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Abstract. In this paper we study the possibility of defining a similarity structure on the torus
and the Klein bottle using the combinatorial data of a triangulation. Given a choice of moduli
for the triangles of a triangulation of a surface, the problem is to decide whether such moduli
are compatible with a global similarity structure on the surface.
We study this problem under two di¤erent viewpoints. From one side we look at the combi-

natorial data of triangulations, and we develop an algorithmic method, which allows us to re-
duce the general problem to a simpler one, which is easily solved. From the other side we study
the problem more algebraically, looking at the properties of the holonomy, and we give a com-
plete characterization of the choices of moduli defining global similarity structures on the torus
(or on the Klein bottle).

1 Introduction

A similarity structure on a surface is a smooth atlas in which the changes of charts
are similarities. A similarity structure on an oriented triangle can be described by a
complex number, called modulus, that lies in pþ ¼ fz A C : ImðzÞ > 0g. Therefore,
once an orientation for each triangle has been fixed, a similarity structure on a trian-
gulated surface determines a modulus for each triangle. Conversely, given a choice of
moduli for the triangles of a triangulation of a surface, it is natural to ask when such
moduli are compatible with a global similarity structure on the surface.

The problem of the study of similarity structures on the torus T and the Klein bot-
tle K via triangulations arises in a natural way as a ‘‘boundary’’ problem in the study
of hyperbolic 3-manifolds. First of all because if M is a complete hyperbolic manifold
of finite volume, then the ends of M are homeomorphic to T � ð0;yÞ or K � ð0;yÞ
and horospherical sections give Euclidean structures on T or K . Moreover, the trian-
gulations of tori and Klein bottles are strictly related to the ideal triangulations of
3-manifolds.

More precisely, let M be a 3-manifold homeomorphic to the interior of a compact
manifold M whose boundary consists of tori and Klein bottles. A topological ideal
triangulation of M is a description of M as a gluing of ideal tetrahedra, i.e. tetrahe-
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dra with vertices removed. Any ideal triangulation of M induces a triangulation of
qM. Given an ideal triangulation of M one can try to define a finite-volume hyper-
bolic structure on M by defining it on each tetrahedron and then by requiring that
such structures are compatible with a global one on M. As in the case of similarity
structures on triangles, a hyperbolic structure on an ideal tetrahedron can be de-
scribed by a complex modulus, so the problem can be described in terms of choices
of moduli for a given triangulation. Moreover a choice of moduli for the triangula-
tion of M induces a choice of moduli for the triangulation of qM.

It is well-known that if the moduli are all in pþ and define a hyperbolic structure
on M, then they satisfy a system C of algebraic equations called compatibility equa-
tions, and the structure is complete if and only if the moduli satisfy also the so-called
completeness equations M. See [10], [8], [7], [9], [1], [5], [4], [3] for details about ideal
triangulations of hyperbolic manifolds.

Restricted to a component CH qM, the equations C and M have the following
meaning: if the moduli induced on the triangulation of C define a similarity structure
on C then they satisfy C, and such a structure is Euclidean (up to scaling) if and only if
they satisfy alsoM. In particular, to require the structures on the components of qM to
be Euclidean corresponds to require the completeness of the hyperbolic structure ofM.

One of the main applications of the technique of ideal triangulations is the proof of
the Thurston hyperbolic Dehn filling Theorem ([10], [8], [7]). The idea of the proof is
to start with a geodesic ideal triangulation of a complete finite-volume hyperbolic 3-
manifold M, in which the tetrahedra have structures whose moduli satisfy C and M
and then to perturb the moduli along the space of solutions of C. Finally, one looks
at the completions of the structures obtained in this way near the complete structure.
This line leads to the study of solutions of C near a solution of C and M. This prob-
lem has been studied in [8] using particular ideal triangulations in which the moduli
of the initial solution of C and M lie in pþ U ðRnf0; 1gÞ. The notion of modulus of a
triangle (or an ideal tetrahedron) can be further generalized, allowing the moduli to
lie in p� ¼ fz A C : ImðzÞ < 0g. The geometric meaning of a triangle with negative
modulus is that its orientation is reversed, and this produces overlapping phenomena
like the one pictured in Figure 2. The problem of whether a choice of moduli in
Cnf0; 1g defines a (even incomplete) hyperbolic structure on M is surprisingly di‰-
cult if compared with the classical one in which only positive moduli appear, and in
general the answer is still unknown (see [7], [8], [9], [5], [4], [3] for details).

At the level of the boundary, this translates to understanding when a solution of C
defines a similarity structure on the torus or the Klein bottle and to the study of sim-
ilarity structures near Euclidean ones.

The main results of this paper are the following. We show that a choice of moduli
defines a Euclidean structure on the torus if and only if it is a solution of C and M
with non-zero area (Theorems 10.8 and 10.9 and Proposition 10.11). Moreover we
show that the set of solutions of C defining structures on T is a open subset of the
set of solutions of C (see Proposition 10.10). These results are particularly interesting
if compared with the corresponding statements in the three-dimensional case (where,
for example, there exists solutions of C and M with non-zero volume that do not de-
fine hyperbolic structures; see [5], [4], [3]).
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The paper is structured as follows. In Sections 2–4 we give some definitions and
preliminary facts. In Sections 5–9 we describe the algorithm that we use to manipu-
late triangulations on the torus, based on a geometric version of the topological diag-
onal swap. Under a supplementary hypothesis, using our algorithm we are able to
reduce a given triangulation to one having only two triangles and which is equivalent
to the initial one (see below for details). In Section 10 we describe a necessary and
su‰cient algebraic condition on the moduli in order for a solution of C or C and M
to define on T a similarity structure or a Euclidean one up to scaling. We notice that
this section is self-contained and can be read independently from Sections 5–9. In
Section 11 we reduce the case of the Klein bottle to the case of the torus.

