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ABSTRACT. LetM be a complete locally compact CAT(0)-space,
and X an asymptotic cone ofM. For γ ⊂ M a k-dimensional flat,
let γω be the k-dimensional flat in X obtained as the ultralimit
of γ. In this paper, we identify various conditions on γω that are
sufficient to ensure that γ bounds a (k+1)-dimensional half-flat.

As applications we obtain:
(1) constraints on the behavior of quasi-isometries between lo-

cally compact CAT(0)-spaces;
(2) constraints on the possible non-positively curved Riemann-

ian metrics supported by certain manifolds;
(3) a correspondence between metric splittings of a complete,

simply connected non-positively curved Riemannian mani-
folds, and metric splittings of its asymptotic cones; and

(4) an elementary derivation of Gromov’s rigidity theorem from
the combination of the Ballmann, Burns-Spatzier rank rigid-
ity theorem and the classic Mostow rigidity theorem.

1. INTRODUCTION

A k-flat in a CAT(0)-space X is defined to be an isometrically embedded copy of
the standard Rk, k ≥ 1. In the case where k = 1, a k-flat is just a geodesic in X. By
a k-dimensional half-flat, k ≥ 1, in a CAT(0) space, we mean an isometric copy of
Rk−1 × R+ (where R+ = [0,∞) is the usual half line). For example, when k = 1,
a half-flat is just a geodesic ray in X. In the study of CAT(0)-spaces, a key role is
played by the presence of flats and half-flats of higher rank, i.e., satisfying k ≥ 2. In
the present paper, our goal is to identify some coarse geometric conditions which
are sufficient to ensure the existence of half-flats in a CAT(0)-space X. We provide
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three results towards this goal, as well as an example showing that our results are
close to optimal.

Before stating our main results, let us recall that an asymptotic cone of a metric
space X is a new metric space, which encodes the large-scale geometry of X, when
viewed at an increasing sequence of scales. A precise definition, along with some
basic properties of asymptotic cones, is provided in our Section 2. For a k-flat
γω inside the asymptotic cone X of a CAT(0)-space, we introduce (see Section 3)
the notion of a flattening sequence of maps for γω. These are a sequence of maps
from a k-disk Dk into X, whose images are getting further and further away from
γω, and whose projections onto γω satisfy certain technical conditions. The main
point of such flattening sequences is that we can prove the following result:

Theorem A (Flattening sequence ⇒ half flat). Let M be a locally compact
CAT(0)-space and let X be an asymptotic cone of M. Let γ be a k-flat of M (possibly
a geodesic) and let γω be its ultralimit in X. Suppose that there exists a flattening
sequence of maps for γω. Then the original k-flat γ bounds a (k+ 1)-half-flat in M.

The reader will readily see that, in the special case where γω itself bounds
a half-flat, it is very easy to construct a flattening sequence. So an immediate
consequence of Theorem A is the following result:

Theorem B (Half-ultraflat ⇒ half-flat). Let M be a locally compact CAT(0)-
space and let X be an asymptotic cone ofM. Let γ be a k-flat ofM (possibly a geodesic)
and let γω be its ultralimit in X. If γω bounds a half-flat, then γ itself must bound
a half-flat.

We also provide an example showing that, in the context of locally compact
CAT(0)-spaces, the analogue of Theorem B with “half-flats” replaced by “flats” is
false.

In Section 4, we weaken the hypothesis of Theorem B, by replacing a (k+1)-
flat in the ultralimit by a bi-Lipschitzly embedded (k+ 1)-flat. We compensate for
this by requiring the original flat to satisfy some mild periodicity requirement, and
establish the following result:

Theorem C (Bilipschitz half-ultraflat + periodicity ⇒ half-flat). Let M be a
locally compact CAT(0)-space and let X be an asymptotic cone of M. Let γ be a
k-flat of M (possibly k = 1) and let γω its ultralimit in X. Suppose that there exists
G < Isom(M) that acts co-compactly on γ.

If there is a bi-Lipschitz embedding Φ : Rk × R+ → X, whose restriction to
Rk × {0} is a homeomorphism onto γω, then γ bounds a (k+ 1)-half-flat in M.

In Section 5, we provide various geometrical applications of our main results.
These include:

• Constraints on the possible quasi-isometries between certain locally
compact CAT(0)-spaces.

• Restrictions on the possible locally CAT(0)-metrics supported by cer-
tain non-positively curved Riemannian manifolds.
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• A proof that splittings of simply connected non-positively curved Rie-
mannian manifolds correspond exactly with metric splittings of their
asymptotic cones.

• An elementary argument deducing Gromov’s rigidity theorem [3] (a
closed higher rank locally symmetric space supports a unique met-
ric of non-positive curvature up to homothety) from a combination
of the Ballman, Burns-Spatzier rank rigidity theorem and the classic
Mostow rigidity theorem.

In January 2008, the authors posted a preliminary version [14] of this work
on the arXiv, which contained special cases of Thereoms A, B, C, under the addi-
tional hypothesis that the flats be 2-dimensional, and the ambient space M was a
Riemannian manifold of non-positive sectional curvature (rather than a CAT(0)-
space). Shortly thereafter, Misha Kapovich was kind enough to inform the authors
of his paper with B. Leeb [16], in which (amongst other things) they proved a ver-
sion of Theorem C in the special case of 2-dimensional flats, and where the ambi-
ent spaceM was an arbitrary locally compact CAT(0)-space. Their paper provided
the motivation for us to write the present paper, which includes a generalization
to higher dimensional flats of the result in [16, Proposition 3.3].

2. BACKGROUND MATERIAL ON ASYMPTOTIC CONES

In this section, we provide some background on ultralimits and asymptotic cones
of metric spaces. Let us start with some basic reminders on ultrafilters.

Definition. A non-principal ultrafilter on the natural numbers N is a collec-
tionU of subsets of N, satisfying the following four axioms:

(1) If S ∈ U, and S′ ⊃ S, then S′ ∈ U.
(2) If S ⊂ N is a finite subset, then S ∉U.
(3) If S, S′ ∈ U, then S ∩ S′ ∈ U.
(4) Given any finite partition N = S1∪· · ·∪Sk into pairwise disjoint sets, there

is a unique Si satisfying Si ∈ U.

Zorn’s Lemma guarantees the existence of non-principal ultrafilters. Now
given a compact Hausdorff space Z and a map f : N → Z, there is a unique
point fω ∈ Z such that every neighborhood U of fω satisfies f−1(U) ∈ U.
This point is called theω-limit of the sequence {f(i)}; we will occasionally write
ω lim{f(i)} := fω. In particular, if the target space Z is the compact space
[0,∞], we have that fω is a well-defined real number (or ∞).

