups that are possibly reducible. This naturally leads to consider simplicial
bordifications of Culler-Vogtmann Outer spaces. Namely, if Γ is a marked graph with
fundamental group Fn – the rank-n free group – then any automorphism φ : Fn → Fn can
be represented by a simplicial map f : Γ→ Γ. When φ is reducible, it may happen that Γ
exhibits a collection Γ1, . . . ,Γk of f -invariant subgraphs. In order to study the properties
of φ it may help to collapse such sub-graphs to points. So one is naturally lead to study
two kind of deformation spaces: that of actions on trees with possibly non-trivial vertex
stabilisers (when we collapse the Γi’s) and product of such spaces (when we consider the
restriction of f to the invariant collection).

Summing up, the typical object we need to understand is a disjoint union of metric
trees, where a group G acts with possibly non-trivial vertex stabilisers. We therefore
work in such a general setting, as developed in [13], but the reader is invited to keep in
mind the case of CVn and its bordification.

3.1. Splittings, G-trees, outer spaces, and automorphisms. Fn will always denote
the free group of rank n. We will consider groups G equipped with free a splitting
G = G1 ∗ · · · ∗ Gp ∗ Fn. We do not assume Gi is indecomposable, and our main interest
is indeed when G itself is a free group.

Definition 3.1. Given a group G, a free splitting G of G is a pair ({G1, . . . , Gp}, n) where
{Gi} is a collection of subgroups of G (and n ∈ N) such that G = G1 ∗ · · · ∗Gp ∗Fn. Two
splittings G = ({Gi}, n) and H = ({Hi},m) of G are of the same type if m = n and, up
to reordering and conjugacy of the Gi, they have the same factor subgroups. That is,
we do not require the named (conjugacy class of the) free group factor at the end to be
preserved. The Kurosh rank of the splitting is n+ p. We say that H is a sub-splitting of
G if every Hi decomposes as Hi = Gj1 ∗ · · · ∗Gjli

∗ Fsi and n = m+
∑
si.

Remark 3.2. We admit the trivial splitting G = Fn, (∅, n). That is the splitting with no
free factors groups. In this case our discussion will amount to considering the free group
Fn and the classical Culler-Vogtmann Outer space CVn.

Remark 3.3. Free splittings are also referred to as free factor systems in the literature
(originally introduced in [4], and also used in [18], [19] and [20]). The viewpoint of [13]
and the present paper is that of taking a fixed free factor system - a free splitting -
and studying its deformation space. We refer to [13] for more details. We just notice
here that a “splitting” in general refers to any action on a tree and the induced graph of
groups decomposition, but no confusion should arise since all of the splittings we consider
are “free”, in the sense that the edge stabilisers in the tree are trivial (equivalently, the
splitting which arises is a free factor system).

Definition 3.4. Given a group G endowed with a free splitting G = ({Gi}, n), a sim-
plicial G-tree is a metric simplicial tree, endowed with a faithful simplicial G-action via
isometries, trivial edge-stabilisers, and such that for every Gi there is exactly one orbit
of vertices whose stabiliser is conjugate to Gi. Such vertices are called non-free. Other
vertices (those with trivial stabilisers) are called free vertices.

A G-graph is a finite connected metric graph of groups X whose topological fundamental
group is Fn, with trivial edge-groups, and endowed with a G-marking, that is, there is
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a fixed isomorphism between its fundamental group – as graph of groups – and G, such
that the splitting given by vertex groups is equivalent to G.

If the splitting G of a group G is clear from the context, we may use notation G-tree
instead of G-tree. Same for graph.

The rank of a G-tree (or graph) is the Kurosh rank of the splitting (as defined in
Definition 3.1).

A G-tree is mimimal if it has no proper G-invariant sub-tree (in particular, it has no
free leaves, and G acts without global fixed point). A graph of groups with trivial edge-
groups is a core graph if its leaves (if any) have non-trivial vertex group. Given a graph
of groups X, with trivial edge groups and non-trivial fundamental group (as graph of
groups), we define core(X) to be the maximal core sub-graph of X. If X has trivial
fundamental group (as graph of groups) we define core(X) to be just a point of X. We
say that core(X) is trivial when it is a point, namely when X is topologically a tree with
at most one non-free vertex.

Bass-Serre theory provides a correspondence between minimal G-tree and core G-
graphs, so one can equivalently works either with trees or graphs. The equivalence tree-
graph is made explicit as follows: Given a minimal G-tree, its quotient by the G-action
is a core G-graph.

Two simplicial G-trees are considered equivalent if there is a G-equivariant isometry
between them, and the corresponding notion of equivalence is given for graphs.

In some setting it will be more convenient using trees, in others, graphs. For this
purpose we introduce the following notation.

Notation 3.5 (Tilde-underline notation). Let G be a free splitting of a group G. If X is

a G-graph, then X̃ denotes its universal covering, which is a G-tree. As usual, if x ∈ X
then x̃ will denote a lift of x in X̃. The same for subsets: if A ⊂ X is connected then
Ã ⊂ X̃ is a connected component of the preimage of A. On the converse situation, if T
is a G-tree with finite edge-orbits, we denote by T the quotient G-graph. Same notation

for points and subsets. So, X̃ = X for both graphs and trees.

Notation 3.6. If X is a connected graph of groups with trivial edge groups, by a X-
graph (or tree) we mean a π1(X)-graph (resp. tree), that is to say, a G-graph (resp. tree)
where G is the fundamental group of X as graph of groups, and G is the splitting of G
given by vertex groups.

If Γ = tΓi is a disjoint finite union of finite graphs of groups with trivial edge-groups,
a Γ-graph is a disjoint finite union X = tXi of Γi-graphs (and a Γ-forest is a union of
Γi-trees).

We introduce now the outer space of a splitting (see [11, 17, 13] for details). Let G be
a group and G be a splitting of G. The (projectivized) outer space of G, relative to the
splitting G, consists of (projective) classes of minimal simplicial metric G-trees X with no
redundant vertex (i.e. free and two-valent) and such that the G-action is by isometries.2

We use the notation O(G;G) or simply O(G) to indicate the outer space of G relative
to G. We use PO(G;G) (or simply PO(G)) to indicate the projectivized outer space. For
X ∈ O(G) we define its volume vol(X) as the sum of lengths of edges in G\X. This is
often referred to also as co-volume. The volume-one slice of O(G) is indicated by O1(G)3.

2If G is the trivial splitting G = Fn, then O(G) = CVn.
3We stress that the distinction between O(G) and PO(G) is not crucial in our setting as we will mainly

work with scale-invariant functions.
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We defined O(G) as a space of trees, but we it will be often convenient to use graphs

X so that X̃ ∈ O(G). Clearly the two viewpoints are equivalent. We introduce the
following convention: when we want to consider spaces of graphs we add a “lower gr” to
our notation:

Ogr(G) = {G-graph X : X̃ ∈ O(G)}
The spaces O(G) and Ogr(G) are naturally identified via X ↔ X̃. In particular,
they are completely interchangeable in all statements.

If X is a finite connected graph of groups with trivial edge-groups, and S is the splitting
of π1(X) given by vertex-groups, then we set

O(X) = O(π1(X);S).

Let now G be a splitting of a group G, X be a G-graph, and Γ = tiΓi be a sub-graph
of X whose connected components Γi have non-trivial fundamental groups (as graphs of
groups). Then Γ induces a sub-splitting S of G where the factor-groups Hj are either

• the fundamental groups π1(Γi), or
• the vertex-groups of non-free vertices in X \ Γ.

In this case will use the notation

O(X/Γ) := O(G;S) O(Γ) := ΠiO(Γi)

(and similarly for Ogr). We tacitly identify X = (X1, . . . , Xk) ∈ O(Γ) with the labelled
disjoint union X = tiXi. So an element of O(Γ) can be interpreted as a metric Γ-forest.
The quotient of O(Γ) by the natural action of R+ is the projective outer space of Γ, and
it is denoted by PO(Γ). (Thus PO(Γ) is not the product of the PO(Γi)’s.) The notion of
volume extends to Γ-trees: If X = (X1, . . . , Xk) ∈ O(Γ) we set vol(X) =

∑
i vol(Xi), and

O1(Γ) denotes the volume-one slice of O(Γ). We extend our notation and define define
O(X/A) and O(A) also to the case where X is a non connected Γ-graph and A ⊂ X is a
sub-graph whose components have non-trivial fundamental groups.

Notation 3.7. In what follows we use the following convention:

• G will always be a group with a splitting G = ({G1, . . . , Gp}, Fn);
• Γ = tΓi will always mean that Γ is a finite disjoint union of finite graphs of groups

Γi, each with trivial edge-groups and non-trivial fundamental group Hi = πi(Γi),
each Hi being equipped with the splitting given by the vertex-groups.

We set
rank(Γ) =

∑
i

rank(Γi).

Remark 3.8. One should think G-statements as referring to classical outer space CVn,
G-statements as referring to its simplicial bordification and deformation spaces of free
products, and Γ-statements as general statements about more general deformation spaces,
that come into play along the way of our rank-inductive strategy. More precisely, any
Γ-statement specialises to a G-statement (in the case where Γ is connected), to a G-
statement (Γ connected and trivial splitting), and to a CVn-statement (Γ is connected,
the splitting is trivial, and G = Fn).

For this reason, the paper will contain mainly Γ-statements.

Notation 3.9. We will also consider moduli spaces with marked points. The moduli
space of G-trees with k marked points p1, . . . , pk (not necessarily distinct) is denoted by
O(G;G, k) or simply O(G, k). If Γ = tsi=1Γi, given k1, . . . , ks ∈ N we set

O(Γ, k1, . . . , ks) = ΠiO(Γi, ki).
10



We introduce now the group Aut(Γ). The group of automorphisms of G that preserve
the set of conjugacy classes of the Gi’s is denoted by Aut(G;G). We set Out(G;G) =
Aut(G;G)/ Inn(G)

The group Aut(G;G) acts on O(G) by changing the marking (i.e. the action), and
Inn(G) acts trivially. Hence Out(G;G) acts on O(G). If X ∈ O(G) and [φ] ∈ Out(G;G)
then φX is the same metric tree as X, but the action is (g, x) → φ(g)x. The action
is simplicial and continuous with respect to both simplicial and equivariant Gromov
topologies. (See Section 3.2 for details on simplicial structures). We remark that despite
the left notation, this is a right-action.

We now extend the definition of Aut(G;G) to the case of Γ = tiΓi. We denote by Sk

the group of permutations of k elements.
Let G and H be two isomorphic groups endowed with splitting G : G = G1 ∗ . . . Gp ∗Fn

and H : H = H1 ∗ . . . Hp ∗ Fn. The set of isomorphisms from G to H that maps each Gi

to a conjugate of one of the Hi’s is denoted by Isom(G,H;G,H). If splittings are clear
from the context we write simply Isom(G,H).

Definition 3.10. For Γ = tki=1Γi as in Notation 3.7, we set

Aut(Γ) = {φ = (σ, φ1, . . . , φk) : σ ∈ Sk and φi ∈ Isom(Hi, Hσi)}.

Inn(Γ) = {(σ, φ1, . . . , φk) ∈ Aut(Γ) : σ = id, φi ∈ Inn(Hi)}

Out(Γ) = Aut(Γ)/ Inn(Γ).

The composition of Aut(Γ) is component by component defined as follows. Given
φ = (σ, φ1, . . . , φk) and ψ = (τ, ψ1, . . . , ψk) we have

ψφ = (τσ, ψσ(1)φ1, . . . , ψσ(k)φk).

The group Aut(Γ) acts on O(Γ) in the natural way with kernel Inn(Γ), so Out(Γ) acts
on O(Γ). More precisely, if X = (X1, ..., Xk) ∈ O(Γ) then Xσ(i) becomes an Hi-tree —
denoted φiXσ(i) — via the pre-composition of φi : Hi → Hσ(i) with the Hσ(i)-action. We
set φX = (φ1Xσ(1), . . . , φkXσ(k)). (See [13, Section 2] for more details).

3.2. Simplicial structure of outer spaces and its bordification ([13, Sections 2.5
and 2.6]). The simplicial structure we are going to use is the usual one, that is, (open)
simplices are defined as follows: for any X ∈ O(G), the set of G-trees obtained from X by
varying edge-orbit-lengths in (0,∞), is an open simplex of O(G), that we refer to as the
open simplex of X, and denote by ∆X . We notice that ∆X ∩O1(G) is the standard open
simplex in Rnumber of edge-orbits, while ∆X is its positive cone (which is topologically still an
open simplex, just one dimension bigger). On any open simplex we put the Euclidean
sup-distance dEuclid∆ (X, Y ) (d∆(X, Y ) or d(X, Y ) for short)

dEuclid∆ (X, Y ) = d∆(X, Y ) = max
e edge

|LX(e)− LY (e)|.

Such definitions naturally extend to the case of Γ = tiΓi. (Note, however, that the
simplicial structure of PO(Γ) is not the product of the structures of PO(π1(Γi)).)