Acknowledgement. I would like to thank Professor C. Petronio for bringing the prob-
lem of this paper to my attention and for the interesting and helpful discussions.

2 Preliminaries

First of all, we explain what we mean by triangulation. A classical triangulation of a
surface is a subdivision of the surface in embedded triangles. In our triangulations we
allow the triangles to have multiple and self-adjacencies, and so, for example, cases
like those pictured in Figure 1 possibly do appear.

Combinatorially, a triangulation of a surface is a presentation of the surface as
the quotient

F
Di=@, where

F
Di is the disjoint union of a finite number of copies of

the standard 2-simplex and@ is the equivalence relation generated by a set of face-
pairing maps between the edges of the triangles.

In the sequel, if there are no ambiguities, we will omit the distinction between the
abstract and the immersed copy of a triangle of a triangulation.

From now on we fix the following notation: T will be an oriented torus, t will be a
triangulation on T with triangles Di, i A I , where I has a finite cardinality denoted by
jI j.

We study when it is possible to define a similarity structure on T by defining it sep-
arately on each triangle, and then by gluing the geometric version of the triangles us-
ing the rules of t. In other words, we study when it is possible to realize t as a trian-
gulation in which each triangle has a fixed similarity structure and the face pairing
maps consist of similarities between the edges.

A similarity structure on an oriented triangle D is a Euclidean structure up to
scaling. Once a vertex v of D has been fixed, similarity structures on D correspond

Figure 1. Auto-adjacencies and multiple adjacencies
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to complex numbers in the upper half-plane pþ: given z A pþ one takes in C the tri-
angle tz with vertices in 0, 1, z and the only orientation-preserving simplicial homeo-
morphism jz : D ! tz such that jðvÞ ¼ 0, and defines the similarity structure on D
induced by z as the pull-back of the structure of tz via jz. Given a modulus z A pþ,
and provided that a vertex v of D is fixed, we call a map j : D ! C a similarity map if
there exists an orientation-preserving similarity F of C such that F � j ¼ jz.

We now extend our notions of similarity structure and similarity map by allowing
flat triangles (but with distinct vertices) and inverted triangles. In terms of moduli this
corresponds to taking z in Rnf0; 1g or in p� ¼ �pþ. Even in these cases z determines
a map jz : D ! tz (provided v is fixed as above). For z A Rnf0; 1g we require jz to be
simplicial and orientation-preserving on all edges. Note that jz cannot be a homeo-
morphism, nevertheless jz is regular, i.e. for each x A tz the fiber j

�1
z ðxÞ is connected

and the set of the fibers is a codimension-1 foliation of D. Finally, since the triangle tz
changes its orientation when z passes from pþ to p�, and since we want that the maps
jz to depend continuously on z, for z A p� we require jz to be orientation-reversing.

Therefore, a similarity structure on D is defined by three moduli z1, z2, z3 (one for
each vertex). It is easy to see that if z1 A pþ (respectivly p�, Rnf0; 1g) then also z2
and z3 are in pþ (respectivly p�, Rnf0; 1g). Moreover, if z1, z2, z3 are chosen in a
counterclockwise way (according to the orientation of qD ), then they are in the fol-
lowing relationship

z2 ¼
1

1� z1
z3 ¼ 1� 1

z1
: ð1Þ

In the sequel we will tacitly assume a vertex to be fixed on each triangle we con-
sider, so we parameterize the (possibly flat or inverted) similarity structures on the
triangles by complex numbers di¤erent from 0 and 1.

Definition 2.1. We call positive, negative or flat a modulus lying respectively in pþ, p�
or Rnf0; 1g. We call a triangle positive, negative or flat if it has respectively positive,
negative or flat modulus. We say that z and w are inverse moduli if zw ¼ 1.

To find a structure on T , we start by assigning a modulus zi to each triangle Di of
t. We write z ¼ ðz1; . . . ; zjI jÞ to mean a choice of moduli. Both t and z lift to a trian-
gulation with moduli of the universal covering R2 ! T . If there are no ambiguities
we will use the same notation for t, z, a triangle Di, and their lifts.

The question is when does z define a structure on T . If the moduli are all positive
or all negative, then by gluing the geometric versions of the triangles according to the
identification rules of t, we obtain a torus, and the problem is when is the choice of
moduli coherent. When the moduli are of di¤erent nature, then it is not clear a priori
how to define the identification space itself, when this space is a torus, and in which
sense z defines a structure on T . Namely, when a positive triangle and a negative one
are glued along an edge, then they geometrically overlap and such an overlapping
might involve other triangles which might overlap with other triangles and so on
(see Figure 2).
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We omit here a discussion about ðX ;GÞ-structures of topological spaces. We recall
that an ðX ;GÞ-structure on a topological space M is an atlas of charts modeled on a
base-model space X in which the change of charts lie in a fixed group G of isomor-
phisms of X . A similarity structure on a surface is a ðC;A¤ðCÞÞ-structure.