Definition. Let (M,d,∗) be a pointed metric space, MN the collection of
M-valued sequences, and λ : N → (0,∞) ⊂ [0,∞] a sequence of real numbers
satisfying λω = ∞. Given any pair of points {xi}, {yi} in XN, we define the
pseudo-distance dω({xi}, {yi}) between them to be fω, where f : N→ [0,∞) is
the function f(k) = d(xk,yk)/λ(k). Observe that this pseudo-distance takes on
values in [0,∞].
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Next, note that MN has a distinguished point, corresponding to the constant
sequence {∗}. Restricting to the subset of MN consisting of sequences {xi} satis-
fying dω({xi}, {∗}) < ∞, and identifying sequences whose dω distance is zero,
one obtains a genuine pointed metric space (Mω,dω,∗ω), which is called an
asymptotic cone of the pointed metric space (M,d,∗).

We will usually denote an asymptotic cone by Cone(M). The reader should
keep in mind that the construction of Cone(M) involves a number of choices
(base-points, sequence λi, choice of non-principal ultrafilters) and that different
choices could give different (non-homeomorphic) asymptotic cones (see the pa-
pers [26], [18], [22]). However, in the special case where M = Rk, all asymptotic
cones are isometric to Rk (i.e., we have independence of all choices).

We will require the following basic facts concerning asymptotic cones of non-
positively curved spaces (see for instance [17, Propositions 2.4.4, 2.4.6]):

• If (M,d) is a CAT(0)-space, then Cone(M) is likewise a CAT(0)-
space.

• If ϕ : M → N is a (C,K)-quasi-isometric map, then ϕ induces a
C-bi-Lipschitz map ϕω : Cone(M) → Cone(N).

• If γ ⊂ M is a k-flat, then γω := Cone(γ) ⊂ Cone(M) is likewise a
k-flat.

• If {ai}, {bi} ∈ Cone(M) are an arbitrary pair of points, then the
ultralimit of the geodesic segments aibi gives a geodesic segment
{ai}{bi} joining {ai} to {bi}.

Concerning the second point above, we remind the reader that a (C,K)-quasi-
isometric map ϕ : (M,dM)→ (N,dN) between metric spaces is a (not necessarily
continuous) map having the property that:

1
C
· dM(p, q)−K ≤ dN(ϕ(p),ϕ(q)) ≤ C · dM(p, q)+ K.

We also comment that, in the second point above, the asymptotic cones ofM, N,
have to be taken with the same scaling sequence and the same ultrafilters.

Lemma 2.1 (Translations on asymptotic cone). Let M be a geodesic space,
γ ⊂ M a k-flat, and γω ⊂ X the corresponding k-flat in an asymptotic cone X :=
Cone(M) of M. Assume that there exists a subgroup G < Isom(M) with the property
that G leaves γ invariant, and acts cocompactly on γ. Then for any pair of points p,
q ∈ γω ⊂ X, there is an isometry Φ : X → X satisfying Φ(p) = q.

Proof. Let {pi}, {qi} ⊂ γ ⊂ M be sequences defining the points p, q respec-
tively. Since G leaves γ invariant, and acts cocompactly on γ, there exists elements
gi ∈ G with the property that for every index i, we have d(gi(pi), qi) ≤ R.

Now observe that the sequence {gi} of isometries of M defines a self-map
(defined componentwise) of the space MN of sequences of points in M. Let us
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denote by gω this self-map, which we now proceed to show induces the desired
isometry on X = Cone(M). First note that it is immediate that gω preserves the
pseudo-distance dω on MN, and has the property that dω({gi(pi)}, {qi}) = 0.
So to see that gω descends to an isometry of X, all we have to establish is that
for {xi} a sequence satisfying dω({xi},∗) < ∞, the image sequence also satisfies
dω({gi(xi)},∗) <∞. But we have the series of equivalences:

dω
({xi},∗) < ∞ ⇐⇒ dω({xi}, {pi}) <∞ ,

⇐⇒ dω
({
gi(xi)

}
,
{
gi(pi)

})
<∞ ,

⇐⇒ dω
({
gi(xi)

}
,
{
qi
})
<∞ ,

⇐⇒ dω
({
gi(xi)

}
,∗) <∞ ,

where the first and last equivalences come from applying the triangle inequality in
the pseudo-metric space (MN, dω), and the second and third equivalences follow
from our earlier comments. We conclude that the induced isometry gω on the
pseudo-metric space MN of sequences leaves invariant the subset of sequences at
finite distance from the distinguished constant sequence, and hence descends to
an isometry of X. Finally, it is immediate from the definition of the isometry gω
that it will leave γω invariant, as each gi leaves γ invariant. This concludes the
proof. ❐

Let us now specialize the previous lemma to the case of geodesics (i.e., k = 1).
Observe that any element g ∈ Isom(M) as in the previous lemma gives rise to a
Z-action on M leaving γ invariant. It is worth pointing out that the lemma does
not state that the Z-action onM induces an R-action on X = Cone(M). The issue
is that for each r ∈ R, there is indeed a corresponding isometry of X, but these
will not, in general, vary continuously with respect to r .

A simple example illustrating this phenomena is provided by M = H2, and g
a hyperbolic translation along a geodesic γ. The asymptotic cone X is homeomor-
phic to an R-tree with uncountable branching at every point, and γω is a fixed
geodesic within this R-tree. Lemma 2.1 ensures that, for each r ∈ R, we have a
map Φr ∈ Isom(X) which acts on γω ⊂ X via a translation by the real number
r . To see that the map R → Isom(X) defined via r , Φr is not continuous, we
can consider the orbit of any point x ∈ X which does not lie on the geodesic γω.
The point x lies at distance ε > 0 from the geodesic γω, and has a unique closest
point y ∈ γω. Now for any r ∈ R \ {0}, Φr is an isometry leaving γω invariant,
hence Φr (x) also lies at distance ε from γω, and has closest point Φr (y) ∈ γω.
We can now easily compute the distance between x and Φr (x):

d(x,Φr (x)) = d(x,y)+ d(y,Φr (y))+ d(Φr (y),Φr (x)) = r + 2ε.

Since this distance is uniformly bounded away from zero, the image Φr (x) of x
does not vary continuously with respect to the parameter r , and hence the maps
constructed in Lemma 2.1 do not define an R-action.
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3. FLATTENING SEQUENCES AND HALF-FLATS

In this section, we will provide a proof of Theorem A. Our goal is to show how
certain sequences of maps from the disk to the asymptotic cone of a CAT(0)-space
M can be used to construct flats inM. We recall thatω denotes the ultrafilter used
to construct X = Cone(M), that λj denotes the sequence of scaling factors, and
that ∗ denotes both the base-point of M, and the base-point of X represented by
the constant sequence {∗}.