Remark 3.11. The identification of a simplex ∆ with a subset of Rm, induces the
notion of linear combination sX + tY for any X, Y ∈ ∆ and s, t ≥ 0. In particular, the
convex combination tX + (1 − t)Y is well defined for any t ∈ [0, 1]. We refer to the set
XY := {tX + (1− t)Y, t ∈ [0, 1]} as the Euclidean segment between X and Y .
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Simplicial faces of a simplex ∆ come in two flavours: finitary faces and faces at infinity.
More precisely, given X ∈ Ogr(Γ), a finitary face of ∆X corresponds to the collapse

a forest in X whose components have trivial core, so that the resulting graph of groups
induces the same splitting of the fundamental group (as graph of groups). We denote
the finitary faces just faces. We define the closed simplex ∆ as the closure of ∆ in O(Γ),
that is:

∆ = ∆ ∪ {all faces of ∆} = ∆ ∪ {all finitary faces of ∆}.
The finitary boundary of X is the set of its proper finitary faces:

∂O∆ = ∂O∆ = ∆ \∆.

A non-finitary simplicial face of an open simplex ∆X , corresponds to the collapse of
sub-graph A ⊂ X with at least a component with non-trivial core, and belongs to the
outer space O(X/A), (instead of O(X)). However, if Y = X/A, the simplicial topology
naturally defines a topology on ∆X ∪∆Y , which we still call the simplicial topology. Such
a simplicial face will be called a face at infinity of ∆X , and if all components of A are
core-graphs, we call it a face at infinity of ∆X . So, with this terminology, any simplicial
face of ∆ is either a finitary face of ∆, or a face at infinity of some finitary (not necessarily
proper) face of ∆. We refer to [13, Section 2] for a more detailed discussion.

We define the boundaries at infinity of a simplex ∆ by

∂∞∆ = {faces at infinity of ∆} (collapsing of only core sub-graphs)

∂∞∆ = {faces at infinity of ∆} (more general collapsing)

and the closure at infinity by

∆
∞

= ∆ ∪ ∂∞∆.

If we denote by ∂∆ the simplicial boundary of ∆, we have

∂∆ = ∂∞∆ ∪ ∂O∆

and

∂∞∆ =
⋃

F=face of ∆

∂∞F

(where the union is over all faces of ∆, ∆ included.) Moreover, the simplicial closure of
∆ is just ∆

∞
.

We define the boundary at infinity and the simplicial bordification of O(Γ) as

∂∞O(Γ) =
⋃

∆ simplex

∂∞∆ and O(Γ) = O(Γ)
∞

= O(Γ) ∪ ∂∞O(Γ).

Remark 3.12. We note that when Γ is just a topological graph with π1(Γ) = Fn (all
vertex groups are trivial) then O(Γ) is simply the Culler-Vogtmann Outer space CVn,

and the bordification O(Γ) is the free splitting complex FSn. (See [13] for more details).

3.3. Horoballs and regeneration ([13, Section 2.7]). We keep Notation 3.7.

Definition 3.13 (Horoballs). Given X ∈ ∂∞O(Γ), Hor(X) is the set of marked metric
trees Y ∈ O(Γ) such that X is obtained from Y by collapsing a proper family of core
sub-graphs. By convention, we set Hor(X) = X when X ∈ O(Γ) (and we use Hor(X) for
graphs). In other words, Y ∈ Hor(X) if X is obtained by setting to zero the edge-lengths
of a proper family of core sub-graphs (note that this implies that ∆X is a simplicial face
of ∆Y ).

12



Hor(X) can be regenerated from X as follows4

Lemma 3.14. Suppose X ∈ ∂∞Ogr(Γ). Let Y ∈ Ogr(Γ) and A = tiAi ⊂ Y be a family
of core-graphs such that X = Y/A. Then, for some ki, we have

Hor(X̃) = ΠiO(Ãi, ki).

In particular, Hor(X) = Hor(X̃) is path connected.

Remark 3.15. Note that we are using the tilde notation here, despite the objects being
equivalent, to emphasise that the marked points are points in the trees.

Proof. Let vi be the non-free vertex of X corresponding to Ai. In order to recover a
generic point Z ∈ Hor(X), we need to replace each vi with an element Vi ∈ Ogr(Ai).
Moreover, in order to completely define the marking on Z, we need to know where to
attach - to Vi - the edges of X incident to vi, and this choice has to be done in the

universal covers Ṽi. No more is needed. Therefore, if ki denotes the valence of the vertex
vi in X, we have

Hor(X̃) = ΠiO(Ãi, ki).

(Note that some ki could be zero, e.g. if Ai is a connected component of Y .)

Each of the spaces O(Ãi, ki) is path connected. Indeed, the map that ‘forgets’ the
marked points is a continuous map to a path connected space whose fibers are connected;
since each Ai is connected, we can continuously deform any marked k-tuple of points to
another, as we do not insist that they are distinct.

The last statement now follows since a product of path connected spaces is path con-
nected. �

Remark 3.16. With above notation, the forgetting of marked points, gives a well-defined
projection Hor(X) → O(A) = ΠiO(Ai). In what follows we will be mainly interested in
the composition of such map with the projection O(A) → PO(A). We therefore give a
name to such projection, defining

π : Hor(X)→ PO(A).

(Here Hor(X) is intended to be not projectivized).

Remark 3.17. Note that the same tree X can be considered as a point at infinity of
different spaces. If we need to specify in which space we work we write HorΓ(X).

3.4. Displacement function, optimal maps and train tracks. For any g ∈ G and
X ∈ O(G), the translation length LX(g) is defined as infp = dX(gp, p). Elements with
zero translation length correspond to vertex stabilisers, and are called elliptic; others
have the infimum realised along an axis, and are referred to as hyperbolic elements. (Note
that an element being elliptic or hyperbolic depends only on G and not on X). The same
happens in O(Γ) componentwise (that is for g ∈ ∪iHi, where Hi is as in Notation 3.7).
In this section we consider only hyperbolic elements.

Given X, Y ∈ O(Γ), we can compute the translation length of any hyperbolic g ∈ ∪iHi

in both X and Y , and we define

Λ(X, Y ) = sup
g

LY (g)

LX(g)
= inf{Lip(f) : f : X → Y Lipschitz equivariant map}

4Lemma 3.14, even if implicitly contained and proved in [13, Section 2.7], it is not explicitly stated
there. We state and prove it here for future reference.
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where Lip(f) denotes the best Lipschitz constant for f .
It turns out that above second inequality is indeed true, and that sup and inf are in fact

max and min (Theorem 4.1([13, Theorem 3.7]), and Theorem 4.2([13, Theorem 3.15])).
Λ(X, Y ) can be computed by means of straight maps; that is to say equivariant Lipschitz
maps with constant speeds on edges. Given a straight map, the tension graph Xmax(f)
(or simply Xmax) is the union of edges that are maximally stretched by f . A straight
map that realises the above minimum is called weakly optimal map, and it is optimal
if the tension graph has no one-gated vertex (we refer to [13] for further details on gate-
structures). An optimal map is minimal if the tension graph coincides with the union
of the axes of all maximally stretched elements.

Remark 3.18. We could also take the following point of view: given X, Y ∈ O(Γ), let
Hyp(X) denote the set of hyperbolic elements in X, and similarly for Hyp(Y ). Note that
if X, Y ∈ O(Γ), then Hyp(X) = Hyp(Y ). One can then define,

Λ(X, Y ) = sup
g∈Hyp(X)

LY (g)

LX(g)
= inf{Lip(f) : f : X → Y Lipschitz equivariant map}

where Lip(f) denotes the best Lipschitz constant for f , as long as Hyp(Y ) ⊆ Hyp(X).
That is, as long as elliptic elements of X are also elliptic in Y . If this is not the case, we
set Λ(X, Y ) =∞.

For any automorphism [φ] ∈ Out(Γ) we define the displacement function

λφ : O(Γ)→ R λφ(X) = Λ(X,φX)

If ∆ is a simplex of O(Γ) we define

λφ(∆) = inf
X∈∆

λφ(X)

If there is no ambiguity we write simply λ instead of λφ. Finally, we set

λ(φ) = inf
X∈O(Γ)

λφ(X)

In [13] the behaviour of the displacement near points in ∂∞(O(Γ)) is extensively stud-
ied. In particular, it is proven that if X∞ ∈ ∂∞(O(Γ)) is the limit of a sequence of
points Xi ∈ O(Γ) such that λφ(Xi) is bounded above, then X∞ and φX∞ have the same
elliptic elements, and φ induces an element of Out(X∞). Therefore, for those points, the
expression λφ(X∞) = Λ(X∞, φX∞) still makes sense. For other points T ∈ ∂∞(O(Γ)) we
set λφ(T ) =∞.

Remark 3.19. Observe that Λ(X∞, φ(X∞)) is finite, according to Remark 3.18, if and
only if the set of elliptic elements of X∞ is φ-invariant. If X∞ ∈ ∂∞(O(Γ)) has finite
φ-displacement, then we can regenerate X∞ to a point X ∈ O(Γ) such that X admits
an invariant core subgraph, A, which (as a forest) is a union of the axes of the elliptic
elements of X∞ which are hyperbolic in X. X∞ is obtained from X by collapsing A.
Then, by Lemma 4.6, there will be a sequence Xi ∈ O(Γ) such that Xi → X and λφ(Xi)
is bounded above.

Moreover, if [φ] is irreducible, then every X ∈ ∂∞(O(Γ)) has infinite φ-displacement
since no point in O(Γ) admits an invariant core graph.

The displacement function of an automorphism is not continuous at the bordification.
Given [φ], we say that X ∈ O(Γ) has not jumped if there is a sequence Xi → X of
points in O(Γ) such that λφ(Xi)→ λφ(X). Given a simplex ∆ with X in the boundary
at infinity of ∆, we say that X has not jumped in ∆ if the above condition holds with
Xi ∈ ∆.
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Definition 3.20 (O-maps). For X, Y ∈ O(G), a map f : X → Y is called O-map if it is
Lipschitz continuous and G-equivariant. Let now X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk)
be two elements of O(Γ). A map f = (f1, . . . , fk) : X → Y is called an O-map if for each
i the map fi is an O-map from Xi to Yi. (No index permutation here).

Let [φ] = [(σ, φ1, . . . , φk)] be an element of Out(Γ) - see Definition 3.10.

Definition 3.21 (Maps representing [φ]). Let X ∈ O(Γ). We say that a map f : X → X
represents [φ]5 if f maps each Xi to Xσ(i) , and such that, if we denote by fi the map

f |Xi
: Xi → Xσ(i) , then fi is Lipschitz and equivariant with respect to the isomorphism

φi : Hi → Hσ(i) , that is fi(hx) = φi(h)fi(x). Note that a map representing [φ] can be
viewed as an O-map f : X → φX. We say that f is optimal if each fi is optimal.

If X is a Γ-graph, then a map f : X → X represents [φ] if it has a lift f̃ : X̃ → X̃
representing [φ].

Notation 3.22. For notational coherence with [13], if not otherwise specified, if X, Y ∈
O(Γ) and f : X → Y , when we say that f is straight we understand that it is also an
O-map.

In [13, Section 4] we introduced the notion of partial train tracks and partial train
tracks at infinity. Roughly: given [φ], a partial train track for [φ] on X ∈ O(Γ) is a
straight map f : X → X representing [φ] such that X has a f -invariant sub-graph to
which the restriction of f is a train track; a partial train track at infinity is when
X ∈ ∂∞(O(Γ)).

The deep link between partial train track maps and displacement function, is fully
studied and exploited in [13]. In this paper we use results from [13], but we don’t need
to directly involve partial train tracks. And in fact the words “train track” will appear
only in Section 4, where we quote literally statements form [13].

For completeness of exposition we just recall that, as proved in [13], given [φ], the
minimally displaced set of [φ], that is to say the set of trees T such that λφ(T ) = λ(φ),
coincides with the set of points admitting a partial train track map. For reducible au-
tomorphisms, the minimally displaced set may be empty in O(Γ), but if one includes
partial train tracks at infinity (partial train tracks for a point at the bordification where
the displacement does not jump) then the set of points admitting these partial train
tracks is always non-empty and is contained in the minimally displaced set (of points at
infinity). Notationally, Min(φ) = TT(φ) is the minimally displaced set in O(Γ), which
coincides with the set of points supporting a partial train track map.

4. Results needed from [13]

In what follows, we will need to quote many lemmas and results from [13]. For the ease
of the reader we collected the statements we need from [13] in this section. We decided
to quote them exactly as they appear in [13], paying the price that some of them may
look a little redundant or overstated here. The reader can safely skip this section now,
coming back here when a needed result is cited.

Theorem 4.1 (Sausage Lemma [13, Theorem 3.7]). Let X, Y ∈ Ogr(Γ). The stretching
factor Λ(X, Y ) is realized by a loop γ ⊂ X having has one of the following forms:

• Embedded simple loop O;
• embedded “infinity”-loop ∞;
• embedded barbel O— O;

5In [13] we used f represents φ. Such notation appears in Section 4 where we quote results from [13].
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• singly degenerate barbel •—O;
• doubly degenerate barbel •—•.

(the • stands for a non-free vertex.) Such loops are usually named “candidates”.