For such structures the notions of developing map and holonomy are well-defined.
Roughly speaking, one can think of the developing map as a map D from ~MM, the
universal covering of M, to X constructed by lifting the atlas of M to ~MM and then
by gluing together the charts of such an atlas. The fundamental group of M acts by
deck transformations on ~MM. The holonomy is a representation h : p1ðMÞ ! G such
that DðaðxÞÞ ¼ hðaÞðDðxÞÞ for all x A ~MM and a A p1ðMÞ.

We introduce now a notion of developing map for a triangulation with moduli of
T , in which the triangles with moduli play the role of the charts of an atlas. The con-
cept of holonomy will be discussed in the next section.

Definition 2.2. Let R2 ! T be the universal covering of T . A developing map (for
ðt; zÞ) is a map D : R2 ! C such that for each D of t the restriction DjD is a similarity
map.

Definition 2.3. Let T 0 be a torus equipped with a similarity structure. Let ~TT 0 be the
universal covering of T 0 and let D : ~TT 0 ! C be a developing map for the similarity
structure of T 0.

A map j : ðT ; t; zÞ ! T 0 is called a similarity map if it lifts to a map ~jj : R2 ! ~TT 0

such that D � ~jj is a developing map for ðt; zÞ.

Definition 2.4. We say that z defines a similarity structure on T if there exists a simi-
larity map j of degree G1 from ðT ; t; zÞ to a torus T 0 equipped with a similarity
structure. We say that z defines a Euclidean structure (up to scaling) on T if T 0 is
equipped with a Euclidean structure.

If z defines a similarity structure on T then we can map the triangles Di on T 0 one
after each other, by following the rules of t and according with the moduli zi.

Definition 2.5. The dual graph of t is the trivalent graph G whose vertices and edges
are respectively the triangles and the edges of t. Two vertices are joined by an edge e
if and only if they are glued together along the edge e in t.

If D is a vertex of G we define an angle at D as a pair of oriented edges ðe; f Þ
such that e ends and f starts from D. We consider equivalent the angles ðe; f Þ and
ð�f ;�eÞ (where the minus sign inverts the orientation). A pair ðe;�eÞ is not an angle
(while, if e starts and ends at the same vertex, then ðe; eÞ is an angle).

Figure 2. Overlapping of two triangles
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From the definition it follows that angles of G correspond to pairs ðv;DÞ in t where
v is a vertex of D. An orientation of D corresponds to a cyclic ordering of the (ori-
ented) edges ending at D in G. An orientation on T induces, for each vertex v of t, a
cyclic order of the set of the edges of t ending at v. A modulus for a vertex of D in t

corresponds to a modulus for an angle at D in G.

Remark 2.6. It is easy to see that G can be naturally embedded into the 1-skeleton of
the first barycentric subdivision of t. Such an embedding induces a surjective homo-
morphism of the first homology group.

3 Developing map, holonomy and equations

In the rest of the paper, let z denote a choice of moduli for t. In this section we intro-
duce the notion of holonomy for a triangulation with moduli and we discuss the ex-
istence of developing maps. To do that we need some natural conditions on the mod-
uli. Such conditions are necessary conditions in order for z to define a similarity
structure on T . We discuss also other conditions on the moduli, which are necessary
in order for z to define a Euclidean structure on T . All these conditions can be ex-
pressed by algebraic equations in ðCnf0; 1gÞjI j.

First of all we have the so-called compatibility equations C which say that the prod-
uct of moduli around each vertex of t is 1. Historically there are also equations,
named C�, which require C to hold and the sum of arguments of moduli around
each vertex of t to be 2p. We do not use these conditions about the arguments be-
cause on one hand they are not natural using the techniques we are going to describe,
on the other hand they are not necessary (see Section 4 for details).

We describe now the holonomy representation. Let D0 be a base-point of G and let
g be a path in G. Such a path can be viewed as a sequence ðD0; . . . ;DkÞ of simplices
of t equipped with a fixed set of face-pairing map of t between Di and D iþ1. For each
i let ji be a similarity map ji : Di ! C. We require ji ¼ jj if Di ¼ Dj. Let Fi be
the only orientation-preserving similarity of C which realizes the face-pairing be-
tween jiðDiÞ and jiþ1ðDiþ1Þ, i.e. such that Fiðjiþ1ðDiþ1ÞÞ is glued to jiðDiÞ. We define
hðgÞ ¼ F1 � � � � �Fk. The map h is defined from the set of paths in G to A¤ðCÞ and
depends on the choices of the maps ji, but it is easy to see that if we restrict to the set
of loops in G, i.e. with D0 ¼ Dk, then h is well-defined up to conjugation by a similar-
ity of C.

The fact that equations C hold implies that h projects to a map h : p1ðTÞ ! A¤ðCÞ
which is a representation, well-defined up to conjugation. Since for the torus we have
p1ðTÞGH1ðTÞ, we can consider h as a map H1ðTÞ ! A¤ðCÞ. We call h a holonomy

representation, holonomy map or simply holonomy.

Lemma 3.1. If equations C hold, then there exists a developing map for ðt; zÞ.