We are given a k-flat γ ⊂ M (possibly a geodesic), and we have the corre-
sponding k-flat γω ⊂ X in the asymptotic cone X. By abuse of notation, we will
use π to denote both the nearest point projection π : M → γ, as well as the near-
est point projection π : X → γω (these are well defined since both M and X are
CAT(0) spaces). We can now make the following definition:

Definition (Flattening sequences). We say that γω has a flattening sequence
provided there exists a sequence of continuous maps (fr )r∈N from the k-disk Dk
to X such that

(1) The diameter of fr (Dk) is smaller than one.
(2) The image of π ◦ fr contains an open neighborhood of the base-point ∗.
(3) The restriction of π ◦ fr to ∂Dk = Sk−1 does not contain ∗, and represents

a non-zero element in the homotopy group πk−1(γω \ {∗}) � Z.
(4) There exists a constant D > 0 with the property that

d(fr (Dk), γω) = inf
x∈Dk

d(fr (x), γω) ≥ D · r .

The sequence of maps (fr )r∈N will be called a flattening sequence for γω.

We now assume that the k-flat γω has a flattening sequence consisting of
maps fr : Dk → X. To establish Theorem A, we need to prove that γ bounds a
(k + 1)-dimensional half-flat. In order to do this, we have to construct geodesic
rays emanating from various points on γ.

Each such ray will be constructed as a limit of a sequence of longer and longer
geodesic segments, originating from a fixed point on γ, and terminating at a se-
quence of suitably chosen points in the space M. In order to select this suitable
sequence of points in M, we start by noting that each of the maps fr : Dk → X
in our flattening sequence can be obtained as an ultralimit of a sequence of maps
fr,j : Dk → M (see for instance Kapovich [15]). The desired collection of points
will be carefully chosen to lie on the image of some of the maps fr,j . The precise
selection process is contained in the following statement:

Assertion 3.1. Let us be given an arbitrary finite (m + 1)-tuple of points
{P0, . . . , Pm} ⊂ γ. Then for each r ∈ N, we can choose indices jr ∈ N, and
(m+ 1)-tuples of points {x0

r ,jr , . . . , x
m
r,jr } ⊂ fr,jr (Int(Dk)) ⊂M with the property

that:

(1) For each r , and 0 ≤ i ≤m, we have that π(xir ,jr ) = Pi.
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For any i, i′,
d(xir ,jr , x

i′
r ,jr )

λjr
< 2.(2)

For any i,
d(Pi, xir ,jr )
r · λjr

>
D
2
.(3)

We temporarily delay the proof of Assertion 3.1, and focus on explaining
how our Theorem A can be deduced from this statement. We first recall some
terminology: we say that two half-rays η1 and η2 bound a flat strip, provided there
exists an isometric embedding of R+ × [0, a] (for some a > 0) into M, with the
property that η1 coincides with R+ × {0} and η2 coincides with R+ × {a}. For
a fixed ray η, we will denote by Par(η) ⊂ M the union of all geodesic rays in M
which, together with η, jointly bound a flat strip. Our first step is to use Assertion
3.1 to show the following statement:

Claim 3.2. Given any finite set of points {P0, . . . , Pm} ⊂ γ, there exist a collec-
tion of geodesic rays {η0, . . . , ηm}, satisfying:
• For each i, we have that ηi originates at Pi, and satisfies π(ηi) = Pi.
• Each pair of geodesic rays ηi, ηi′ jointly bound a flat strip.

Proof. This can be seen as follows: first, apply Assertion 3.1 to the finite set
of points, obtaining a sequence of (m + 1)-tuples of points {x0

r ,jr , . . . , x
m
r,jr } ⊂

M. Now for each i, consider the sequence of geodesic segments ηir , which joins
the point Pi to the point xir,jr . Since M is locally compact, we can extract a
subsequence which simultaneously converges for all the 0 ≤ i ≤m. We define the
limiting geodesic rays to be our ηi. So to complete the proof of the claim, we just
need to verify that these ηi have the desired property. By construction, we know
that each of the ηir are geodesic segments originating at Pi, which immediately
gives us the corresponding property for ηi. Likewise, we have that each of the
geodesic segments ηir project to the point Pi, which yields the same statement for
ηi. Note that this implies that, for any t > 0, ηi is the minimal length path from
ηi(t) to γ. In particular, the angle (in the CAT(0) sense, see [6]) of ηi with γ
must be ≥ π/2.

So we now need to establish the second property: that each pair ηi and ηi′

jointly bound a flat strip. Let us set d = d(Pi, Pi′); we start by showing that
for t ≥ 0, we have d(ηi(t), ηi′(t)) = d. Since the geodesic rays are limits of
the geodesic segments, this is equivalent to showing limr→∞ d(ηir (t), ηi

′
r (t)) =

d. From condition (1) in Assertion 3.1, and the fact that the projection map is
distance non-increasing, we obtain the inequality:

lim
r→∞d(η

i
r (t), ηi

′
r (t)) ≥ lim

r→∞d(η
i
r (0), ηi

′
r (0)) = d(Pi, Pi

′
) = d.

For the reverse inequality, we need to estimate from above the distance between
ηir (t) and ηi′r (t). To do this, we first truncate the longer of the two geodesic
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segments ηir and ηi′r to have length equal to the smaller one. We will denote
by η̄ir , η̄i′r the new pair of equal length geodesics, and let L denote their common
length. Since we are trying to estimate from above the distance between the points
η̄ir (t) and η̄i′r (t), convexity of the distance function in CAT(0)-spaces yields:

d(η̄ir (t), η̄i
′
r (t)) ≤

(
1− t

L

)
· d(η̄ir (0), η̄i

′
r (0))+

t
L
d(η̄ir (L), η̄i

′
r (L)).

But from condition (3) in Assertion 3.1, we have that L > r · λjr ·D/2. Fur-
thermore, from condition (2) in Assertion 3.1, and an application of the triangle
inequality, we obtain that d(η̄ir (L), η̄i

′
r (L)) < 4λjr +d. Substituting these expres-

sions (along with d(η̄ir (0), η̄i
′
r (0)) = d) into our inequality, and simplifying, we

get:

d(η̄ir (t), η̄
i′
r (t)) ≤ d+ 4t · λjr

L
< d+ 4t · λjr

rλjr ·D/2
= d+ 8t

D · r

where we recall that d, t, D are constants. Now taking the limit as r → ∞, we
obtain that limr→∞ d(η̄ir (t), η̄i

′
r (t)) ≤ d, as desired.