Theorem 4.2 ([13, Theorem 3.15]). Let X, Y ∈ O(Γ) and let f : X → Y be a straight
map. There is a map6 weakopt(f) : X → Y which is weakly optimal and such that

d∞(f,weakopt(f)) ≤ vol(X)(λ(f)− Λ(X, Y ))

Moreover, for any weakly optimal map ϕ : X → Y and for any ε > 0 there is an optimal
map g : X → Y such that d∞(g, ϕ) < ε.

Definition 4.3 (Exit points, [13, Definition 4.19]). Let [φ] ∈ Out(Γ). A point X ∈ O(Γ)
is called an exit point of ∆X if for any neighbourhood U of X in O(Γ) there is an optimal
map f : X → X, representing φ, a point XE ∈ U , and a folding path ([13, Definition
3.21]) directed by f , X = X0, X1, . . . , Xm = XE in U , such that ∆Xi

is a finitary face of
∆Xi+1

, ∆X is a proper face of ∆XE
, and such that

λφ(XE) < λφ(X) (a strict inequality).

Lemma 4.4 ([13, Lemma 4.20]). Let [φ] ∈ Out(Γ) and X ∈ O(Γ) such that λφ(X) is a
local minimum for λφ in ∆X . Suppose X /∈ TT(φ).

Then, for any open neighbourhood U of X in O(Γ), there is an optimal map f :
X → X, representing φ, points Z,X ′ ∈ U , and a folding path, X = X0, . . . , Xm =
Z,Xm+1, . . . , Xn = X ′, directed by f and such that:

• X0, . . . , Xm ∈ U ∩∆X ,
• λφ(Z) = λφ(X),
• ∆X is a proper face of ∆X′,
• λφ(X ′) < λφ(X).

In particular X is an exit point of ∆X .

Theorem 4.5 ([13, Theorem 5.8], lower semicontinuity of λ). Fix φ ∈ Aut(Γ) and
X ∈ Ogr(Γ). Let (Xi)i∈N ⊂ ∆X be a sequence such that there is C such that for any i,
λφ(Xi) < C. Suppose that Xi → X∞ ∈ ∂∞∆X which is obtained from X by collapsing a
sub-graph A ⊂ X. Then φ induces an element of Aut(X/A), still denoted by φ.

Moreover λφ(X∞) ≤ lim infi→∞ λφ(Xi), and if strict inequality holds, then there is a
sequence of minimal optimal maps fi : Xi → Xi representing φ such that eventually on i
we have (Xi)max ⊆ core(A)7.

Lemma 4.6 ([13, Lemma 5.12], regeneration of optimal maps). Fix φ ∈ Aut(Γ) and
X ∈ Ogr(Γ). Let X∞ ∈ ∂∞∆X be obtained from X by collapsing a φ-invariant core sub-
graph A. Then, for any straight map fA : A → A representing φ|A, and for any ε > 0
there is Xε ∈ ∆X such that

λφ(Xε) ≤ max{λφ(X∞) + ε,Lip(fA)}.

More precisely, for any Y ∈ POgr(A) and map fY : Y → Y representing φ|A, for any

map f : X∞ → X∞ representing φ, for any X̂ ∈ π−1(Y ) 8, and for any ε > 0; there is

6We describe an algorithm to find the map weakopt(f), but the algorithm will depend on some choices,
hence the map weakopt(f) may be not unique in general.

7By [13, Proposition 5.6] we know that core(A) is φ-invariant
8See Remark 3.16 for an explanation of the map π.
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0 < δ = δ(f, fY , X∞,∆X̂), such that for any Z ∈ ∆X̂ ∩ π−1(Y ), if volZ(Y ) < δ there is a
straight map fZ : Z → Z representing φ such that fZ = fY on Y and

Lip(fZ) ≤ max{λφ(X∞) + ε,Lip(fY )}
(hence the optimal map opt(fZ) satisfies the same inequality9).

Theorem 4.7 ([13, Corollary 5.14]). Let φ ∈ Aut(Γ). Let X ∈ Ogr(Γ) containing an
invariant sub-graph A. Let X∞ = X/A and C = core(A). Then

λφ|C (∆C) ≤ λφ(∆X).

Moreover the following are equivalent:

(1) X∞ has not jumped in ∆X ;
(2) λφ(X∞) ≥ λφ(∆X);
(3) λφ(X∞) ≥ λφ|C (∆C).

In particular, λφ(X∞) cannot belong to the (potentially empty) interval (λφ|C (∆C), λφ(∆X)).
Moreover, points realising λφ(∆X) do not jump in ∆X .

Corollary 4.8 ([13, Corollary 5.17]). Let φ ∈ Aut(Γ). Let ∆ be a simplex of Ogr(Γ).

Then there is a min-point Xmin in ∆
∞

(i.e. a point so that λφ(Xmin) = λφ(∆); note that
Xmin does not jump in ∆ by Theorem 4.7).

Moreover, suppose that Xmin is maximal in the following sense: if X ′ ∈ ∆
∞

such that
λφ(X ′) = λφ(Xmin) = λφ(∆), and ∆Xmin

⊆ ∆X′
∞

, then ∆Xmin
= ∆X′ . (Xmin is maximal

with respect to the partial order induced by the faces of ∆). Then:

• λφ(Xmin) = λφ(∆Xmin
) = λφ(∆);

• any point P , such that ∆Xmin
⊆ ∆P

∞ ⊆ ∆
∞

, satisfies λφ(P ) ≥ λφ(∆) (hence does
not jump in ∆ by Theorem 4.7);
• for any ε > 0, there exist points Z,W such that:

– Z ∈ ∆,
– ∆Xmin

⊆ ∆W
∞ ⊆ ∆

∞
,

– λφ(W ), λφ(Z) ≤ λφ(∆) + ε,
– λφ is continuous along the Euclidean segments, ZW and WXmin, and any

point P along these segments satisfies the following: λφ(∆) ≤ λφ(P ).

(We allow degeneracies, meaning that Xmin could equal W , or even Z).

Lemma 4.9 ([13, Lemma 6.2]). For any [φ] ∈ Out(Γ) and for any open simplex ∆ in
O(Γ) the function λ = λφ is quasi-convex10 on segments of ∆. Moreover, for A,B ∈ ∆,
if λ(A) > λ(B) then λ is strictly monotone near A11.

Lemma 4.10 ([13, Lemma 6.3]). Let [φ] ∈ Out(Γ), let λ = λφ, and let ∆ be a simplex in

O(Γ). Let A,B ∈ ∆
∞

be two points that have not jumped in ∆. Then for any P ∈ AB
λ(P ) ≤ max{λ(A), λ(B)}

Moreover, if λ(A) ≥ λ(B), then λ|AB is continuous at A.

Theorem 4.11 ([13, Theorem 7.2]). For any Γ the global simplex-displacement spectrum

spec(Γ) =
{
λφ(∆) : [φ] ∈ Out(Γ),∆ a simplex of O(Γ)

∞
such that λφ(∆) < +∞}

9We notice that while fZ = fY on Y , this is no longer true for opt(fZ)
10A function f : [a, b]→ R is quasi-convex if for any a ≤ x ≤ t ≤ y ≤ b we have f(t) ≤ sup{f(x), f(y)}.
11In this statement A,B are points of ∆, and monotonicity is referred to the restriction of λ to the

segment joining A,B.
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is well-ordered as a subset of R. In particular, for any [φ] ∈ Out(Γ) the spectrum of
possible minimal displacements

spec(φ) =
{
λφ(∆) : ∆ a simplex of O(Γ)

∞
such that λφ(∆) < +∞}

is well-ordered as a subset of R.

Theorem 4.12 ([13, Theorem 7.3]). Let Γ be as in Notation 3.7. Let [φ] be any element

in Out(Γ). Then there exists X ∈ O(Γ)
∞

that has not jumped and such that

λφ(X) = λ(φ).

Lemma 4.13 ([13, Lemma 7.7]). Let φ ∈ Aut(Γ). Let X∞ ∈ Ogr(Γ) which has not
jumped. Suppose that there is a loop γ ∈ X∞ and k > 0 and such that LX∞(φn(γ)) ≥
knLX∞(γ) for all n ∈ N. Then,

k ≤ λ(φ).

In particular, if X∞ is a train track for φ as an element of Aut(X∞), then it is a
minpoint for φ as an element of Aut(Γ).

Theorem 4.14 ([13, Theorem 7.8]). Let φ ∈ Aut(Γ). Let X ∈ O(Γ) and X∞ be such
that X∞ is obtained from X by collapsing a φ-invariant core sub-graph A. Then

λ(φ|A) ≤ λ(φ).

Moreover, if λ(φ|A) = λφ(X∞), then

λ(φ) = λ(φ|A).

In particular X∞ has not jumped if and only if

λ(φ) ≤ λ(X∞).

Remark 4.15. We note that if a point has not jumped, this simply means that there
is some sequence converging to it, whose displacements tend to the displacement of that
point. In general this will not hold for all sequences tending to the point.

Theorem 4.16 ([13, Theorem 7.13]). Let φ ∈ Aut(Γ). Let X be a Γ-graph having a

φ-invariant core sub-graph A. Then there is Z ∈ O(X/A)
∞

and W ∈ HorO(Γ)(Z) such
that the simplex ∆W contains a minimising sequence for λ. Moreover if Y is the graph
used to regenerate W from Z, then the minimising sequence can be chosen with straight
maps fi such that fi(Y ) = Y and Lip(fi)→ λ(φ).

5. Statement of the connectedness theorem and regeneration of paths
in the bordification

We recall here Notation 3.7 (as a courtesy for readers who skipped the first sections).

• Γ = tΓi will always mean that Γ is a finite disjoint union of finite graphs of groups
Γi, each with trivial edge-groups and non-trivial fundamental group Hi = πi(Γi),
each Hi being equipped with the splitting given by the vertex-groups. We set
rank(Γ) =

∑
i rank(Γi).

We also recall that for any [φ] ∈ Out(Γ) we defined the displacement function

λφ : O(Γ)→ R λφ(X) = Λ(X,φX)

If ∆ is a simplex of O(Γ) we define

λφ(∆) = inf
X∈∆

λφ(X).
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If there is no ambiguity we write simply λ instead of λφ. Finally, we set

λ(φ) = inf
X∈O(Γ)

λφ(X)

By convention (see Section 3.4) we extend the function λ to points in X∞ ∈ ∂∞(O(Γ)) for
which there is a sequence of points Xi ∈ O(Γ) such that Xi → X∞ with λ(Xi) bounded
above, and we set λ =∞ on other points.

Finally, we recall that outer space comes in two flavours: trees and graphs. We will
chose which one we use on a case-by-case basis, depending on which is more convenient.
For that purpose we introduced the notation “O(Γ)” for trees and “Ogr(Γ)” for graphs.

Clearly Ogr(Γ) and O(Γ) are isomorphic via X ↔ X̃, and thus in all statements they are
completely interchangeable.

Definition 5.1. Let X, Y ∈ O(Γ)
∞

. A simplicial path Σ between X, Y is given by:

(1) A finite sequence of points X = X0, X1, . . . , Xk = Y , called vertices, such that
∀i = 1, . . . , k, there is a simplex ∆i such that ∆Xi−1

and ∆Xi
are both simplicial12

faces of ∆i. We allow one of ∆Xi−1
,∆Xi

, or even both, to coincide with ∆i.

(2) Euclidean segments Xi−1Xi ⊆ ∆i
∞

, called edges. We require the interior of
Xi−1Xi (i.e. Xi−1Xi \ {Xi−1, Xi}) to be contained in ∆i.

(3) We say that Σ is alternating if for every i either ∆Xi
is a simplicial face of ∆Xi−1

or ∆Xi−1
is a simplicial face of ∆Xi

. Note that any simplicial path can be made
alternating just by adding some extra vertex.

Definition 5.2. We say that a set χ is connected by simplicial paths if for any x, y ∈ χ
there is a simplicial path between x and y which is entirely contained in χ.

Theorem 5.3 (Level sets are connected). Let [φ] ∈ Out(Γ). For any ε > 0 the set

{X ∈ O(Γ) : λφ(X) ≤ λ(φ) + ε}
is connected in O(Γ) by simplicial paths. The set

{X ∈ O(Γ)
∞

: λφ(X) = λ(φ)}

is connected by simplicial paths in O(Γ)
∞

.
Moreover, connecting paths can be chosen so that the displacement λφ is continuous

along them.

The main goal of the paper is the proof of Theorem 5.3. The rough strategy is to
prove that paths in the bordification can regenerate to paths in O(Γ) without increasing
λ too much. Then, the first claim will follow from the second, which we will prove via
a peak-reduction argument. Proofs proceed via induction on the rank of Γ. This is part
of the reason that we need to fundamentally deal with the case where Γ is disconnected.
We remind that Theorem 5.3, if specialised to the case where Γ is connected and vertex-
groups are trivial, is a CVn-statement about connectedness of level sets of, not necessarily
irreducible, automorphisms of the free group Fn.

Corollary 5.4. Let [φ] ∈ Out(Γ) be irreducible. Then the set

{X ∈ O(Γ) : λφ(X) = λ(φ)}
is connected in O(Γ) by simplicial paths.