Proof. Let R2 ! T be the universal covering. We recall that we call ðt; zÞ both the
triangulations on T and on R2. If equations C hold for T then they hold also for
R2. Moreover, since R2 is simply connected, its holonomy is trivial. We consider
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now t under the combinatorial point of view, i.e. we consider R2 as the quotient of a
disjoint union of triangles

F
Di modulo the relations given by the face-pairing maps

of t. First we construct a developing map on
F
Di as follows: we take a triangle D0

and we map it to C via a similarity map j0. We consider now a triangle D1 adjacent
to D0 along an edge e and we map D1 to C via the only similarity map j1 such that
j0ðD0Þ and j1ðD1Þ coherently glue along e. We go on in this way and we define a
similarity map ji for each Di.

The fact that the holonomy is trivial implies that the choice of the maps ji depends
only on the choice of the first map j0 and not on the order in which we define the
maps. So the map

F
ji :

F
Di ! C projects to a map j : R2 ! C which is obviously

a similarity map. r

Remark 3.2. It is easy to see that two developing maps di¤er by a similarity of C.
Moreover, if we fix one triangle D in T and one lift ~DD of D, then a choice of a devel-
oping map determines a representative of the holonomy by using ~DD as the base-point.

Once a representative of the holonomy has been fixed, its image consists of maps
which commute with each other. So either they are translations or they have a com-
mon fixed point. The existence of such a point does not depend on the choice of the
representative.

Definition 3.3. If a common fixed point of the holonomy exists, we call it an axis of
the holonomy.

Remark 3.4. Since the holonomy is defined up to conjugation, the dilation component
of the holonomy is a well-defined map h : H1ðTÞ ! C�.

When equations C hold (and so the holonomy is defined), we can write down the
so-called completeness equations M which say that h ¼ 1. This means that the image
of the holonomy consists of translations. Equations M are necessary in order to have
a Euclidean structure on T .

Remark 3.5. Both C and M equations can be expressed in terms of products of mod-
uli along loops in the dual graph G. For equations C, consider all triangles around a
vertex v in t as a loop g in G, then the product of moduli around v is the product of
moduli of angles of g.

Regarding equations M, consider an element ½g� A H1ðTÞ represented by a loop
g ¼ ðD0;D1; . . . ;D0Þ in G. Let ei be the edge between Di�1 and Di in g. Let us define
coe‰cients ni as follows: set ni ¼ 1 if ei follows eiþ1 (without passing through the
third edge) in the cyclic ordering around Di, and ni ¼ �1 otherwise. Let zi be the
modulus associated to the angle ðei; eiþ1Þ; set zi ¼ �1 if eiþ1 ¼ �ei. Then hð½g�Þ ¼Q

i z
ni
i (see Figure 3). Since equations C hold, h does not depend on the representa-

tive g.
Are the equation C or C and M su‰cient to have a structure on T? In general the

answer is no. For example, for a triangulation of T with only two triangles, equations
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C are always satisfied and if both moduli are flat then the identification space cannot
be a torus, even if equations M hold. For more interesting examples, see [9].

In the following we give some su‰cient conditions in order for a solution of C (or
C and M) to define a similarity (or Euclidean) structure on T . We notice that these
conditions are necessary only ‘‘near’’ the Euclidean case.

4 Equations C*

As announced above, we do not use conditions on the arguments of moduli, but we
discuss them here.

First of all we note that if there exist only non-negative triangles, then we can de-
fine in a natural way the arguments of the moduli, allowing the flat moduli to have
arguments 0 or p depending on wether they are positive or negative as real numbers.
Whereas, if one has also negative triangles, then it is not clear how to define the argu-
ments. One could simply define arguments to be negative, or require the sum of inner
angles of each triangle to be p, and other ways are possible. Moreover, in general it is
not possible to use only arguments in ½0; p� or ½0; 2p�.

The following examples show that the conditions on the arguments are not neces-
sary for z to define a similarity structure on T .

Example 4.1. Suppose we have only positive triangles around a vertex v. Then a geo-
metric picture near v looks like Figure 4a).

Figure 3. Moduli along paths in G

Figure 4. Geometric and topological situations
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We now add and remove a triangle D1, i.e. we add two copies of D1 with inverse
moduli. The topological picture is like in Figure 4f ), but the geometric result is the
same as before (Figure 4b)). We add and remove a second triangle D2 (Figures 4c)
and 4g)).

Now we observe that ð�D1ÞU ð�D2Þ is geometrically equivalent to a big negative
triangle �D plus a positive triangle D3 (Figure 4d)–1e)). By replacing ð�D1ÞU ð�D2Þ
with ð�DÞU ðþD3Þ, the topological picture looks like in Figure 4h), the geometric sit-
uation is not changed, around v there are only positive triangles, but now the sum of
arguments around v is 4p (if the convention about the arguments of positive moduli is
the natural one).

Example 4.2. Suppose that z defines a similarity structure on T . Suppose that there
are no negative moduli. Then the arguments of moduli are defined. Consider two tri-
angles glued together and change the triangulation by adding D1 and D2 as in Figure
5.

Assign now moduli r and r�1 to the �-vertex of D1 and D2, with r A Rþ. It is easy to
check that such a choice of moduli defines a similarity structure on T and that equa-
tions C� are not satisfied.

5 The moves

For Sections 5–9 we fix the hypothesis that z A ðCnf0; 1gÞjI j is a solution of C, that is
we require the product of moduli around each vertex to be 1.