This verifies that the two geodesic rays ηi, ηi′ remain at a constant distance
apart, in the sense that d(ηi(t), ηi′(t)) is a constant function of t. Furthermore,
from our earlier discussion, we have that the geodesic segment joining Pi = ηi(0)
to Pi′ = ηi′(0) forms an angle ≥ π/2 with each of the geodesic rays ηi, ηi′ , and
hence both these angles must actually be = π/2. But in a CAT(0) space, this
forces the geodesics ηi and ηi′ to bound a flat strip (see the proof of the flat strip
theorem [6, p. 182]). This concludes the proof of Claim 3.2. ❐

So we now know that any finite set of points {P0, . . . , Pm} ⊂ γ are common
endpoints of geodesic rays that pairwise bound a flat strip. But ultimately, we
want to show that every point on γ is an endpoint of a parallel geodesic ray. Our
next step is to establish the following statement:

Claim 3.3. Given any compact set K ⊂ γ, we can find an isometric embedding
of K × [0,∞)↩ M with the property that K × {0} maps to K.

Proof. Recall that, for a geodesic η, the set Par(η) is the union of all geodesic
rays which, together with η, bound a flat strip. From the proof of the product
region theorem in CAT(0)-spaces (see for example [6]), one has that Par(η) forms
a convex subset of M, which splits as a metric product B × [0,∞). Here B ⊂ M is
a convex subset, and consists of the collection of all the base-points of the parallel
geodesic rays.

Since K ⊂ γ is compact, we can find a finite set of points {P0, . . . , Pm} ⊂ γ
whose convex hull contains K. Applying Claim 3.2, we have that there exist a
corresponding collection of geodesic rays {η0, . . . , ηm}, with each ηi originating
from Pi, and which pairwise bound a flat strip. Considering the set Par(η0), we
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have that Par(η0) is isometric to B × [0,∞), where B is the collection of base-
points. But we know that {P0, . . . , Pm} ⊂ B, so their convex hull is likewise
contained in B, forcing K ⊂ B. We conclude that there is an isometric copy of
K × [0,∞) embedded inside the convex subset Par(η) ⊂ M. This completes the
proof of Claim 3.3. ❐

Finally, let us take a sequence of compact sets Ki ⊂ γ exhausting the flat γ (for
instance, take Ki to be the radius imetric ball centered at ∗). From Claim 3.3, we
have a corresponding sequence of isometrically embedded copies of Ki×[0,∞) ↩
M, where each Ki × {0} maps to the corresponding compact Ki. From local
compactness, we can extract a convergent subsequence, whose limit will be the
desired half-flat bounding γ. So to complete the proof of Theorem A, we are left
with verifying Assertion 3.1.

Proof of Assertion 3.1. Let us recall the framework: we have a finite collection
of points {P0, . . . , Pm} ⊂ γ, and for each r ∈ N, a collection of maps fr,j :
Dk → M having the property that ω limfr,j = fr : Dk → X. We want to find,
for each index r , a corresponding index jr and set of points {x0

r ,jr , . . . , x
m
r,jr } ⊂

fr,jr (Int(Dk)). The chosen set of points should have the property that

(1) for each i, π(xir ,jr ) = Pi;
(2) for any i, i′, d(xir ,jr , x

i′
r ,jr ) < 2λjr ;

(3) for any i, d(Pi, xir ,jr ) > r · λjr ·D/2.

Our approach is as follows: fixing r , we define three subsets of N by setting

• J1 to be the set of indices j for which {P0, . . . , Pm} ⊂ π ◦ fr,j(Int(Dk));
• J2 to be the set of indices where diam(fr,j(Dk)) < 2λj;
• J3 to be the set of indices where d(γ, fr,j(Dk)) > r · λj ·D/2.

Now assuming we could show that each of these three sets are in ω, property (3)
of ultrafilters (closure under finite intersections) implies that J1 ∩ J2 ∩ J3 ∈ ω.
Finally, every set in ω is infinite (property (2) of ultrafilters), and in particular
non-empty, allowing us to find an index jr ∈ J1 ∩ J2 ∩ J3. For this index jr , we
can choose arbitrary points xir,jr ∈ fr,jr (Int(Dk)) satisfying π(xir ,jr ) = Pi (such
points exist since jr ∈ J1). And from jr ∈ J2 ∩ J3, it immediately follows that
the tuple of points {x0

r ,jr , . . . , x
m
r,jr } ⊂ fr,jr (Int(Dk)) has the desired properties.

Step 1: The set J2 lies in the ultrafilter ω. To see this, we recall that
property (1) in the definition of a flattening sequence requires diam(fr (Dk)) ≤ 1.
Since we know that fr = ω limfr,j , the definition of distances in the ultralimit
tells us that the set of indices j for which diam(fr,j(Dk))/λj < 2 lies in the
ultrafilter. This verifies Step 1.
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Step 2: The set J3 lies in the ultrafilter ω. For this, we argue similarly.
Recall that property (4) in the definition of a flattening sequence requires the ex-
istence of a D > 0 so that d(fr (Dk), γω) = infx∈Dk d(fr (x), γω) ≥ D · r . Since
fr is the ultralimit of the maps fr,j , the definition of distances in the ultralimit
tells us that the set of indices j for which d(fr,j(Dk), γ)/λj ≥ rD/2 lies in the
ultrafilter. This verifies Step 2.

Step 3: The set J1 lies in the ultrafilter ω. This last step is much more
involved than the first two. Let us fix one of the points Pi, and consider the
restriction fr,j|∂Dk : Sk−1 → M, composed with the projection π : M → γ. We
have three distinct possibilities:

(1) Pi lies in the image of π ◦ fr,j|∂Dk , or
(2) π(fr,j(∂Dk)) ⊂ γ \ {Pi}, and [π ◦ fr,j|∂Dk] = 0 in πk−1(γ \ {Pi}), or
(3) π(fr,j(∂Dk)) ⊂ γ \ {Pi}, and [π ◦ fr,j|∂Dk] ≠ 0 in πk−1(γ \ {Pi}).

This gives us a partition N = Ii1∪Ii2∪Ii3 into three disjoint sets, according to which
of these three properties holds for the index j. From property (4) of ultrafilters,
we have that exactly one of these three sets must lie in ω. If we could show that
Ii3 ∈ω, then property (3) of ultrafilters would force I03 ∩ · · · ∩ Ik3 ∈ω. Since we
have a containment I03 ∩ · · · ∩ Ik3 ⊂ J1, property (1) of ultrafilters would give us
that J1 ∈ω.

So to conclude the proof of Step 3 (and hence, of Assertion 3.1), we are left
with showing that, for each fixed choice of i, Ii1 ∉ ω and Ii2 ∉ ω. We will argue
both of these by contradiction. We also remind the reader that, from this point
on in the proof, i should be considered fixed.