12We remind that simplicial faces include faces at infinity. That is to say, ∆Xi−1 and ∆Xi are both

faces of ∆i
∞

.
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Proof. This is an immediate consequence of Theorem 5.3, since by Remark 3.19, the
irreducibility of [φ] implies that every point on the boundary, ∂∞(O(Γ)), has infinite
displacement. �

Remark 5.5. Theorem 5.3 is trivially true if rank(Γ) = 1, because in that case either
O(Γ) or PO(Γ) is a single point.

Lemma 5.6 (Regeneration of segments). Fix [φ] ∈ Out(Γ). Let X∞, Y∞ ∈ O(Γ)
∞

such
that ∆Y∞ is a (not necessarily proper) simplicial face of ∆X∞. Suppose that λ(X∞) ≥
λ(φ). Then there is an open simplex ∆ of O(Γ) such that for any ε > 0 there is Y ∈
Hor(Y∞) ∩∆ and X ∈ Hor(X∞) ∩∆ such that13

λφ(Y ), λφ(X) < max{λφ(Y∞), λφ(X∞)}+ ε.

Moreover, such an inequality holds for any T ∈ XX∞ and any S ∈ Y Y∞.

Proof. For this proof will be more convenient to work in Ogr rather than O. Let X∞ be

obtained by collapsing a φ-invariant core-subgraph A from a Γ-graph X̂. Since λφ(X∞) ≥
λ(φ), by Theorem 4.14 λ(φ|A) ≤ λφ(X∞). By Theorems 4.12 and 4.16, there is a simplex
in Ogr(A) that contains a minimising sequence for λ(φ|A). Let Aε be a point in that
simplex such that λ(Aε) < λ(φ|A) + ε. The required simplex ∆ is obtained by inserting
a copy of Aε in place of A in X∞. We note that such a ∆ is not unique. By Lemma 4.6
there is a point X ∈ ∆ ∩ Hor(X∞) such that λφ(X) ≤ λφ(X∞) + ε.

Consider now the points in ∆∩Hor(Y∞). By hypothesis there is a φ-invariant B ⊆ X∞
such that as a graph (that is, forgetting the metric), Y∞ is obtained from X∞ by collapsing
B. B has a pre-image in X still denoted by B. Let T be the forest (A∪B)\ core(A∪B).
If Y ′ = X/T , as a graph, Y∞ = X/(A ∪B) = Y ′/ core(A ∪B).

Thus the finitary face ∆Y ′ of ∆ obtained by the collapse of T intersects Hor(Y∞).
Let f : X → X be an optimal map representing [φ]. Since core(A ∪ B) is φ-invariant,

f(core(A∪B)) ⊂ core(A∪B) up to homotopy. It follows that there is a straight map g :
core(A∪B)→ core(A∪B) representing [φ|A∪B] such that Lip(g) ≤ λφ(X) ≤ λφ(X∞)+ε.
By Lemma 4.6 there is a point Y ∈ Hor(Y∞) ∩ ∆Y ′ such that λφ(Y ) ≤ max{λφ(Y∞) +
ε,Lip(g)} ≤ max{λφ(Y∞) + ε, λφ(X∞) + ε}. The last claim also follows by Lemma 4.6,
since the volume of A (or B) is strictly decreasing on the Euclidean segment XX∞ (or
Y Y∞), and the invariant subgraph is being scaled uniformly. �

Now we can plug in the inductive hypothesis in the proof of Theorem 5.3.

Lemma 5.7 (Regeneration of horoballs). Suppose that Theorem 5.3 is true in any rank
less than rank(Γ). Let [φ] ∈ Out(Γ). Let T ∈ Ogr(Γ) be a Γ-graph having a proper φ-
invariant core sub-graph S. Let X ∈ ∂∞Ogr(Γ) be the graph obtained from T by collapsing
S, and let A,B ∈ Hor(X) ⊂ Ogr(Γ). Let mA and mB be the supremum of λφ on the
Euclidean segments AX and BX respectively. Then, for any ε > 0 there is a simplicial
path Σ between A and B, and in Hor(X), such that for any vertex Z of Σ we have

λφ(Z) < max{mA,mB}+ ε.

Proof. Let L = max{mA,mB}. The displacement λφ(T ) is a finite number just because
λφ is a well-defined function on Ogr(Γ). For any group element g ∈ ∪iHi, and for any
t ∈ [0, 1), the translation length of g in Tt = tX+(1−t)T is bounded by LT (g). Moreover,
as T is a finite graph, there is δ > 0 such that for any reduced loop γ in T , either γ ⊆ S

13Note that the fact that Hor(Y∞)∩∆ 6= ∅ implies that ∆Y∞ is a simplicial face of ∆. The same holds
true for X∞.
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or the length of γ in any Tt is at least δ. Therefore, since S is φ-invariant, and by using
Theorem 4.1, we see that λφ(Tt) is bounded by some constant C, uniform on t.

By Theorem 4.5 we have that λφ(X) is finite, and by Lemma 4.6 both mA and mB are
finite14.

Recall that if X = T/S as graphs of groups, then we denote by π : Hor(X)→ POgr(S)
the projection that associates to a point in Hor(X) its collapsed part (see Section 3.3).

For any Y ∈ Hor(X), λφ(Y ) can be computed by tacking the supremum of stretching
factors of candidates given by Theorem 4.1. Those may or may not be contained in S,
and clearly the supremum over all candidates is bigger or equal to the supremum over
candidates contained in S. Since S is φ-invariant, this implies that λφ(π(Y )) ≤ λφ(Y )
for any Y ∈ Hor(X); so

λφ(π(A)) ≤ λφ(A) λφ(π(B)) ≤ λφ(B)

hence, λφ(π(A)), λφ(π(B)) ≤ L. The rank of S is strictly smaller than rank(Γ) because it
is a proper sub-graph of T . Hence Theorem 5.3 holds for Ogr(S). Therefore, the induction
hypothesis produces a finite simplicial path (Yi) ∈ Ogr(S) between π(A) and π(B) such
that λφ(Yi) < L + ε. Hence, by Lemma 3.14, there is a finite simplicial path in Hor(X)

between A and B whose vertices are points T̂j such that for any j there is i such that

π(T̂j) = Yi. By Lemma 4.6 there is a simplicial path in Hor(X) whose vertices are points

Zj ∈ ∆T̂j
such that π(Zj) = π(T̂j) = Yi and λφ(Zj) < L+ ε. �

We recall that we are using the notation of Definition 5.1.

Theorem 5.8 (Regeneration of paths). Suppose that Theorem 5.3 is true in any rank
less than rank(Γ). Let [φ] ∈ Out(Γ). Let Σ = (Xi)

m
i=1 be an alternating simplicial path in

O(Γ)
∞

, and let L be a positive real number.
Suppose that for any point Xi we have

λ(φ) ≤ λφ(Xi) ≤ L.

Then, for any ε > 0 there exists a simplicial path Σε = (Wj)
k
j=1 in O(Γ), such that for

any point P of Σε, λ(P ) ≤ (L+ ε).
Moreover, we can choose the path so that W1 ∈ Hor(X1), Wk ∈ Hor(Xm), each Wj

belongs to the horoball of some Xi; and so that X1 and Xm do not jump in ∆W1 and ∆Wk

respectively.

Proof. By Lemmas 4.9 and 4.10, and since the displacement is continuous in O(Γ), it
suffices to check displacement on vertices of Σε.

For any i < m, we apply Lemma 5.6 to the ith pair of consecutive points Xi, Xi+1.
This produces points Ai ∈ Hor(Xi) and Bi+1 ∈ Hor(Xi+1) whose displacement is less
than L+ ε. Note that ε is arbitrary. In particular Theorem 4.7 implies that X1 does not
jump in ∆A1 and Xm does not jump in ∆Bm . Moreover, Ai, Bi+1 are in the same closed
simplex of O(Γ) (so there is a Euclidean segment joining them).

Additionally Lemma 5.6 tells us that the displacement of points along the segments,
AiXi, BiXi is bounded by L+ ε.

Note that Ai is defined for 1 ≤ i < m and Bi for 1 < i ≤ m. By Lemma 5.7, for
1 < i < m, there is a simplicial path Yij between Bi and Ai such that Yij ∈ Hor(Xi) and
λφ(Yij) ≤ L+ ε. The path Σε is now defined by the concatenation of such paths and the
segments AiBi+1. �

14One has to apply Lemma 4.6 as follows: X here plays the role of X∞ of lemma; T here is X in

lemma, S here is A in lemma; A,B here play the role of X̂ in lemma (for suitable Y ).
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6. Calibration of paths

We keep Notation 3.7. For the remaining of the section we fix [φ] ∈ Out(Γ). We recall

that for simplices ∆ ⊂ O(Γ)
∞

we are using the notation λ(∆) = λφ(∆) = infX∈∆ λφ(X).
Our aim is to run a peak reduction argument to prove Theorem 5.3, by starting with

a simplicial path and locally modifying it near peaks. Theorem 5.8 provides simplicial
paths with bounded displacement, however, for our purposes we need paths, that possibly
touch the boundary at infinity, where the displacement is continuous. (The displacement

is not in general continuous on O(Γ)
∞

.)
In this section we describe a procedure for calibrating simplicial paths (see below precise

definitions).

Definition 6.1. Let Σ be a (simplicial) path in O(Γ)
∞

. We set λ(Σ), the displacement
of Σ, to be the supremum of displacements of points along Σ.

Definition 6.2. Let L be a positive real number. A simplicial path Σ = (Xi)
k
i=0 in

O(Γ)
∞

is said to be L-calibrated if:

(i) λ is continuous on Σ;
(ii) λ(Σ) ≤ L;

(iii) no point P of Σ jumps (which, by Theorem 4.14, is equivalent to λ(φ) ≤ λ(P ));
(iv) for any point P , in the interior of Σ and that realises the maximum λ(Σ), we have

λ(P ) = λ(∆P ) (i.e. P is minimising in its simplex). Note that this implies that
λ(Σ) ∈ spec(φ) ∪ {λ(X0), λ(Xk)} (see Theorem 4.11 for definition of spec(φ)).

Remark 6.3. If A,B are two consecutive vertices of an L-calibrated path then, by the
continuity of λ, neither point can have jumped in the simplex they span. Hence by
Lemma 4.10 and property (ii) of Definition 6.2, for any P in the segment AB we have,

λ(φ) ≤ λ(P ) ≤ max{λ(A), λ(B)} ≤ L.

Theorem 6.4 (Calibration). Suppose Theorem 5.3 is true in any rank less than rank(Γ).

Let Σ be a simplicial path in O(Γ)
∞

with finite displacement and such that no point of

Σ jumps. Then in O(Γ)
∞

there exists a λ(Σ)-calibrated simplicial path Σo with the same
endpoints as Σ.

Proof. We outline the strategy of this proof to aid the reader.

• First we regenerate Σ to a path Σ1 which lives inside O(Γ). This is basically an
application Theorem 5.8 in its full generality, which, in particular, requires the
inductive hypothesis on the rank. This is the only place of this section where such
hypothesis is needed. We also note that in case φ is irreducible, then any path
with finite displacement is in O(Γ) (see Remark 3.19) so this step (and hence
inductive hypothesis) is not necessary in this case.

• Next, we define a simplicial path Σ2 in O(Γ), obtained from Σ1 by, essentially,
replacing each vertex with a point that minimizes the displacement in the corre-
sponding simplex.
• Finally, we add extra points to Σ2 in order to obtain a simplicial path Σo to ensure

that λ is continuous along the path.
• Along the way, we verify that we maintain control of the displacements of our

paths, exploiting both quasi-convexity and the fact that spec(φ) is well ordered
(Theorem 4.11).
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Let Σ = (Xi)
m
i=1. Up to possibly adding extra vertices belonging to segments of Σ, we

may assume that it is alternating. (Note that this does not change the displacement of
Σ).

Let M = min{x ∈ spec(φ) : x > λ(Σ)}, which exists because λ(Σ) < +∞ and spec(φ)
is well ordered (Theorem 4.11). Let ε > 0 so that λ(Σ) + ε < M .

We start by invoking Theorem 5.8 to produce a simplicial path Σ1 = (Wj)
k
j=1 in O(Γ),

so that λ(Σ1) ≤ λ(Σ) + ε < M and so that W1 and Wk do not jump in in ∆X1 and ∆Xm

respectively. (Note that ∆X1 is a face of ∆W1 , and ∆Xm is of ∆Wk
).

We define a new simplicial path, Σ2, as follows:

(1) For any j, if ∆Wj−1
and ∆Wj

are both proper faces of some ∆j, then we add to

the path a new point, Ŵj ∈ ∆j ∩Wj−1Wj. We note that λ(Ŵj) ≤ λ(Wj−1) and
λ(Wj), by quasi-convexity (Lemma 4.9).

(2) We renumber the sequence of vertices, denoting them by (Wj)
l
j=1 (for some l ≥ k).