In the following we define a strategy which allows us to find a minimal triangula-
tion of the torus equipped with a choice of moduli which will be ‘‘equivalent’’ to ðt; zÞ
in the sense that it defines a structure on T if and only if z does, and if so the struc-
tures coincide.

Before proceeding we make two supplementary hypotheses which will be crucial in
the sequel:

H5.1 We suppose that the image of the holonomy has rank 2, i.e. it is not cyclic.

H5.2 We suppose that if the holonomy has an axis, then it lies outside the image of a
developing map.

Lemma 5.3. Conditions H5.1 and H5.2 do not depend on the choice of the representa-

tives of the developing and holonomy maps.

Figure 5. Equations C� are not necessary
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Proof. Condition H5.1 does not depend on the choice of the representative of the hol-
onomy because conjugation does not change the cyclicity of a subgroup.

Let D be a developing map. By Remark 3.2, once one triangle D and one of its lifts
~DD has been fixed, then the map D determines a representative of the holonomy. Call x
the axis of the holonomy. If we change D to F �D, where F A A¤ðCÞ, we have that
the holonomy changes by the conjugation by F. Then the axis for the new holonomy
is FðxÞ and x B ImðDÞ if and only if FðxÞ B ImðF �DÞ. If we change the choices of D
and ~DD, then the holonomy changes by the conjugation with an element of its image,
so the axis does not change and this completes the proof of the second assertion. r

We use the classical move of topological diagonal swap (TDS) to manipulate trian-
gulations (Figure 6). This move extends in an obvious way in a geometric setting
to give a geometric diagonal swap (GDS) like in Figures 6 and 7. Any GDS can be
viewed as a function from the space of triangulations with moduli on the torus to
itself.

Remark 5.4. With notation as in Figure 6, since we are considering only moduli in
Cnf0; 1g, we can apply the GDS only if z 0 0 z�1. And in this case the GDS is contin-
uous as a function from the space of moduli on t to the space of moduli on the result-
ing triangulation.

Let g be a path (loop) in the dual graph of t. Then by applying a GDS to two con-
secutive vertices of g we obtain a path (loop) g 0 as Figure 8 shows.

Simple calculations lead to the following facts:

Figure 6. Topological and geometric diagonal swap

Figure 7. The moduli in the GDS
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Lemma 5.5. The GDS does not change the products of moduli along paths in the dual

graph from which we obtain equations C and M. So z satisfies equations C (or C and

M) if and only if the resulting moduli after the move do.

Remark 5.6. Any GDS lifts to a set of moves on the universal covering R2 ! T .

Lemma 5.7. Let D be a developing map. The application of a GDS does not change the

restriction of D to the 0-skeleton. It follows that the holonomy does not change under

the GDS. Then a GDS preserves hypothesis H5.1.

Remark 5.8. A GDS-move in general does not preserve hypothesis H5.2. Figure 9
shows a particular case of GDS, in which the axis is being incorporated into the im-
age of the developing map.

Remark 5.9. The moves do not change the number of simplices of triangulations.

6 Loops and e-loops

As mentioned in Section 2, in our setting, a simplex of a triangulation might not be
embedded in T . For a 1-simplex, this implies that it is a loop, that is, it starts and
ends at the same point. This section is devoted to study the edges of t that are loops.
In this section we enforce the hypothesis H5.1.

Definition 6.1. We call e-loop an edge of the triangulation which starts and ends at the
same vertex. We say that a vertex v has an e-loop if there exists an e-loop starting at v.

Figure 8. E¤ects of a GDS on a path in G

Figure 9. The developed image of a GDS
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Remark 6.2. Since an e-loop is an edge of the triangulation, it is an embedded loop.

Definition 6.3. For any vertex v, we set SðvÞ to be the number of triangles (with mul-
tiplicity) having v as a vertex.

Lemma 6.4. For each vertex v we have SðvÞ > 1.

Proof. Since equations C hold, if SðvÞ ¼ 1 the modulus of the only triangle around
v must be 1. But this contradicts the fact that we are considering only moduli in
Cnf0; 1g. r

Proposition 6.5. Let l be an e-loop. Then ½l �0 0 as elements of H1ðTÞ.

Proof. Suppose the contrary. Then l bounds a sub-complex B homeomorphic to a
disc. Thus l lifts to a loop in R2. But the developed image of l is a straight segment
which cannot be a loop. r

Remark 6.6. The notion of parallelism between loops is well-defined for disjoint
loops. Since we deal with loops that can share one point, we say that two loops on
a surface are parallel if they jointly bound either an embedded annulus or an em-
bedded pinched annulus.

Lemma 6.7. In a torus, the relation of parallelism between non-contractible loops shar-

ing at most one point is transitive.

Proof. Let a, b, g be non-contractible loops so that a is parallel to b which is parallel
to g. Cutting the torus along b we obtain a cylinder in which a and g are parallel to
the boundary. Since a and g share at most one point, it follows that aU g bounds ei-
ther an annulus or a pinched annulus, and so they are parallel. r

Remark 6.8. We claim that e-loops at di¤erent vertices are disjoint. By Proposition
6.5 and an argument as in Lemma 6.7, two disjoint e-loops are topologically parallel.
So e-loops at di¤erent vertices are parallel.

Proposition 6.9. If there exist more than one vertex with e-loops, then e-loops at the

same vertex are parallel.