Supposing that Ii1 ∈ ω, we would have that the set of indices for which
d(Pi,π ◦ fr,j|∂Dk)/λj = 0 is contained in ω. So the point represented by the
constant sequence {Pi} = {∗} ∈ γω lies on the set:

ω lim
(
π ◦ fr,j

∣∣
∂Dk

) = π(ω limfr,j
∣∣
∂Dk

) = π ◦ fr∣∣∂Dk.
But this contradicts property (3) in the definition of a flattening sequence.

Similarly, to see that Ii2 ∉ ω, we again argue by contradiction. So let us
assume that Ii2 ∈ ω. Note that the indices in Ii2 are those for which the map
π ◦fr,j|∂Dk : Sk−1 → γ \ {Pi} is homotopically trivial. Let us define real numbers

aj = inf
x∈∂Dk

d(Pi,π ◦ fr,j(x)),

bj = sup
x∈∂Dk

d(Pi,π ◦ fr,j(x)),

and consider the set Aj := {x ∈ γ | aj ≤ d(x, Pi) ≤ bj}. The inclusion Aj ↩
γ \ {Pi} is a homotopy equivalence, and the map π ◦ fr,j|∂Dk has its image lying
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inside Aj . Hence for indices j ∈ Ii2, we have that [π ◦ fr,j|∂Dk] = 0 ∈ πk−1(Aj),
and we can construct a map Fj : Dk → Aj ⊂ γ \ {Pi} with the property that
Fj|∂Dk = π ◦ fr,j|∂Dk .

Now for each ε > 0, we can further partition the set Ii2 = Ii2(ε) ∪ Īi2(ε) by
defining Ii2(ε) to be the set of indices where the inequality aj < ελj holds, and
Īi2(ε) the set of indices where aj ≥ ελj . From property (4) of ultrafilters, we have
that precisely one of the sets Ii2(ε), Ī

i
2(ε) is contained in ω. We now have two

possibilities:

• either we have that Ii2(ε) ∈ω for every ε > 0,
• or there exists some ε > 0, for which Īi2(ε) ∈ω.

In the first case, we again obtain that the point represented by the constant se-
quence {Pi} = {∗} ∈ γω lies on the setω lim(π ◦fr,j|∂Dk) = π ◦fr |∂Dk , which
contradicts property (3) in the definition of a flattening sequence.

In the second case, we can try to take the ultralimit of the collection of maps
Fj : Dk → γ. The upper bound on the distance between Fj and Pi ensures that the
Fj escape to infinity slowly enough for the ultralimit to be defined. More precisely,
from the fact that the maps π◦fr,j|∂Dk have as ultralimit π◦fr |∂Dk , we must have
that ω lim{bj/λj} < ∞, which in turn implies that the ultralimit Fω : Dk → γω
exists. On the other hand, the lower bound on the distance between Fj and Pi

ensures that the ultralimit Fω does not pass through the constant sequence {Pi}.
More precisely, for the ε > 0 satisfying Īi2(ε) ∈ω, and for any index set j ∈ Īi2(ε),
we have that

d(Fj(Dk), Pi)/λj ≥ d(Aj, Pi)/λj = aj/λj ≥ ε.

Since this holds for a set of indices in the ultrafilter, we immediately deduce the
corresponding property for the ultralimit: d(Fω(Dk), {Pi}) ≥ ε. In particular,
Fω : Dk → γω has its image lying in the complement of the point corresponding
to the constant sequence {Pi} = {∗}, and restricts to the map π ◦ fr |∂Dk on the
boundary Sk−1 = ∂Dk. This tells us that [π ◦ fr |∂Dk] = 0 ∈ πk−1(γω \ {∗}),
which contradicts property (3) in the definition of a flattening sequence. This
concludes the verification of Step 3, and hence completes the proof of Assertion
3.1. ❐

Having established the Assertion 3.1, we have now concluded the proof of Theo-
rem A. From the definition of a flattening sequence, it is obvious that these exist
whenever γω bounds a half-flat in X. As a result, we see that Theorem B follows
immediately from Theorem A.

Finally, let us conclude this section by providing a family of cautionary exam-
ples. These will be locally compact CAT(0)-spaces Xk, each containing a geodesic
γ, with the property that for a suitable choice of scales, γω is contained inside a
k-dimensional flat, but the individual Xk do not contain any flats of dimension



406 STEFANO FRANCAVIGLIA & JEAN-FRANÇOIS LAFONT

> 1. In particular, these examples show that the analogue of Theorem B with
“half-flats” replaced by “flats” is false.

Example. Let us fix a k ≥ 2, and for n ∈ N, define the spaces Cn :=
[−n3, n3]k ⊂ Rk. Each Cn is isometric to the standard k-dimensional cube with
side length 2n3; we let `n ⊂ Cn be the geodesic segment of length 2n3 joining the
two points (±n3,0, . . . ,0) inside Cn. Now consider the closed upper half space
R × R≥0 := {(x,y) | y ≥ 0} with the standard flat metric, and for n ∈ N, let
us denote by ¯̀

n the segment of length 2n3 joining the pair of points (±n3, n)
inside R × R≥0. We now form the space Xk by gluing together all the Cn to
R×R≥0. More precisely, we isometrically identify each `n with the corresponding
¯̀
n. Observe that this space Xk, with the natural induced metric, is a locally com-

pact CAT(0)-space. Furthermore, it is clear that Xk does not contain any flats of
dimension > 1. Now consider the ultralimit X obtained by fixing the origin as the
sequence of base-points, and setting λ(i) = i2 to be the sequence of scales. Let us
consider the geodesic γ ⊂ Xk given by the x-axis in the R×R≥0 portion ofM. We
claim that the corresponding geodesic γω ⊂ ω limXk is contained inside a k-flat
inω limXk. Indeed, this follows readily from the following two observations

• Since the distance from ¯̀
n to the γ grows linearly, while the scaling

factor λ grows quadratically, every point P ∈ γω can be represented
by a sequence {pn} with the additional property that pn ∈ Cn.

• Since the size of the cubes Cn grows cubically, while the scaling
factor λ grows quadratically, the subset Cω ⊂ ω limXk consisting
of all points having a representative sequence of the form {ci} (with
each ci ∈ Ci) is isometric to the standard Rk.

This concludes our family of locally CAT(0) examples.

4. FROM BI-LIPSCHITZ HALF-ULTRAFLATS TO HALF-FLATS

In this section we prove Theorem C, allowing us to deduce the presence of half-
flats in M from the presence of bi-Lipschitz half-flats in the ultralimit X along
with a mild periodicity condition.

The context is the following: we have a locally compact CAT(0)-spaceM (for
instance, the universal cover of a non-positively curved Riemannian manifold)
and an asymptotic cone X of M. We have a k-flat γ in M, and its limit γω in X.
Moreover, we are supposing that there exists G < Isom(M) that acts co-compactly
on γ. We are assuming that there is a bi-Lipschitz embeddingϕ : Rk×R≥0 → X,
whose restriction to Rk×{0}maps onto γω, and we want to show that γ bounds
a (k+ 1)-dimensional half-flat in M. In view of our Theorem A, it is sufficient to
find a flattening sequence for γω.