We now have a simplicial path which is alternating.
(3) For any 1 ≤ j ≤ l, we use Corollary 4.8 and replace Wj by a point Yj ∈ ∆Wj

∞
,

chosen so that λ(Yj) = λ(∆Wj
) = λ(∆Yj), and requiring Yj to be maximal in the

sense of Corollary 4.8.
(4) We add endpoints Y0 = X1 and Yl+1 = Xm.
(5) If two consecutive points coincide, then we identify them and we renumber the

sequence accordingly (and removing the corresponding segment). We call the
resulting alternating simplicial path Σ2.

Lemma 6.5. For any vertex, Yj ∈ Σ2, we have that λ(Σ) ≥ λ(Yj) ∈ spec(φ)∪{λ(X1), λ(Xm)}.

Proof. The statement is obvious for endpoints. For other points, by construction, we have
M > λ(Σ)+ε ≥ λ(Wj) ≥ λ(Yj) ∈ spec(φ), and our choice of M implies λ(Yj) ≤ λ(Σ). �

Remark 6.6. In Step (4) we have λ(Y0) ≥ λ(Y1) and λ(Yl+1) ≥ λ(Yl). This is because
by definition Y1 is the point in ∆X1

∞
that realises λ(∆X1) = infT∈∆X1

λ(T ), and Y0 = X1.
The same argument works for Yl.

Lemma 6.7. Let A,B be two consecutive vertices of Σ2. Then,

(a) For any point P of AB we have λ(P ) ≥ λ(φ).
(b) if λ(A) = λ(B), then λ is constant on the segment AB;
(c) if λ(A) > λ(B), then there exists a simplex ∆ ⊂ O(Γ) and points C,D so that:

• A,B,C,D ∈ ∆
∞

;
• λ(A) < λ(C), λ(D) < λ(B);
• λ is continuous on Euclidean segments AC, CD, and DB.

Proof. Either λ(A) ≥ λ(B) or vice versa. Without loss of generality, up to possibly switch
the names of A,B, we may assume that λ(A) ≥ λ(B).

By how Σ2 is defined, A,B are introduced either in Step (3) or in Step (4). Suppose
first that both come from Step (3). Since they are consecutive in Σ2, by Step (5) we
may assume that the pair {A,B} comes, in Step (3), from a pair {Wj,Wj+1} of two
consecutive vertices of the Step (2)-path. Since the path of Step (2) is alternating, and
contained in O(Γ), either ∆Wj

is a finitary face of ∆Wj+1
or vice versa: let ∆0 be the one

which is face of the other, and let ∆ be the other. (We may have ∆ = ∆0.) Moreover,
from Step (3), either λ(A) = λ(∆0) and λ(B) = λ(∆), or vice versa.

Since ∆0 is a face of ∆ we have λ(∆0) = infT∈∆0 λ(T ) ≥ infT∈∆ λ(T ) = λ(∆). Since
we are assuming λ(A) ≥ λ(B), w.l.o.g. we may also assume A ∈ ∆0

∞
and B ∈ ∆

∞
, thus

λ(A) = λ(∆0), λ(B) = λ(∆).
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Suppose now that A is introduced in Step (4). Then it is an endpoint, say A = Y0 =
X1. In this case necessarily B = Y1 is obtained in Step (3) from X1 = A. Whence
λ(A) > λ(∆A) and λ(B) = λ(∆A). In this case we set ∆0 = ∆ = ∆A.

The same reasoning would work if B is introduced in Step (4), but then we would get
λ(B) > λ(A) contradicting λ(A) ≥ λ(B). Therefore this latter situation cannot happen.
In particular B is always introduced in Step (3).

In any case, there there exists an open simplex ∆ in O(Γ), with a (not necessarily
proper) finitary face, ∆0, such that A ∈ ∆0

∞
, B ∈ ∆

∞
and so that λ(∆0) ≤ λ(A),

λ(∆) = λ(B). Thus both A and B belong to ∆
∞

.
Now let ∆1 be the simplicial face of ∆ spanned by A and B (which may be different

from ∆). Both λ(A), λ(B) are finite. So, topologically, A and B are obtained from a
graph, X, by collapsing invariant subgraphs CA and CB, respectively. Therefore the
points in ∆1 are obtained from X by collapsing CA ∩ CB, which is also invariant and
hence all points in ∆1 have finite displacement.

By the maximality of the dimension of ∆B (Step (3)), and Theorem 4.8, no point in
∆1 has jumped in ∆. Hence, by Theorem 4.7 and Lemma 4.10, for any point P , on the
segment from A to B,

λ(φ) ≤ λ(∆) = λ(B) ≤ λ(P ) ≤ max{λ(A), λ(B)}.
This in particular proves (a). Moreover, if λ(A) = λ(B), we deduce that the previous
inequalities - except the first - are all equalities, thus proving (b).

Finally, suppose that λ(A) > λ(B). Since λ is continuous in ∆1, and since A has not
jumped in ∆1 by Theorem 4.7, we deduce - by Lemma 4.10 - that λ is continuous along
the segment from A to B except, possibly, at B.

If λ is continuous in AB, there is nothing to prove. Otherwise, we use the fact that
B is defined in Step (3) by applying Corollary 4.8. Our points C,D correspond then to
points Z,W of Corollary 4.8, which can be chosen with displacement arbitrarily close
to λ(∆) = λ(B), in particular so that λ(A) > λ(C), λ(D). The fact that λ(C), λ(D) >
λ(B) = λ(∆) follows from maximality condition of B (Step (3)). Corollary 4.8 also
provides the continuity of λ on the segments CD and DB. The continuity of AC follows
from Lemma 4.10 because A has higher displacement.

�

We are now in position to finish the proof of Theorem 6.4. Having Σ2, we build Σo

by using Lemma 6.7 to add points C,D between consecutive vertices where λ is not
continuous. In particular, λ is continuous on Σo, and condition (i) of Definition 6.2 is
satisfied. Point (a) of Lemma 6.7 gives condition (iii).

Note that added vertices are never point of maximum. Therefore Lemma 6.5 provides
condition (iv). Finally Lemma 6.5 and Lemma 4.10 imply that λ(Σo) ≤ λ(Σ), so also
condition (ii) of Definition 6.2 is fulfilled with L = λ(Σ). Thus Σo is λ(Σ)-calibrated. �

7. Preparation to peak reduction

We keep Notation 3.7. For the remaining of the section we fix [φ] ∈ Out(Γ). We recall

that for simplices ∆ ∈ O(Γ)
∞

we are using the notation λ(∆) = λφ(∆) = infX∈∆ λφ(X).
In this section we prove some preliminary result needed to perform reduction of peaks.

We start by stating a (technical) fact that can be informally phrased as follows15:

15We recall that by definition O(Γ)
∞

= O(Γ) and that the symbol ∞ is just to put emphasis on
the fact that we are considering the simplicial bordification of the outer space obtained by adding all
simplices at infinity.
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Given X ∈ O(Γ)
∞

and f : X → X an optimal map representing [φ], if
Y is sufficiently close to X for the Euclidean metric, then any fold in
X directed by f can be closely read in Y .

Theorem 7.1. Let X, Y ∈ Ogr(Γ). Suppose that ∆X is a simplicial face of ∆Y . Thus
as graphs, X is obtained from Y by collapsing a sub-graph A. Suppose that core(A) is
φ-invariant. For t ∈ [0, 1] let Yt = (1 − t)X + tY be a parametrization of the Euclidean
segment from X to Y . Let σt : Yt → X be the map obtained by collapsing A and by
linearly rescaling the edges in Y \ A.

Let f : X → X be an optimal map representing [φ]. Then for any ε > 0 there is tε > 0
such that ∀0 ≤ t < tε there is an optimal map gt : Yt → Yt representing [φ] such that

d∞(σt ◦ gt, f ◦ σt) < ε.

Proof. The proof of this theorem relies on accurate (but boring) estimates. For the
happiness of the reader we postpone the proof to the appendix. �

Remark 7.2. Note that when Y ∈ O(Γ), we may regard O(Y ) as a subset of O(Γ).
Moreover, if λ(Y ) < ∞, as is our usual assumption, then the same is true for all points
in O(Y ), since all points in this space share the same vertex groups which are necessarily
invariant, by consequence of the fact that λ(Y ) < ∞. Note also that λ is continuous
on O(Y ), because in general the displacement is continuous in the interior of any outer
space.

Remark 7.3. Consider the situation given by the hypotheses of 7.1. The φ-invariance
of core(A) allows us to build a straight map, g : Y → Y , representing [φ] which leaves
core(A) invariant. This map might not be optimal, but its Lipschitz constant provides
an upper bound on the displacement of Y .

Now, along the path Yt, we have the same topological trees (graphs of groups) except
at the endpoint, X. We can thus re-scale edges but use the same topological straight
map, g, to provide straight maps for all points Yt except for X. From the invariance of
core(A), one easily sees that there is a constant, C, so that λ(Yt) < C for all points on
the path. (We can include X as well in this last statement).

The hypotheses of Theorem 4.5 therefore apply and we may deduce that λ(X) ≤
lim inft→0 λ(Yt).

Corollary 7.4. Let X, Y ∈ O(Γ). We use the notation and hypotheses of Theorem 7.1.
(In particular ∆X is a simplicial face of ∆Y ). Let f : X → X be an optimal map
representing [φ]. Suppose further that τ is an f -illegal turn of X. Let ∆τ be the simplex
obtained by folding τ and let Xτ ∈ ∆τ be the a point obtained from X by folding τ .

Given ε > 0, there exists tε > 0, so that for all t smaller than tε, there exists an
alternating simplicial path Σt = (Zt

i )
m
i=0 in O(Y ) from Zt

0 = Yt to a point Zt
m = Zt, so

that

• ∆Zt
i

has ∆X as a simplicial face for any i = 0, . . . ,m− 1,
• ∆Zt has ∆τ as a simplicial face,
• for any point P of Σt we have λ(X)− ε < λ(P ) ≤ λ(Yt);
• for s ∈ [0, t] the map s 7→ Zs parametrizes the segment from Xτ to Zt.

Proof. For this proof we will work entirely with trees. So Y will denote a Γ-forest, A an
equivariant family of sub-trees — that is to say, the full pre-image in Y of an invariant
subgraph A ⊆ Y — and so on.
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The map σt is that introduced in the statement of Theorem 7.1, and gt is the map
provided by Theorem 7.1. Also, the tε is that provided by Theorem 7.1.

We denote by At the metric copy of A in Yt. By hypothesis there are two different
segments ατ , βτ incident at the same vertex v in X such that f overlaps ατ and βτ . If
v /∈ σt(At) then, for any small enough ε and t < tε, also gt must overlap α = σ−1

t (ατ )
and β = σ−1

t (βτ ), and the claim follows by (equivariantly) performing the corresponding
simple fold directed by gt. Thus in this case the folding path consists of two points:
Zt

0 = Yt and Zt
1 = Zt. The inequality “≤ λ(Yt)” follows because the fold is directed by

an optimal map, the inequality “> λ(X)− ε” follows by lower semicontinuity of λ.
Otherwise, α and β are segments incident to the same component of At. If α and β

are incident to the same point, then we proceed as above, so we can suppose that they
are incident to different points of At.

For small enough ε and t < tε we have that gt overlaps some open sub-segments of α
and β. Let a ∈ α and b ∈ β such that gt(a) = gt(b) and such that a is the closest possible
to At. Let a′ be the point where α is attached to At, and b′ the one where β is attached
to At.

Let γ′ be the segment from a′ to b′ in At, and let γ be the segment between a and b in
Yt. Clearly γ = [a, a′] ∪ γ′ ∪ [b′, b], where [a, a′] is the sub-segment of α from a to a′, and
[b′, b] is the sub-segment of β from b′ to b. Note that [a, a′] 6= α and [b′, b] 6= β because α
and β are open and a is the closest possible to At.

On γ we put an extra simplicial structure given by the pull-back via gt: we declare
new vertices of γ the points whose gt-image is a vertex of Yt. gt(γ) is a tree because Yt is.
Moreover, since gt(a) = gt(b), the restriction of gt to γ cannot be injective. In particular,
if x ∈ γ is a point such that dYt(gt(x), gt(a)) is maximal, then x is a vertex of γ, and the
two sub-segments of γ incident to x are completely overlapped.

Let Zt
1 be the tree obtained by equivariantly identify such segments. Note that s 7→ Zs

1

parametrizes the segment from X to Zt
1. Clearly, gt induces a map g1

t : Zt
1 → Zt

1. Such
map is continuous and not necessarily straight. However,

Lip(g1
t ) ≤ Lip(gt)

and Str(g1
t ) still represents [φ]. Since Lip(Str(g1

t )) ≤ Lip(g1
t ) he have

λ(Zt
1) ≤ λ(Yt).

Let A′t be the union of At and the orbits of [a, a′] and [b′, b]. Since [a, a′] 6= α and
[b′, b] 6= β, then the collapsing of A′t produces a point of ∆X . As our identification
occurred in A′t, it follows that ∆Zt

1
has ∆X as a simplicial face.

Also, since Yt parametrizes the segment from X to Y , as t varies Zt
1 parametrizes the

segment from X to Zt
1.

Note that a priori we may have ∆Zt
1

= ∆Y , but in any case ∆Zt
1

is either a (non
necessarily proper) simplicial face of ∆Y or vice versa.