Proof. Let l1 and l2 be two di¤erent e-loops at a vertex v. Let v 0 0 v be a vertex which
has an e-loop l. By Remark 6.8, the e-loop l is parallel to both l1 and l2. By Lemma
6.7 it follows that l1 is parallel to l2. r

Proposition 6.10. Suppose that each vertex has an e-loop. Then two di¤erent e-loops l1
and l2 at the same vertex v are not parallel.

Proof. Suppose the contrary. Then l1 and l2 jointly bound a region R whose funda-
mental group is isomorphic to Z and generated by ½l1� ¼ ½l2�. So R cannot contain
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any vertex in its interior because each vertex has an e-loop and e-loops are not con-
tractible. It follows that R is a bigon, but this cannot happen in a triangulation. r

Corollary 6.11. Suppose that each vertex has an e-loop. If a vertex v has two di¤erent

e-loops then there exists only one vertex. Equivalently, if there exists more than one

vertex, then each vertex has exactly one e-loop.

Lemma 6.12. In the current hypotheses, suppose moreover that H5.2 holds. Let D1 and

D2 be two triangles, glued along an edge and let v be a vertex of such edge. Suppose

that D1 and D2 have inverse moduli at v, and that v has no e-loop. Suppose moreover,
with notation as in Figure 10, that v1 ¼ v2. Then ½g1g�1

2 � ¼ 0 as an element of H1ðTÞ.

Proof. If g1 ¼ g2 the assertion is obvious. Otherwise, suppose ½g1g�1
2 �0 0. Since v has

no e-loops, g1g
�1
2 is a loop embedded in T . Then we choose g1g

�1
2 as an element of a

Z-basis of H1ðTÞ. Now the fact that v1 ¼ v2 implies that the developed image of
v1 ¼ v2 is a fixed point of hðg1g�1

2 Þ. So either the image of the holonomy is cyclic or
the axis lies in the image of a developing map, but both cases are impossible because
of hypotheses H5.1 and H5.2. r

Remark 6.13. In the proof of Lemma 6.12, we used the hypotheses H5.1 and H5.2.
This is not only a technical trick but it has relevant topological aspects, see Section 8
for more details.

7 The strategy

We say that a triangulation of T is minimal if it has only one vertex (and then exactly
two triangles).

In this section we define a recursive algorithm based on six steps in order to find a
minimal triangulation equivalent to the initial one. The algorithm will either get the
requested triangulation or stop saying that hypothesis H5.2 has been violated. We
will see that the algorithm must stop in a finite time. We mean by a strategy a com-
plete application of the algorithm. In this section we enforce the hypothesis H5.1.

Figure 10. The triangles D1 and D2
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Remark 7.1. Suppose that a vertex v has no e-loops. If we can apply the GDS to two
triangles having v as a vertex and that are consecutive around v, then after the move
we have that:

(1) SðvÞ is decreased by 1.

(2) v remains without e-loops.

Remark 7.2. If SðvÞ ¼ 2 then equations C imply that the two triangles have inverse
moduli at v.

Step 1. If hypothesis H5.2 does not hold, then we stop here. If H5.2 is satisfied, and
each vertex has an e-loop, then we go to Step 6. Otherwise we go to Step 2.

Step 2. Let v be a vertex without e-loops, and let D1 and D2 be two consecutive trian-
gles around v. If D1 and D2 have inverse moduli, then we go to Step 3. Otherwise we
apply a GDS to D1 and D2. Then, if hypothesis H5.2 does not hold we stop here,
otherwise we repeat this step keeping the vertex v fixed.

Remark 7.3. Note that by Remarks 7.1 and 7.2 it is su‰cient to repeat Step 2 only a
finite number of times.

Remark 7.4. When we come to Step 3, we have that the hypothesis H5.2 holds and
that the two adjacent triangles D1 and D2 around the vertex v have inverse moduli.

Remark 7.5. With notation as in Figure 10, if v1 ¼ v2 then the hypotheses of the
Lemma 6.12 are satisfied. Then g1g

�1
2 bounds an embedded disc B inside which there

are no e-loops because e-loops are not contractible. Moreover if D1 and D2 are glued
along only one edge, then B contains a vertex w0 v; v1; v3.

Step 3. If either v1 0 v2 or D1 and D2 are glued along two edges, then we go to Step 4.
Otherwise we look only at the vertices w A B with w0 v; v1; v3 as described in Re-
mark 7.5 and we return to Step 1.

Remark 7.6. Note that applying a GDS around vertices di¤erent from v, v1, v3 does
not change D1 and D2. Then, since t is finite, it is su‰cient to repeat Steps 1–3 only a
finite number of times.

Recall that to have inverse moduli, geometrically it means that D1 and D2 com-
pletely overlap with inverse orientations.

Step 4. We delete D1 and D2 from t and we change the gluing rules as described in
Figure 11. Then we go to Step 5.

To be more precise, the cancellation of Step 4 corresponds to Figure 11a) if D1 and
D2 are glued along one edge, and to Figure 11b) if they are glued along two edges.

Remark 7.7. The choice made in Step 3 is necessary in order to avoid changes of
topology of the torus. Namely, suppose that we go directly to Step 4 without going
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through Steps 1–3. Then the cancellation might disconnect the dual graph (see again
Figure 11a)). We will see in the next section that all the cancellations we do in the
strategy actually do not change the topology of the torus.