Let C be the bi-Lipschitz constant of ϕ, and for r ∈ R, let us denote by
Lr = Rk×{r} ⊂ Rk×R≥0 the horizontal flat at height r . We will use ρ to denote
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the obvious projection map ρ : Lr → L0. To make our various expressions more
readable, we use d to denote the distance in X (as opposed to dω), and the norm
notation to denote the distance inside Rk ×R≥0.

We now define, for each r ∈ [0,∞), a map

ψr : Lr → L0

as follows: given p ∈ Lr , we have ϕ(p) ∈ X. Since γω ⊂ X is a flat inside the
CAT(0) space X, there is a well defined, distance non-increasing, projection map
π : X → γω, which sends any given point in X to the (unique) closest point on
γω. Hence, given p ∈ Lr , we have the composite map π ◦ϕ : Lr → γω. But
recall that, by hypothesis, ϕ maps L0 homeomorphically to γω. We can now set
ψr : Lr → L0 to be the composite map

ψr =ϕ−1 ◦π ◦ϕ

We now show that ψr is at finite distance from the projection map ρ : Lr → L0.
We first observe that for arbitrary x ∈ Lr , the distance from x to L0 is exactly

r , and hence from the bi-Lipschitz estimate, we have

d(ϕ(x), γω) = d(ϕ(x),ϕ(L0)) ≤ Cr.

Since π is the nearest point projection onto γω, this implies that

d(ϕ(x), (π ◦ϕ)(x)) ≤ Cr.

Since (π ◦ ϕ)(x) = ϕ(ψr(x)), we can again use the bi-Lipschitz estimate to
conclude that:

Cr ≥ d(ϕ(x), (π ◦ϕ)(x)) = d(ϕ(x),ϕ(ψr (x))) ≥ 1
C
· ‖x −ψr(x)‖,

which gives us the estimate ‖x − ψr(x)‖ ≤ C2r . This implies that ψ is at
bounded distance from the projection map ρ. Since the latter is a homeomor-
phism onto L0 � Rk, it follows that ψr is surjective.

Sinceψr is a surjective, Lipschitz map, its differential exists almost everywhere
and it is almost everywhere non-degenerate (this follows easily from Rademacher’s
theorem, see for example [27, Chapter 3]). It follows that we can find a k-disk
Dr in Lr , of diameter smaller than 1/C, and a point pr in ψr(Dr ) such that
ψr(∂Dr) is homotopically non trivial in L0 \ pr . By Lemma 2.1, we can find an
isometry gr of X, that leaves γω invariant, and satisfies gr (ϕ(pr )) = ∗.

Now we define the maps fr : Dk � Dr → X via the composition

fr = gr ◦ϕ
∣∣
Dr ,
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and observe that we have π ◦ fr = gr ◦ϕ ◦ ψr . Moreover, since the diameter
of Dr is smaller than 1/C, the diameter of fr (Dr ) is smaller than one. Finally,
it is clear that our choices for Dr imply that fr satisfies all the conditions for
being a flattening sequence for γ. Invoking Theorem A completes the proof of
Theorem C. ❐

5. SOME APPLICATIONS

Finally, let us discuss some consequences of our main results. As a first application,
we obtain some constraints on the behavior of a quasi-isometry between locally
compact CAT(0)-spaces.

Corollary 5.1 (Constraints on quasi-isometries). Let M̃1, M̃2 be two locally
compact CAT(0)-spaces, and assume that ϕ : M̃1 → M̃2 is a quasi-isometry. Let
γ ⊂ M̃1 be a k-flat, γω ⊂ X1 := Cone(M̃1) the corresponding k-flat in the asymptotic
cone, and assume that there exists a bi-Lipschitz (k+1)-dimensional half-flat F ⊂ X1
bounding the k-flat γω ⊂ X1. Then we have the following dichotomy: either

(1) Non-periodicity: Every k-flat η at bounded distance from ϕ(γ) has
the property that η/StabG(η) is non-compact, where G = Isom(M̃2),
or

(2) Bounding: Every k-flat η at bounded distance from ϕ(γ) bounds a
(k+ 1)-dimensional half-flat.

Proof. This follows immediately from our Theorem C. Assume that the first
possibility does not occur, i.e., there exists a k-flat η at bounded distance from
ϕ(γ) with the property that StabG(η) ⊂ G = Isom(M̃2) acts cocompactly on η.
Now recall that the quasi-isometry ϕ : M̃1 → M̃2 induces a bi-Lipschitz home-
omorphism ϕω : Cone(M̃1) → Cone(M̃2). Since η ⊂ M̃2 was a k-flat at finite
distance from ϕ(γ), we have the containment:

ϕω(γω) ⊆ ηω ⊂ Cone(M̃2).

Since ϕω(γω) is a bi-Lipschitz copy of Rk inside the k-flat ηω, we conclude
that ϕ(γω) = ηω. But recall that we assumed that γω was contained inside a
bi-Lipschitz flat γω ⊂ F ⊂ Cone(M̃1), and hence we see that ηω ⊂ ϕω(F) is
likewise contained inside a bi-Lipschitz flat. Since the hypotheses of Theorem
C are satisfied, we conclude that η must bound a (k + 1)-dimensional half-flat,
concluding the proof of Corollary 5.1. ❐

The statement of our first corollary might seem somewhat complicated. We now
proceed to isolate a special case of most interest:

Corollary 5.2 (Constraints on perturbations of metrics). Assume that (M,g0)
is a closed Riemannian manifold of non-positive sectional curvature, and assume that
Nk ↩ M is an isometrically embedded compact flat k-manifold with image γ0. Let
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γ̃0 ⊂ M̃ be the k-flat obtained by taking a connected lift of γ0, and assume that γ̃0
bounds a (k+ 1)-dimensional half-flat F0.

Then if (M,g) is any other Riemannian metric on M with non-positive sectional
curvature, and γ ⊂ M is an isometrically embedded flat k-manifold (in the g-metric)
freely homotopic to γ0, then the lift γ̃ ⊂ (M̃, g̃)must also bound a (k+1)-dimensional
half-flat F .

We can think of Corollary 5.2 as a “non-periodic” version of the Flat Torus
theorem. Indeed, in the case where F is π1(M)-periodic, the Flat Torus theorem
applied to (M,g) implies that γ̃ is likewise contained in a periodic flat.