In Zt
1 we have a simple path γ1 resulting from γ by the cancellation of the two identified

segments at x. By construction g1
t is simplicial. If g1

t is not injective on γ1, we can iterate
the above procedure and define points Zt

i with

λ(Zt
i ) ≤ Lip(gt) = λ(Yt)

and such that ∆Zt
i

has ∆X as a simplicial face. Moreover either ∆Zt
i

has ∆Zt
i−1

as a

simplicial face or vice versa, so the simplicial path we are producing is alternating. Since
γ has a finite number of vertices, we must stop, and we do when γi is a single point. At
this stage, α and β are incident to the same point and we are reduced to the initial case.
Note that any Zt

i → X as t → 0, thus so does any point in segment from Zt
i to Zt

i+1.
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Therefore by lower semicontinuity of λ for any ε > 0, since we have finitely many Zt
i ’s,

for sufficiently small t we have that for any i

λ(X)− ε < λ(Zt
i )

and the same inequality holds for points in the segments from Zt
i to Zt

i+1. Thus, up to
possibly replacing tε with a smaller positive number, we get that inequality of third bullet
in the statement, holds for any t < tε. �

Remark 7.5. The length of the simplicial path produced by Corollary 7.4 is bounded a
priori by a constant depending only on rank(Γ). More precisely, consider the sequence of
simplices ∆Zt

i
. It may happens that two consecutive ∆Zt

i
and ∆Zt

i+1
are equal, due to the

fact that, in the proof of Corollary 7.4, we subdivided γ. Up to cancel such consecutive
repetitions, the length of the sequence of ∆Zt

i
is bounded by a constant depending on the

complexity of At, hence on rank(Γ).

Corollary 7.6. Let X, Y ∈ O(Γ) and suppose that ∆X is a simplicial face of ∆Y . Suppose
that λ(X) > λ(Y ).

Moreover, suppose that X is an exit point for ∆X
16, and let XE be as Definition 4.3,

chosen so that λ(XE) ≥ λ(Y ).

Then there is a simplicial path Σ = (Wi) in O(Y ), starting at Y and ending at XE,
with Wi ∈ O(Y ) except possibly for the point XE, such that for any point P of Σ we have

λ(Y ) ≤ λ(P ) ≤ L < λ(X)

for some L < λ(X).

Proof. We inductively use Corollary 7.4: suppose that the exit point, XE, is obtained by
successive folds, τ1, . . . , τm. (So that ∆XE

= ∆τm .)
We parametrize the segment between X and Y by Yt = tY + (1 − t)X. Lemma 4.9

and Lemma 4.10 imply that on the Euclidean segment from X to Y , the displacement is
continuous, quasi-convex and strictly monotone near X. Hence, there exists a t (which
can be taken to be arbitrarily small), such that Yt satisfies λ(X) − ε < λ(Yt) < λ(X).
We then plug this in to Corollary 7.4, to find a point Zt, whose displacement satisfies
λ(X)−ε < λ(Zt) < λ(X), and a simplicial path, in O(Y ), from Yt to Zt, where all points
met have the same displacement inequality, where the path starts at ∆Y and ends at
∆τ1 . Since s 7→ Zs parametrizes the segment from X to Zt, we are in position to apply
Corollary 7.4 again to the point Zt, noting that ∆X is a simplicial face of ∆Zt and that
λ(Zt) < λ(X).

We continue inductively.
Concatenating our paths, and adding the points Y and XE, yields the result; the

constant L is simply the maximum displacement of points of our paths. By construction
the displacement is a number strictly less than λ(X) on vertices. Since Σ ⊂ O(Y )
except possibly for its last point XE, the displacement is continuous and quasi-convex
(Lemma 4.9) on Σ except possibly atXE where it may jump, but still lower-semicontinuity
is preserved (Theorem 4.5). This implies that L < λ(X).

�

Remark 7.7. As in Remark 7.5, up to repetitions, the simplicial length of the path Σ
provided by Corollary 7.6 is bounded a priori by a constant depending only on rank(Γ).
This is because of Remark 7.5 and because the length of the path from X to XE is
bounded by the dimension of O(Γ).

16See Definition 4.3
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8. End of the proof of Theorem 5.3: peak reduction on simplicial paths

We fix Γ as in Notation 3.7 and [φ] ∈ Out(Γ). Let λ = λφ. We will prove:

Lemma 8.1. For any L ≥ λ(φ), the level set

{X ∈ O(Γ)
∞

: λ(φ) ≤ λφ(X) ≤ L}
is connected by L-calibrated simplicial paths.

This in particular gives the second claim of Theorem 5.3 (when L = λ(φ)). Moreover,
if Σ is any L-calibrated path (hence in the above level set), then, by possibly adding
some extra vertices to Σ we obtain a path in the same level set, and that in addition is
alternating. So Theorem 5.8 applies and Σ can be regenerated to O(Γ), and this proves
first claim of Theorem 5.3.

We will proceed by induction and assume that Theorem 5.3 is true in any rank less
than rank(Γ).

From now on we fix A,B ∈ O(Γ)
∞

such that λ(A), λ(B) ≥ λ(φ). For any L ≥
max{λ(A), λ(B)} we denote by ΣL(A,B) the set of L-calibrated simplicial paths from A
to B.

Lemma 8.2. For some L, ΣL(A,B) 6= ∅.

Proof. Since λ(A), λ(B) ≥ λ(φ), they have not jumped. Let A′ ∈ Hor(A) and B′ ∈
Hor(B), so that A has not jumped in ∆A′ and B has not jumped in ∆B′ . Since A′, B′ ∈
O(Γ), which is connected, there is a simplicial path in O(Γ) between A′, B′. We can
therefore use Theorem 6.4 to obtain an element of ΣL (where the L is the maximum
displacement along such a path). �

Definition 8.3. For any calibrated path Σ = (Xi) we say that Xi is a peak if λ(Xi) =
λ(Σ). A pair of two consecutive peaks Xi−1, Xi is called a flat peak. A peak is strict if it
is not part of a flat peak.

To any Σ we can associate the triple (λ(Σ), p, pf ) ∈ spec(φ) × Z≥0 × Z≥0 where p is
the number of peaks, and pf that of flat peaks. We order spec(φ) × Z≥0 × Z≥0 with
lexicographic order, from left to right. That is, (λ, p, pf ) > (λ′, p′, p′f ) means:

• λ > λ′, or
• λ = λ′ and p > p′, or
• λ = λ′ and p = p′ and pf > p′f .

Lemma 8.4. There exists Σ0 = (Xi) ∈ ΣL(A,B), a calibrated path from A to B, which
minimises (λ, p, pf ). Namely, Σ0 minimizes, in order:

(1) λ(Σ);
(2) the number peaks;
(3) the number of flat peaks.

Proof. By Theorem 4.11 the set spec(φ) is well-ordered, so spec(φ) × Z≥0 × Z≥0 is lexi-
cographically well-ordered. Therefore every minimising sequence must eventually realise
the minimum. �

From now on we fix such a minimising Σ0.

Note that if X is a strict peak of a path Σ, then λ is locally strictly monotone near X,
on both sides of X in Σ. (By Lemma 4.9.)

Once again, we need the inductive hypothesis.
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Lemma 8.5. Suppose that Theorem 5.3 is true in any rank less than rank(Γ). Then Σ0

has no strict peaks in its interior.

Proof. Suppose that λ(Xi−1) < λ(Xi) > λ(Xi+1). Set X = Xi, Y = Xi−1, Z = Xi+1, so
that λ(Y ), λ(Z) < λ(X).

By calibration, X minimizes λ in its simplex, hence ∆X is a proper face of both ∆Y

and ∆Z .
Since X is not a φ-minimally displaced point, by Lemma 4.13 X /∈ TT(φ) ⊂ O(X).

By Lemma 4.4, X is an exit point. Let XE be as in Definition 4.3. Since XE can be
chosen arbitrarily close to X, we chose one so that λ(XE) ≥ max{λ(Y ), λ(Z)}.

Now we invoke Corollary 7.6 to get a simplicial path Σ in O(Y ) from Y to XE, the
displacement of whose points is between λ(Y ) and L, for some L < λ(X). In particular
λ(Σ) < λ(X).

We now interpret this as a simplicial path in O(Γ). Since λ(Y ) ≥ λ(φ) no point of
such path jumps. We apply Theorem 6.4 to obtain a calibrated path ΣY from Y to
XE, whose displacement is less than λ(X). By symmetry, we get a calibrated path ΣZ

from XE to Z whose displacement is less than λ(X). Let Σ1 be the simplicial path
obtained by following Σ0 till Y , then ΣY , then ΣZ and then again Σ0 till its end. Since
λ(ΣY ), λ(ΣZ) < λ(X) = λ(Σ0), we have λ(Σ1) ≤ λ(Σ0).

If λ(Σ1) < λ(Σ0), we apply Theorem 6.4 and contradict the minimality of Σ0. Other-
wise, paths ΣY and ΣZ do not contain peaks of Σ1. Therefore Σ1 is a λ(Σ0)-calibrated
which has fewer strict peaks than Σ0, contradicting minimality. �

Lemma 8.6. Σ0 has no flat peaks unless λ is constant on Σ0 and λ(Σ0) = λ(φ).

Proof. If the function λ is not constantly equal to λ(φ) on Σ0, then in particular λ is
strictly bigger than λ(φ) on peaks. Suppose that there is Y,X two consecutive vertices
of Σ0 with

λ(X) = λ(Y ) = λ(Σ0) > λ(φ).

The idea is to find a third point Z to add between Y and X in order to destroy the
flat peak. If there is a point Z in the interior of the segment Y X, with λ(φ) ≤ λ(Z) <
λ(X) = λ(Y ), then we add it.

Otherwise, λ is constant on XY . Let W be a point in the interior of the segment
XY . If W is not a local minimum for λ in ∆W , then near W we find Z with the above
properties. We add it.

If W is a local minimum for λ in ∆W then, by Lemma 4.13 and Lemma 4.4, near W in
O(W ) there is a point Z with the above properties and such that ∆W is a finitary face
of ∆Z in O(W ). We add Z.

In each case, we have added a point, Z, such that ∆X and ∆Y are faces of ∆Z , and
since the original path was calibrated, we can verify - using Theorem 4.7 - in each case
that X, Y did not jump in ∆Z . Hence we can add Z to the path. By Lemma 4.10, the
new path is still a calibrated path (continuity at Z is automatic, since λ is continuous in
O(W )), with the same displacement as Σ0, and the same number of peaks, but with one
less flat peak, contradicting the minimality of Σ0. �

It follows that the maximum displacement of points of Σ0 is reached at endpoints.
Thus Σ0 is a calibrated simplicial path in the requested level set, proving Lemma 8.1. To
finish the proof of Theorem 5.3, simply observe that we have shown that we can connect
any two points in {X ∈ O(Γ)

∞
: λφ(X) = λ(φ)} by a calibrated simplicial path with no

peaks, either strict or flat, unless the displacement is constant. This immediately implies
that the displacement is constant along the path. �
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The following is an observation that may be helpful for algorithmic purposes.

Remark 8.7. If φ is irreducible, there exists a constant K, depending only on rank(Γ),
such that, given a L-calibrated alternating simplicial path Σ having some peak in its in-
terior, and such that the displacement is not constant along Σ, there exists a L-calibrated
alternating simplicial path Σ′ with either less displacement or one peak less, and whose
simplicial length is increased at most by K.

This is because we can remove a strict peak from Σ as in Lemma 8.5 — if Σ contains
no strict peak, we create one as in Lemma 8.6, without changing the global number of
peaks nor λ(Σ), and increasing the length of Σ by 1 —. The control on simplicial length
comes from the use of Corollary 7.6 and Theorem 6.4 in the proof of Lemma 8.5:

By Remark 7.7 any use of Corollary 7.6 increase the simplicial length by a fixed amount,
and since φ is irreducible, every calibrated path is in O(Γ); therefore the calibration
process Theorem 6.4 does not involve regeneration of paths, nor continuity issues, (so
the alternating Σ2 is already calibrated in the proof of Theorem 6.4), and it is readily
checked that in this case calibration increases the length by a fixed amount.

9. Applications

In this section we show how the connectedness of the level sets gives a solution to some
decision problems. Namely we will prove Theorems 2.9 and 2.5 and some generalisations.
We will work with graphs in the volume-one slice of CVn.

Recall that a point, X, of CVn is called ε-thin if there is a homotopically non-trivial
loop in X of length at most ε. Conversely, X is called ε-thick if it is not ε-thin.

Proposition 9.1 ([3, Proposition 10]. See also [13, Proposition 5.5], and [11, Section 8]).
Let X ∈ CVn (that is, X is a volume-one marked metric graph) and f : X → X a straight
map representing some automorphism of Fn. Let λ = Lip(f), let N equal the maximal
length of chains of topological subgraphs of any graph in CVn (this is clearly a finite
number) and let µ be any real number greater than λ. Then if X is 1/((3n− 3)µ(N+1))-
thin, then it has a nontrivial core sub-graph which is f -invariant up to homotopy, in
particular the automorphism represented by f is reducible. For instance, one can take
N = 3n− 3.