Step 5. We return to Step 1 and apply this step to the new triangulation obtained in
Step 4. We repeat these steps until each vertex has an e-loop or the hypothesis H5.2
breaks. If H5.2 holds and each vertex has an e-loop, then we go to Step 6.

Remark 7.8. Note that applying a GDS around vertices without e-loops, the number
of e-loops of t does not decrease. Then, by induction on the number of triangles and
on the number of vertices without e-loops, it is su‰cient to repeat Steps 1–5 only a
finite number of times.

Remark 7.9. In Step 4, it is easy to see that a choice of moduli satisfies equations C or
C and M if and only if the resulting moduli after the cancellation do. Moreover, the
cancellations of Step 4 preserve the conjugacy class of the holonomy map and the hy-
pothesis H5.2.

The last part of the strategy consists in reducing the triangulation to a minimal
one.

Step 6. We recall that when we come to this step, hypothesis H5.2 holds and each
vertex has an e-loop.

If the triangulation is minimal, we stop here. Otherwise we choose an e-loop l and
an embedded closed simplicial path a so that a is a generator of H1ðTÞ that meets l
once. It follows that a meets once any e-loop parallel to l and so, by Remark 6.8 and
Corollary 6.11, it meets any e-loop. Since each e-loop contains only one vertex, it
follows that a contains all vertices. Cutting the torus along l and a we get a disc,
whose triangulation looks like the one given in Figure 12.

Figure 11. Cancellations in the triangulation and in the dual graph
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Since the triangulation is not minimal, we can choose an e-loop l 0 0 l at a vertex v.
Now we try to apply a GDS to the two triangles having l 0 as an edge. If the move is
not possible, i.e. if the triangles have inverse moduli at v, then we cancel the triangles
as in Step 4 and we restart from Step 1. If the GDS is possible then we apply it. Note
that after the move the vertex v has no e-loops. Then we restart from Step 1.

Remark 7.10. Note that Steps 4 and 6 involve a cancellation of pairs of two triangles.
Then by induction on the number of triangles it follows that it is su‰cient to apply
only a finite number of steps of our strategy.

Remark 7.11. A strategy following the rules of Steps 1–6 as described stops only
when either we lose H5.2 or the triangulation is reduced to a minimal one. Moreover
if we consider a strategy S as a map between triangulations with moduli, then we
have that ðt; zÞ satisfies C or C and M if and only if Sððt; zÞÞ does.

Definition 7.12. We say that a strategy works if it leads to a minimal triangulation.

8 The e¤ects of cancellations

In general, a cancellation might produce a degeneration of the topology of the torus
(see Proposition 8.2). In this section we see that the cancellations that occur in our
strategy do not change the topology of the torus. To prove this we simply check all
possible cases. We recall that the hypothesis H5.1 is enforced.

Let D1 and D2 be the triangles we are going to cancel. For this section we fix the
notation of Figure 13. If the triangles have two common edges, then they are either
both embedded or both not embedded in the torus.

If they are embedded in the torus, then we are collapsing an embedded disc to its
diameter and this does not change the topology. See Figure 13a).

If D1 and D2 have two common edges and are not embedded in the torus, then the
unique possibility is that one vertex is in the interior of D1 UD2 and the other two co-
incide. Since the e-loops are not contractible, in this case we are collapsing a pinched
annulus to a loop and this does not change the topology of the torus.

Now suppose that D1 and D2 have only one common edge. If D1 UD2 is embedded
in the torus, then we are collapsing an embedded disc and there are no problems. If

Figure 12. Cutting along a and l
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D1 UD2 is not embedded, then we have two cases. Either the cancellation occurs in a
Step 4 or in a Step 6.

If the cancellation is performed in a Step 4, then v has no e-loops and one can eas-
ily see that the only possible case is that v1 ¼ v3 0 v2 (or v2 ¼ v3 0 v1). Then g1 is an
e-loop and so ½g1�0 0 A H1ðTÞ. To see that this cancellation does not change the to-
pology of the torus see Figure 14.

Figure 13. The triangles D1 and D2

Figure 14. The cancellation in the case v1 ¼ v3
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If the cancellation is performed in a Step 6 then, using hypotheses H5.1 and H5.2
as in Lemma 6.12, one can see that v1 0 v2. In this case we are collapsing a pinched
annulus to a loop and this does not change the topology of the torus.

Remark 8.1. We used hypotheses H5.1 and H5.2 to say that we have not a cancella-
tion with v1 ¼ v2 and ½g1g�1

2 �0 0 A H1ðTÞ. Actually this is a very bad case.

Proposition 8.2. Suppose that two triangles D1 and D2 have inverse moduli at v and are

glued along only one edge. Suppose moreover that v1 ¼ v2 and ½g1g�1
2 �0 0 A H1ðTÞ.

Then a cancellation of D1 and D2 as in Step 4 produces a degeneration of the topology

of the torus.

Proof. Let P be the space obtained from T by removing D1 UD2 and changing the
gluing rules as in Figure 11a) (i.e. the resulting space after the cancellation). Since
½g1g�1

2 �0 0, by cutting T along g1g
�1
2 we obtain a cylinder. By removing D1 UD2

and changing the gluing rules, we obtain a sphere. Now in order to reconstruct P
we have only to glue v1 to v2, and then P is not a torus. r

9 The existence of similarity maps

In the preceding section we have seen that any strategy leading to a minimal triangu-
lation preserves the topology of the torus; we see now that it preserves also similarity
structures. In this section we enforce the hypothesis H5.1.