Proof. Since M is compact, the identity map provides a quasi-isometry
ϕ : (M̃, g̃0) → (M̃, g̃). The half-flat F0 containing γ̃0 gives rise to a flat
(F0)ω ⊂ Cone(M̃, g̃0) containing (γ̃0)ω. In particular, we can apply the previous
Corollary 5.1.

Next note that, since γ0, γ are freely homotopic to each other, there is a lift
γ̃ of γ which is at finite distance (in the g-metric) from the given γ̃0 ⊂ (M̃, g̃).
Indeed, taking the free homotopy H : Nk × [0,1] → M between H0 = γ0 and
H1 = γ, we can then take a lift H̃ : Rk×[0,1]→ M̃ satisfying the initial condition
H̃0 = γ̃0 (the given lift of γ0). The time one map H̃1 : Rk → M̃ will be a
lift of H1 = γ, hence a k-flat in (M̃, g̃). Furthermore, the distance (in the g-
metric) between γ̃0 and γ̃ will clearly be bounded above by the supremum of the
g-lengths of the (compact) family of maps Hp : [0,1] → (M,g), p ∈ Nk, defined
by Hp(t) = H(p, t).

Now observe that by construction, the γ̃ ⊂ (M̃, g̃) from the previous para-
graph has StabG(γ̃) acting cocompactly on γ̃, where G = Isom(M̃, g̃). Hence the
first possibility in the conclusion of Corollary 5.1 cannot occur, and we conclude
that γ̃ must bound a (k + 1)-dimensional half-flat F , as desired. This concludes
the proof of Corollary 5.2. ❐

Next we recall some terminology from differential geometry: for M a complete,
simply connected, Riemannian manifold of non-positive sectional curvature, the
rank of a geodesic γ ⊂ X is the dimension rk(γ) of the vector space of parallel
Jacobi fields along γ. Note that the unit tangent vector field is always parallel,
hence the rank of a geodesic is always ≥ 1; a geodesic is said to have higher rank
provided rk(γ) ≥ 2. A geodesic γ that bounds a 2-dimensional half-flat automat-
ically has rk(γ) ≥ 2, as the unit normal vector field within the half-flat will be a
parallel Jacobi field along γ. Finally, the manifold M is said to have higher rank
provided every geodesic γ ⊂ M satisfies rk(γ) ≥ 2. The celebrated rank-rigidity
theorem, established independently by Ballmann [2] and Burns-Spatzier [7], states
that if M has higher rank, then:

(1) either M is isometric to an irreducible, higher-rank symmetric space
of non-compact type,
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(2) or M is reducible, and splits isometrically as a product M1 × M2 of
lower dimensional manifolds of non-positive sectional curvature.

Our next two applications will exploit the combination of our main results with
the rank-rigidity theorem to deduce some information concerning manifolds of
non-positive sectional curvature.

Now recall that the classic de Rham theorem [25] states that any simply con-
nected, complete Riemannian manifold admits a decomposition as a metric prod-
uct M̃ = Rk ×M1 × · · · ×Mk, where Rk is a Euclidean space equipped with the
standard metric, and eachMi is metrically irreducible (and not R or a point). Fur-
thermore, this decomposition is unique up to permutation of the factors. This
result was recently generalized by Foertsch-Lytchak [13] to cover finite dimen-
sional geodesic metric spaces (such as ultralimits of Riemannian manifolds). Our
next corollary shows that, in the presence of non-positive Riemannian curvature,
there is a strong relationship between splittings of M̃ and splittings of Cone(M̃).

Corollary 5.3 (Asymptotic cones detect splittings). Let M be a closed Rie-
mannian manifold of non-positive curvature, M̃ the universal cover ofM with induced
Riemannian metric, and X = Cone(M̃) an arbitrary asymptotic cone of M̃. If

M̃ = Rk ×M1 × · · · ×Mn
is the de Rham splitting of M̃ into irreducible factors, and

X = R` ×X1 × · · · ×Xm

is the Foertsch-Lytchak splitting of X into irreducible factors, then k = `, n =m, and
up to a relabeling of the index set, we have that each Xi = Cone(Mi).

Proof. Let us first assume that M̃ is irreducible (i.e., k=0, n=1), and show that
X = Cone(M̃) is also irreducible (i.e., ` = 0,m = 1). By way of contradiction, let
us assume that X splits as a metric product, and observe that this clearly implies
that every geodesic γ ⊂ X is contained inside a flat. In particular, from our
Theorem A, we see that every geodesic inside M̃ must bound a 2-dimensional half-
flat, and hence must have higher rank. Applying the Ballmann, Burns-Spatzier
rank rigidity result, and recalling that M̃ was irreducible, we conclude that M̃ is
in fact an irreducible higher rank symmetric space. But now Kleiner-Leeb have
shown that for such spaces, the asymptotic cone is irreducible (see [17, Section
6]), giving us the desired contradiction.

Let us now proceed to the general case: from the metric splitting of M̃, we
get a corresponding metric splitting Cone(M̃) = Rk × Y1 × · · · × Yn, where each
Yi = Cone(Mi). Since each Mi is irreducible, the previous paragraph tells us that
each Yi is likewise irreducible. So we now have two product decompositions of
Cone(M̃) into irreducible factors. So assuming that each Yi is distinct from a point
and is not isometric to R, we could appeal to the uniqueness portion of Foertsch-
Lytchak [13, Theorem 1.1] to conclude that, up to relabeling of the index set,
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each Xi = Yi = Cone(Mi), and that the Euclidean factors have to have the same
dimension k = `.

To conclude the proof of our corollary, we need to argue that if M̃ is a simply
connected, complete, Riemannian manifold of non-positive sectional curvature,
and dim(M) ≥ 2, then Cone(M̃) is distinct from a point or R. Equivalently,
one just needs to argue that the asymptotic cone of π1(M) is distinct from a
point or R. But Druţu and Sapir [10, Corollary 6.2] have shown that any finitely
generated group with an asymptotic cone homeomorphic to a point or R has
to be virtually cyclic, hence must either be finite or have virtual cohomological
dimension = 1. Since π1(M) is an infinite group with virtual cohomological
dimension = dim(M) ≥ 2, we see that neither of these two options can occur.
This concludes the proof of Corollary 5.3. ❐

Before stating our next result, we recall that the celebrated rank rigidity theorem of
Ballmann, Burns-Spatzier was motivated by Gromov’s well-known rigidity theo-
rem, the proof of which appears in the book [3]. Our next corollary shows how in
fact Gromov’s rigidity theorem can now be directly deduced from the rank rigidity
theorem. This is our last result:

Corollary 5.4 (Gromov’s higher rank rigidity [3]). Let M∗ be a compact lo-
cally symmetric space of R-rank ≥ 2, with universal cover M̃∗ irreducible, and let M
be a compact Riemannian manifold with sectional curvature K ≤ 0. If π1(M) �
π1(M∗), then M is isometric to M∗, provided Vol(M) = Vol(M∗).