Definition 9.2. A uniform rose in CVn is a rose-graph (i.e. a bouquet of circles) whose
edges all have the same length. Let X ∈ CVn. Then we call R an adjacent uniform rose
if it obtained by collapsing a maximal tree in X and then rescaling so that all edges in
R have the same length.

Proposition 9.3. Let X ∈ CVn be a point which is ε-thick and let R be any adjacent
uniform rose (both of volume 1). Then, Λ(X,R) ≤ 1/ε and Λ(R,X) ≤ n.

Proof. By Theorem 4.1, we can look at candidates that realise the stretching factor.
Since, topologically, one passes from X to R by collapsing a maximal tree, we get that
a candidate in X, when mapped to R, crosses every edge at most twice. In fact the
candidate crosses every edge of R at most once in the case of an embedded simple loop
or an infinity-symbol loop. This gives the first inequality, on taking into account that X
is ε-thick and that barbells have length at least 2ε.

For the second inequality note that an embedded loop in R is an edge and has length
1/n and lifts to an embedded loop in X, of length at most 1. An infinity-symbol loop
in R consists of two distinct edges, has length 2/n and lifts to a loop in X which goes
through every edge at most twice. (Barbells are not present in R). �
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Corollary 9.4. Let X ∈ CVn be ε-thick and let R be an adjacent uniform rose. Consider
[φ] ∈ Out(Fn). Then Λ(R, φR) ≤ n

ε
Λ(X,φX).

Now, we use connectedness of level sets (Theorem 5.3) for deducing the following result.

Proposition 9.5. Let R,R∞ be two points in CVn which are both uniform roses. Let
[φ] ∈ Out(Fn) be irreducible and suppose that µ is any real number greater than:

max{Λ(R, φR),Λ(R∞, φR∞)}.
Then there exist R0 = R,R1, R2, . . . , Rk = R∞, which are all uniform roses in CVn

such that:

• For each i, there exists a simplex ∆i such that ∆Ri
is a rose-face of both ∆i and

∆i+1.
• Λ(Ri, φRi) ≤ n

ε
µ, where ε = 1/((3n− 3)µ(N+1)).

Proof. This follows from Theorem 5.3, using Definition 5.1, since each pair ∆i and ∆i+1

have a (at least one) common rose face; just take any uniform adjacent rose in any common
rose face. The remaining point follows from Corollary 9.4 and Proposition 9.1. �

Proof of Theorem 2.5: We clearly have an algorithm which terminates (Remark 2.10),
and it is apparent that if ψ ∈ Sφ then these automorphisms are conjugate. It remains to
show the converse; that if they are conjugate, then ψ ∈ Sφ.

Let R be the uniform rose corresponding to the basis B. If ψ were conjugate to φ, then
there would be a conjugator, some [τ ] ∈ Out(Fn) such that ψ = τφτ−1. Let R∞ = τR.
Remind that the Out(Fn)-action on CVn is a right-action, namely φ(ψ(X)) = (ψφ)X. In
particular,

(1) ||ψ||B = Λ(R,ψR) = Λ(R, (τφτ−1)R) = Λ(τ−1(τR), τ−1(φ(τR))) = Λ(R∞, φR∞).

Now we use Proposition 9.5 to find a sequenceR = R0, R1, . . . , Rk = R∞, such that each
consecutive pair are incident to a common simplex and Λ(Ri, φRi) ≤ n(3n−3)µ3n−1 = K.

Let τi so that Ri = τiR. Since Ri and Ri+1 are both incident to a common simplex,
there exists a CMT automorphism ζi such that τi(ζi(τ

−1
i (Ri))) = Ri+1. Thus

ζiτiR = τi(ζi(R)) = τi(ζi(τ
−1
i (Ri))) = Ri+1 = τi+1R,

and up possibly compose ζi with a graph-automorphism of R, we may assume τi+1 = ζiτi.
Therefore τi+1 = ζi . . . ζ0 (and we set τ0 = id).

Now let φi = τiφτ
−1
i . Clearly φ0 = φ and φk = ψ.

Since φi+1 = ζiφiζ
−1
i , to finish the proof we just need that ||φi||B ≤ K. This follows

since, as in (1)
||φi||B = Λ(R, φiR) = Λ(Ri, φRi) ≤ K.

�
We prove now Theorem 2.9. First a lemma,

Lemma 9.6. Let X be a core graph and f a homotopy equivalence on X, having a proper
subgraph X0, with nontrivial fundamental group, such that f(X0) = X0. Then there is
a maximal tree, T , such that the automorphism induced by f on the rose X/T is visibly
reducible.

Proof. Choose X0 to be minimal. Therefore it will have components, X1, . . . , Xk such
that f(Xi) = Xi+1 with subscripts taken modulo k. Take a maximal tree for each Xi

and extend this to a maximal tree, T , for X. It is then clear that if we take Bi to be
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the set of edges in X/T coming from Xi, that f∗ will be visibly reducible as witnessed by
B1, . . . , Bk. (Note each subgroups generated by each Bi are only permuted/preserved up
to conjugacy, since the Xi are disjoint and so one cannot choose a common basepoint). �

Proof of Theorem 2.9: The algorithm clearly terminates (Remark 2.10), and if there is
a ψ in S+ which is visibly reducible, then φ is reducible. It remains, therefore, to show
that if φ is reducible, then there is some ψ ∈ S+ which is visibly reducible.

We proceed much as in the proof of Theorem 2.5, but here we do not know that the
points in CVn we encounter will remain uniformly thick.

Let R be the uniform rose corresponding to the basis B. By Theorem 4.16, there
exists an X ∈ CVn with a core invariant subgraph and such that Λ(X,φ(X)) < µ. By
Theorem 5.3, there exists a simplicial path from R to X, whose vertices are points, X0 =
R,X1, . . . , Xk = X, such that Λ(X,φ(Xi)) < µ. Choose the maximal index, M , such
that X0, X1, . . . , XM are all ε-thick, where ε = 1/((3n− 3)µ(N+1)) as in Proposition 9.1.

If M < k, then XM+1 is ε-thin, and by Proposition 9.1, we have that XM+1 has an
optimal representative for [φ] which admits an invariant subgraph. Therefore, up to
replacing X with XM+1, we may assume that Xi is ε-thick for i = 0, . . . , k − 1.

Since Xk has an invariant subgraph, by Lemma 9.6, we may find an adjacent uniform
rose face, Rk, so that the representative of [φ] at Rk is visibly reducible.

Now, for each i ≤ k − 1, we find a uniform rose Ri which is adjacent to both Xi

and Xi+1, which exist by definition of simplicial path (Definition 5.1). Note that since
X0 = R is a rose, then R0 = R. Moreover, by Corollary 9.4 we have Λ(Ri, φRi) < K for
any i = 0, . . . , k − 1.

We now conclude exactly as in the proof of Theorem 2.5: Let [τ ] ∈ Out(Fn) be such
that Rk = τR, and let ψ = τφτ−1. Find CMT automorphisms ζi such that τi = ζi−1 . . . ζ0

satisfies Ri = τiR and τk = τ . Define τ0 = id and φi = τiφτ
−1
i , so that φ0 = φ, φk = ψ,

and φi+1 = ζiφiζ
−1
i .

Since each Λ(Ri, φRi) < K, as in (1), we get that each φi ∈ Si for i ≤ k − 1. Hence
ψ ∈ S+ and is visibly reducible, as desired. �

9.1. Generalisations. Our algorithms work in some more general setting that just free
groups. For instance, consider the case of a group G equipped with a splitting G =
({Gi}, n) where the factor groups Gi are finite groups. In this caseOgr(G) is a deformation
space of finite graphs of groups with trivial edge-groups and finite vertex groups.

This leads to Theorem 2.11, which we now explain how to prove.
Theorems 2.5 and 2.9 generalise as follows. As above, we work in the volume-one slice

of Ogr(G). Instead of uniform roses one can use uniform “hairy roses”, that is to say,
graph X ∈ Ogr(G) obtained from a rose by attaching, to the unique vertex, edges each
ending with a non-free vertex. Uniform here means that all edges have the same length.

Any X ∈ Ogr(G) is a face of a simplex containing a hairy rose simplex: to see this,
first, for any non-free vertex v which is not a leaf, fold a little all edges at v; then, once
all non-free vertices are leaves, collapse a maximal tree in the sub-graph consisting of
edges incident only at free vertices. We say that a uniform hairy rose is adjacent to X if
obtained in this way, plus a rescaling of edges.

Now define a CMT automorphisms of a hairy rose as a change of marking between
two hairy roses ‘adjacent’ to a common point. More precisely, let ∆1,∆2 be simplices in
Ogr(G), having a common face; let X ∈ ∆1 ∩∆2, and let R1, R2 be uniform hairy roses
in ∆1,∆2 respectively. Then we call R1 and R2 adjacent.

Then, letting R be a fixed marked hairy rose, we define,

CMTR(G) = {[φ] ∈ Out(G) : φ(R) is adjacent to R}.
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Remark 9.7. We note that this slightly different to the notion of adjacency in CVn, but
the idea is very similar. We start with an alternating simplicial path and want to replace
each vertex along that path with a hairy rose. In CVn, one can do this by replacing each
point with a rose in such a way that consecutive roses are in faces of a common simplex.
In this situation, moving to a hairy rose involves inserting ‘stems’ and then collapsing a
maximal tree (ignoring the stems). However, there are several (although finitely many)
ways of introducing these stems since the vertex groups are non-trivial. This means each
vertex in the original simplicial path gives rise to two hairy roses - one can insert stems
consistently between consecutive points, but not necessarily for three consecutive points
- and in the resulting sequence of hairy roses, consecutive hairy roses are adjacent in the
sense described above.

There are finitely many CMT automorphisms since the finiteness of the vertex groups
implies that the stabiliser of any point is finite, and also that the deformation space
Ogr(G) is locally finite (and so there are only finitely many hairy roses adjacent to a given
one). Moreover, since Ogr(G) is connected, the CMT automorphisms generate Out(G).

Now we can build algorithms exactly as in Theorems 2.5 and 2.9. The fact that vertex
groups are finite implies that Remark 2.4 holds true. So the set S in the statements is
finite, and algorithms stop in finite time. The fact that there are finitely many CMT
automorphisms implies that the set S+ in Theorem 2.9 is finite.

The proof that these algorithms work now goes mutatis mutandis as in the case of CVn.
In particular, the conjugacy problem for irreducible automorphisms and the detection of
reducibility are solvable in Out(G).
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10. Appendix: proof of Theorem 7.1

In this section we give the proof of Theorem 7.1, which we restate for convenience
(recall we are using Notation 3.7 and [φ] ∈ Out(Γ)).

Theorem (Theorem 7.1). Let X, Y ∈ Ogr(Γ). Suppose that ∆X is a simplicial face of
∆Y . Thus as graphs, Y is obtained by collapsing a sub-graph A. Suppose that core(A) is
φ-invariant. For t ∈ [0, 1] let Yt = (1 − t)X + tY be a parametrization of the Euclidean
segment from X to Y . Let σt : Yt → X be the map obtained by collapsing A and by
linearly rescaling the edges in Y \ A.

Let f : X → X be an optimal map representing [φ]. Then for any ε > 0 there is tε > 0
such that ∀0 ≤ t < tε there is an optimal map gt : Yt → Yt representing [φ] such that

d∞(σt ◦ gt, f ◦ σt) < ε.

Proof. We split the proof in two sub-cases. First when A is itself a core graph, and then
the case when core(A) is trivial. Clearly the disjoint union of the two cases implies the
mixed case.

We will work at once with graphs and trees, by using Notation 3.5.

Lemma 10.1 (When A is a core graph). Let X, Y ∈ Ogr(Γ). Suppose that as graphs of
groups, X is obtained from Y by collapsing a φ-invariant core sub-graph A = tAi. Then
the conclusion of Theorem 7.1 holds.

Proof. We begin by fixing some notation. First of all, we will use the symbol λ to denote
any of the displacement functions of φ (i.e. λφ, λφ|A , . . . ). If x is a point in a metric
space, we denote by Br(x) the open metric ball centered at x and radius r. For any i, we
denote by vi the non-free vertex of X obtained by collapsing Ai. For any t we denote by
At the metric copy of A in Yt. Note that A is uniformly collapsed in Yt, that is to say,
[At] ∈ PO(A) is the same element for any 0 < t ≤ 1, and we have vol(At) = t vol(A1).

By lower semicontinuity of λ (Theorem 4.5) we have that

(2) ∀ε0 > 0∃tε0 > 0 such that ∀t < tε0 we have λ(Yt) >
λ(X)

1 + ε0

.

A priori f may collapse some edge, in any case ∀ε1 > 0∃f1 : X → X a straight map
representing [φ] such that f1 does not collapse any edge, and

(3) d∞(f, f1) < ε1 and Lip(f1) < Lip(f)(1 + ε1) = λ(X)(1 + ε1).