Proof. Since both M and M∗ are compact with isomorphic fundamental
groups, the Milnor-Švarc theorem gives us quasi-isometries:

M̃∗ ' π1(M∗) ' π1(M) ' M̃

which induce a bi-Lipschitz homeomorphism ϕ : Cone(M̃∗) → Cone(M̃). Now
in order to apply the rank rigidity theorem, we need to establish that every geodesic
in M̃ has rank ≥ 2.

We first observe that the proof of Corollary 5.2 extends almost verbatim to
the present setting. Indeed, in Corollary 5.2, we used the identity map to induce
a bi-Lipschitz homeomorphism between the asymptotic cones, and then appealed
to Corollary 5.1. The sole difference in our present context is that, rather than
using the identity map, we use the quasi-isometry between M̃ and M̃∗ induced by
the isomorphism π1(M) � π1(M∗). This in turn induces a bi-Lipschitz homeo-
morphism between asymptotic cones (see Section 2). The reader can easily verify
that the rest of the argument in Corollary 5.2 extends to our present setting, es-
tablishing that every lift to M̃ of a periodic geodesic in M has rank ≥ 2.

So we now move to the general case, and explain why every geodesic in M̃ has
higher rank. To see this, assume by way of contradiction that there is a geodesic
η ⊂ M̃ with rk(η) = 1. Note that the geodesic η cannot bound a half-plane. But
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once we have the existence of such an η, we can appeal to results of Ballmann
[1, Theorem 2.13], which imply that η can be approximated (uniformly on com-
pacts) by lifts of periodic geodesics in M; let {γ̃i} → η be such an approximating
sequence. Since each γ̃i has rk(γ̃i) ≥ 2, it supports a parallel Jacobi field Ji, which
can be taken to satisfy ‖Ji‖ ≡ 1 and 〈Ji, γ̃′i〉 ≡ 0. Now we see that:

• The limiting vector field J defined along η exists, due to the control
on ‖Ji‖;

• The vector field J along η is a parallel Jacobi field, since both the “par-
allel” and “Jacobi” condition can be encoded by differential equations
with smooth coefficients, solutions to which will vary continuously
with respect to initial conditions; and

• J will have unit length and will be orthogonal to η′, from the corre-
sponding condition on the Ji.

But this contradicts our assumption that rk(η) = 1. So we conclude that every
geodesic η ⊂ M̃ must satisfy rk(η) ≥ 2, as desired.

From the rank rigidity theorem, we now obtain that M̃ either splits as a prod-
uct, or is isometric to an irreducible higher rank symmetric space. Since the as-
ymptotic cone of the irreducible higher rank symmetric space is topologically ir-
reducible (see [17, Section 6]), and Cone(M̃) is homeomorphic to Cone(M̃∗),
we have that M̃ cannot split as a product. Finally, we see that π1(M) � π1(M∗)
acts cocompactly, isometrically on two irreducible higher rank symmetric spaces
M̃ and M̃∗. By Mostow rigidity [21], we have that the quotient spaces are, after
suitably rescaling, isometric. This completes our proof of Gromov’s higher rank
rigidity theorem. ❐
Finally, let us conclude our paper with a few comments on this last corollary.

Remark. (1) The actual statement of Gromov’s theorem in [3, p. (i)] does not
assume M̃∗ to be irreducible, but ratherM∗ to be irreducible (i.e., there is no finite
cover of M∗ that splits isometrically as a product). This leaves the possibility that
the universal cover M̃∗ splits isometrically as a product, but no finite cover ofM∗
splits isometrically as a product. However, in this specific case, the desired result
was already proved by Eberlein (see [11]). And in fact, in the original proof of
Gromov’s rigidity theorem, the very first step (see [3, p. 154]) consists of appealing
to Eberlein’s result to reduce to the case where M̃∗ is irreducible.

(2) In the course of writing this paper, the authors learnt of the existence of
another proof of Gromov’s rigidity result, which bears some similarity to our rea-
soning. As the reader has surmised from the proof of Corollary 5.4, the key is
to somehow show that M also has to have higher rank. But a sophisticated result
of Ballmann-Eberlein [4] establishes that the rank of a non-positively curved Rie-
mannian manifold M can in fact be detected directly from algebraic properties of
π1(M), and hence the property of having “higher rank” is in fact algebraic (see



Scale Detection of Half-flats in CAT(0) Spaces 413

also the recent paper of Bestvina-Fujiwara [5]). The main advantage of our ap-
proach is that one can deduce Gromov’s rigidity result directly from rank rigidity,
and indeed, that one can geometrically “see” that the property of having higher
rank is preserved.

(3) We point out that various other mathematicians have obtained results ex-
tending Gromov’s theorem (and which do not seem tractable using our methods).
A variation considered by Davis-Okun-Zheng [9], requires M̃∗ to be reducible
and M∗ to be irreducible (the same hypothesis as in Eberlein’s rigidity result).
However, Davis-Okun-Zheng allow the metric onM to be locally CAT(0) (rather
than Riemannian non-positively curved), and are still able to conclude that M
is isometric (after rescaling) to M∗. The optimal result in this direction is due
to Leeb [19], giving a characterization of certain higher rank symmetric spaces
and Euclidean buildings within the broadest possible class of metric spaces, the
Hadamard spaces (complete geodesic spaces for which the distance function be-
tween pairs of geodesics is always convex). It is worth mentioning that Leeb’s result
relies heavily on the viewpoint developed in the Kleiner-Leeb paper [17].

(4) We note that our method of proof can also be used to establish a non-
compact, finite volume analogue of the previous corollary. Three of the key ingre-
dients going into our proof were

(i) Ballmann’s result on the density of periodic geodesics in the tangent bundle;
(ii) Ballmann-Burns-Spatzier’s rank rigidity theorem; and

(iii) Mostow’s strong rigidity theorem.

A finite volume version of (i) was obtained by Croke-Eberlein-Kleiner (see [8, Ap-
pendix]), under the assumption that the fundamental group is finitely generated.
A finite volume version of (ii) was obtained by Eberlein-Heber (see [12]). The
finite volume versions of Mostow’s strong rigidity were obtained by Prasad in the
Q-rank one case [23] and Margulis in the Q-rank ≥ 2 case [20] (see also [24]).
One technicality in the non-compact case is that isomorphisms of fundamental
groups no longer induce quasi-isometries of the universal cover. In particular, it is
no longer sufficient to just assume π1(M) � π1(M∗), but rather one needs a ho-
motopy equivalence f : M → M∗ with the property that f lifts to a quasi-isometry
f̃ : M̃ → M̃∗. We leave the details to the interested reader.
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