Moreover ∃0 < ρ0 = ρ0(X, f1) such that ∀ρ < ρ0

• Bρ(x) is star-shaped for any x ∈ X (i.e. it contains at most one vertex);
• for any i, each connected component of f−1

1 (Bρ(vi)) is star-shaped and contains
exactly one pre-image of vi;
• for any i, j the connected components of f−1

1 (Bρ(vi)) and those of f−1
1 (Bρ(vj)) are

pairwise disjoint.

We fix an optimal map ϕ : A1 → A1 representing [φ|A]. Since [At] ∈ PO(A) does not
depend on t, ϕ : At → At is an optimal map for any t ∈ (0, 1] and the Lipschitz constant
does not change. Clearly (by Sausage Lemma 4.1)

(4) Lip(ϕ) ≤ λ(Yt) for any t.

The natural option is to define gt by using σ−1
t ◦ f1 ◦ σt. Hence, we need to deal with

places where σ−1
t is not defined. (We have to understand how to deal with arcs in X

whose f1-image crosses some vi.)
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We fix lifts ϕ̃ of ϕ and f̃1 of f1. For any vi, and any x ∈ f−1
1 (vi), to any germ of edge

α at x we associate a path γα ∈ Y as follows. We do two different constructions: one in
case x is one of the vj’s, and another for the case when x is different from others vj’s.

Case 1. Suppose x = vk and f1(x) = vi for some k, i (not necessarily different). Let
α be a germ of edge at x. First of all we choose a lift α̃ of α. All subsequent choices
of lifts of objects, made during the definition of γα, will depend on, and will be uniquely
determined by, the choice of α̃. After having defined γα, we forget about such choices of
lifts.

The germ α corresponds to a germ αY (= σ−1
t (α)) in Y incident to Ak at a point that

we denote by pα. The lift α̃ corresponds to a germ α̃Y incident to p̃α ∈ Ãk, where p̃α
is a preimage of pα and Ãk is the component of the preimage of Ak containing p̃α. (See
Figure 1.)
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Figure 1. How to choose the paths γ̃α

Let β = f1(α) and choose β̃ to be the lift of β so that f̃1(α̃) = β̃. Note that in case

f1(α) = α, β̃ is not necessarily equal to α̃ (it is only in the same orbit).

Clearly β̃ emanates from a lift ṽi of vi so that f̃1(x̃) = ṽi. The germ β̃ corresponds to

a germ β̃Y incident to Ãi at a point p̃β, where Ãi is the component of the preimage of Ai
so that ϕ̃(Ãk) = Ãi. We define γ̃α as the unique geodesic path in Ãi connecting ϕ̃(pα) to
p̃β. Now we define γα as the projection to Y of γ̃α. It is a path from ϕ(pα) to pβ.

Remark 10.2. We chose a path γ̃α for any germ α inX, which is a finite graph. Therefore
we have only finitely many such γ̃α’s. We can then complete that family of paths by
equivariance.

Remark 10.3. If we use α̃ instead gα̃, then bot ϕ̃(p̃α) and p̃β — and therefore also γ̃α
— are translated by φ(g), hence the path γα is actually independent on the choice of the
lift α̃.

Case 2. Let x ∈ X be such that f1(x) = vi for some i, but x is not one of the vj’s.
(In case x is not a vertex, up to add x to the simplicial structures of X and Y , so we can
consider it as a vertex.) For any germ of edge α at x we define γα as follows.

First, we fix a base-point xi ∈ Ai, and for any component Ãi (of the preimage of Ai)

we choose a lift x̃i ∈ Ãi. Any germ of edge α at x corresponds to a germ αY is Y . For
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any such α we choose a lift α̃. Since f1 does not collapse edges, f̃1(α̃) is a germ of edge

β̃ at some lift ṽi of vi, and corresponds to a germ β̃Y at Ãi in Ỹ . Let γ̃α be the unique

path in Ãi connecting x̃i and β̃Y . We finally define γα as the projection to Y of γ̃α.

Remark 10.4. As above we chose only finitely many such γ̃α’s and we can complete the
choices equivariantly.

Remark 10.5. The path γα actually depends on the choices of xi and x̃i, but for any pair
of germs α1, α2 at x, the reduced version of the concatenation γ−1

α1
γα2 does not depend

on such choices.

Note that, as germs, αY = σ−1
t (α) and βY = σ−1

t (β) = σ−1
t (f1(α)). Now we have a

path γα ⊂ A for any pre-image of germs at the vi’s, chosen independently on t. Let
t ∈ (0, 1]. We define a map

gt : Yt → Yt
representing [φ] as follows:

• in σ−1
t

(
X \ f−1

1 (tiBρ(vi))
)

we just set gt = σ−1
t ◦ f1 ◦ σt;

• in σ−1
t

(
f−1

1 (tiBρ(vi))
)
\ At we use the paths γα. More precisely, let N be a

connected component of f−1
1 (Bρ(vi)) and let x ∈ N such that f1(x) = vi. For any

edge α ∈ N emanating from x we define gt(σ
−1
t (α)) by mapping linearly17 σ−1

t (α)
to the path given by the concatenation of βY = σ−1

t (f1(α)) and γα. Note that
gt|σ−1

t (α) = Str(gt|σ−1
t (α)).

• in At we set gt = ϕ;

finally, we set
gt = opt(Str(gt))

where straightening and optimization are made with respect to the metric structure of
Yt. We now estimate the Lipschitz constant of gt. Clearly we have the lower bound

λ(Yt) = Lip(gt) ≤ Lip(gt).

Moreover, since on edges of Yt \ At the map σt is just a rescaling of edge-lengths, for
any ε2 > 0 there is tε2 > 0 such that ∀t < tε2

(5) Lip(σt) < 1 + ε2 Lip(σ−1
t ) < 1 + ε2.

Now we compute an upper bound for Lip(gt). As gt is defined in three different regions,
namely

• Ω1 = σ−1
t

(
X \ f−1

1 (tiBρ(vi))
)
,

• Ω2 = σ−1
t

(
f−1

1 (tiBρ(vi))
)
\ At,

• Ω3 = At;

we will estimate Lip(gt) on these three regions separately.
In Ω1 we have gt = σ−1

t ◦ f1 ◦ σt. Then

Lip(gt|Ω1) ≤ Lip(σ−1
t ) Lip(f1) Lip(σt).

18

Hence, by (3), (5), and by setting (1 + ε2)2(1 + ε1) = 1 + ε3, we have

(6) Lip(gt|Ω1) ≤ (1 + ε2)2λ(X)(1 + ε1) = (1 + ε3)λ(X).

Now, we switch to Ω2. Let N be a connected component of f−1
1 (tiBρ(vi)). Let x ∈ N

such that f1(x) = vi and let α be an edge of N emanating from x. By definition gt is

17I.e. at constant speed
18Note that Lip(σt) and Lip(σ−1t ) are not the inverse of each other because different edges are stretched

by σt by a priori different amounts.
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linear on σ−1
t (α), thus in order to estimate its Lipschitz constant we need to know only

the lengths of σ−1
t (α) and its image. Clearly

LX(α) = LX(σt(σ
−1
t (α))) ≤ Lip(σt)LYt(σ

−1
t (α)) and thus LYt(σ

−1
t (α)) ≥ LX(α)

Lip(σt)
.

Moreover, since we have LX(f1(α)) = ρ, we get

ρ ≤ Lip(f1)LX(α) and so LX(α) ≥ ρ

Lip(f1)

whence, by (5) and (3), we obtain

LYt(σ
−1
t (α)) ≥ ρ

Lip(σt) Lip(f1)
>

ρ

(1 + ε2) Lip(f1)
>

ρ

λ(X)(1 + ε1)(1 + ε2)
.

Since γα is the same path in A for every t, its length in At depends linearly on t, namely
here is a constant Cα such that

LYt(γα) = Cαt

whence, setting C = maxαCα,

Lip(gt|σ−1
t (α)) ≤

LYt(σ
−1
t (f1(α)) + LYt(γα)

LYt(σ
−1
t (α))

≤ Lip(σ−1
t )ρ+ tC

LYt(σ
−1
t (α))

< ((1 + ε2)ρ+ tC)
λ(X)(1 + ε1)(1 + ε2)

ρ

< (1 + ε2)(ρ+ tC)
λ(X)(1 + ε1)(1 + ε2)

ρ

= λ(X)(1 + ε3)(1 +
tC

ρ
).

Therefore ∀ε4 > 0∃tε4 > 0 such that ∀t < tε4 and for any α as above, we have
Lip(gt|σ−1

t (α)) < λ(X)(1 + ε4) and so

Lip(gt|Ω2) = sup
α

Lip(gt|σ−1
t (α)) < λ(X)(1 + ε4).(7)

Finally, on Ω3 = At we have gt = ϕ and so Lip(gt|At) = Lip(ϕ). Thus, by 4

Lip(gt|Ω3) ≤ λ(Yt).(8)

Since by (2) λ(X) ≤ λ(Yt)(1 + ε0), by putting together (6), (7), and 8 we have that for
any ε5 > 0 there is tε5 > 0 such that for any t < tε5 we have

Lip(gt) ≤ λ(Yt)(1 + ε5).

We are now in position to obtain the inequality claimed in the statement. Since gt is
optimal, Lip(gt) = λ(Yt), and by Theorem 4.2

d∞(gt, gt) < vol(Yt)(Lip(gt)− λ(Yt)) < vol(Yt)λ(Yt)ε5.

We first estimate

d∞(σt ◦ gt, f1 ◦ σt).
In σ−1

t

(
X \ f−1

1 (tiBρ(vi))
)

we have gt = σ−1
t ◦ f1 ◦ σt so here the distance is zero. On

At, since gt(A) = A, for any i there is j such that we have σt(gt(Ai)) = σt(Aj) = vj =
f1(vi), hence also in At the distance is zero. Finally, let N be a connected component of
f−1

1 (tiBρ(vi)). Let x ∈ N such that f1(x) = vi and let α be an edge of N emanating from
x. The path gt(σ

−1
t (α)) is given by the concatenation of σ−1

t (f1(α)) with γα. The latter
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is collapsed by σt, and the image of the former is just f1(α) = f1 ◦ σt(σ−1
t (α)). Since the

length of γα in At is bounded by tC we have that

d∞(σt ◦ gt, f1 ◦ σt)→ 0 as t→ 0.

In particular ∀ε6∃tε6 such that ∀t < tε6 we have

d∞(σt ◦ gt, f1 ◦ σt) < ε6.

Finally,

d∞(σt ◦ gt, f ◦ σt)
≤ d∞(σt ◦ gt, σt ◦ gt) + d∞(σt ◦ gt, f1 ◦ σt) + d∞(f1 ◦ σt, f ◦ σt)
≤ Lip(σt)d∞(gt, gt) + ε6 + d∞(f1, f)

< (1 + ε2) vol(Yt)λ(Yt)ε5 + ε6 + ε1

which is arbitrarily small for t→ 0. �

Lemma 10.6 (When core(A) is trivial). Let X, Y ∈ Ogr(Γ). Suppose that as graphs of
groups, X is obtained from Y by collapsing a sub-forest A = tAi whose tree Ai each
contains at most one non-free vertex. Then the conclusion of Theorem 7.1 holds.

Proof. Except the definition of gt, the proof goes exactly as that of Lemma 10.1, and it
is even simpler. So let’s define gt. As above At denote the scaled version of A. Let vi be
the vertex of X resulting from the collapse of Ai. The function λ is now continuous

λ(Yt)→ λ(X).

As above, if f collapses some edge we find f1 : X → X a straight map representing [φ]
which collapses no edge and with

d∞(f, f1) < ε1 and Lip(f1) < Lip(f)(1 + ε1) = λ(X)(1 + ε1).

We choose ρ so that Bρ(vi) is star-shaped, the components of f−1
1 (Bρ(vi)) are star-

shaped and contain a unique pre-image of vi, and so that the components of f−1
1 (Bρ(vi))

and f−1
1 (Bρ(vj)) are pairwise disjoint. Finally we chose ρ small enough so that if f(vi) /∈

{vj}, then f(vi) /∈ ∪jBρ(vj).
For any i we choose a base vertex xi ∈ Ai which is the non-free vertex of Ai if any.

For any x ∈ X such that f1(x) = vi and for any edge α in f−1
1 (Bρ(vi)) incident to x, let

γα be the unique embedded path connecting σ−1
t (f1(α)) to xi. We define gt : Yt → Yt as

follows:

• in σ−1
t

(
X \ f−1

1 (tiBρ(vi))
)

we just set gt = σ−1
t ◦ f1 ◦ σt;

• in σ−1
t

(
f−1

1 (tiBρ(vi))
)
\ At we use the paths γα. More precisely, let N be a

connected component of f−1
1 (Bρ(vi)) and let x ∈ N such that f1(x) = vi. For

any edge α ∈ N emanating from x we define gt(σ
−1
t (α)) by mapping linearly19

σ−1
t (α) to the path given by the concatenation of σ−1

t (f1(α)) and γα. Note that
gt|σ−1

t (α) = Str(gt|σ−1
t (α)).

• in the components Ati so that f1(vi) = vj, we set g(Ati) = xj;

finally we set gt = opt(Str(gt)). The estimates on Lipschitz constants and distances now
follow exactly as in the proof of Lemma 10.1. �

19I.e. at constant speed
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