Theorem 9.1. Let ðT ; t; zÞ be a solution of C satisfying the two hypotheses H5.1 and

H5.2. Suppose that we can follow a strategy successfully to obtain a minimal triangu-

lation. Also assume that this minimal triangulation defines a similarity structure on T.

Then the original parameters z also defines a similarity structure on T. Moreover, such
a structure does not depend on the strategy used.

Proof. Let us fix a strategy that works. By hypothesis, for the minimal triangulation
there exists a torus T 0 endowed with a similarity structure and a similarity map
j : T ! T 0 of degreeG1.

We will follow backward the steps of the strategy, showing that at each step there
exists a similarity map from T to T 0, having the same degree of j. More precisely, we
show that if there exists a similarity map j after a GDS or a cancellation, then before
the GDS or the cancellation there exists a similarity map, which we still call j, which
agrees with the previous one where the triangulation is not changed.

Let ~TT 0 be the universal covering of T 0 and let D 0 : ~TT 0 ! C be a developing map
for T 0.

Suppose that we have done a cancellation. Let D1 and D2 be the canceled triangles.
Then we have to define j on D1 UD2.

The map j lifts to a map ~jj : ~TT ! ~TT 0 such that D 0 � ~jj is a developing map D. Let
D1 be a developing map which coincides with D outside the lifts of D1 and D2 before
the cancellation. By checking all the possible cancellations, one can easily see that D1
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always exists. Moreover, since H5.2 holds, it splits along a map ~jj1 : ~TT ! ~TT 0 such
that D 0 � ~jj1 ¼ D1. Such a ~jj1 projects to the requested similarity map j. We notice
that if H5.2 does not hold, then the image of D1 contains the axis of the holonomy,
which lies outside of the image of D 0. If this is the case, the map D1 cannot split
along ~jj1.

Now suppose that we have done a GDS which changes two triangles, say D1

and D2, into two new triangles D 0
1 and D 0

2. Then we have to change j on D1 UD2 ¼
D 0
1 UD 0

2.
We proceed exactly as above considering a lift of the map jjTnðD1UD2Þ. As above,

since H5.2 holds, such a lift extends to the lifts of D1 UD2 ¼ D 0
1 UD 0

2 and projects to
the requested similarity map j.

Regarding the degree of such maps, if we have done a cancellation, then passing
from j to j1 we are adding two triangles, having inverse moduli, whose developed
images completely overlap. So degðjÞ ¼ degðj1Þ. Similarly, a GDS does not change
the contribution of D1 UD2 to the degree of j.

We now prove the second assertion. Let X be the universal covering of the image
of D 0, equipped with the pull-back similarity structure. The map D 0 lifts to a map
~DD 0 : ~TT 0 ! X. It turns out that ~DD 0 is a global homeomorphism. Moreover, since D 0

is a developing map for T 0, the holonomy of T 0 lifts to a representation h 0 : H1ðTÞ !
A¤ðXÞ such that ~DD 0 is h 0-equivariant. As a ðC;A¤ðCÞÞ-space, the torus T 0 is isomor-
phic to the quotient of X under the action of the image of h 0.

Similarly, the holonomy of T lifts to a map ~hh : H1ðTÞ ! A¤ðXÞ such that
~hh ¼ h 0 � j�. Since degðjÞ ¼G1, the map j� is an isomorphism. It follows that the im-
age of h 0 is the same of the one of ~hh.

Finally observe that a cancellation does not change the image of the holonomy. By
Lemma 5.7 also a GDS does not change the image of the holonomy. So the structure
of T 0 is independent of the strategy used. r

Remark 9.2. One can easily obtain a partial converse of this theorem. That is, if there
exists a similarity map j from ðT ; t; zÞ to a torus T 0 with a similarity structure, then
C and H5.2 hold, but in general the hypothesis H5.1 may be not satisfied (see Exam-
ple 9.6).

Remark 9.3. If ðT ; t; zÞ is a solution of the equations C andM, then we can coherently
choose the sizes of the triangles. It follows that the algebraic sum A of the areas of the
triangles of t with moduli z is well-defined up to multiplication by a positive factor.

Corollary 9.4. Suppose ðT ; t; zÞ is a solution of the equations C and M and let A be as

in Remark 9.3. If A0 0, then z defines a Euclidean structure on the torus.

Proof. If z is a solution of M then the holonomy has no axis, so H5.2 is always sat-
isfied. We have to check H5.1.

Suppose the contrary. Since ImðhÞ consists of translations, it is isomorphic either to
Z or to the trivial group. It follows that ImðhÞ acts freely and properly discontinu-
ously on C.
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Let C be the quotient of C under the action of ImðhÞ. The map D descends to a
map D : T ! C because D is h-equivariant. Let o be the area-form on C induced
by C. Then we have

A ¼
ð
T

D�o ¼
ð
DðTÞ

degðDÞo:

As T is compact and C is not compact, degðDÞ ¼ 0. Thus A ¼ 0, that is a contra-
diction.

Then H5.1 is satisfied and, since H5.2 is satisfied, it follows that any strategy
works. Moreover in the minimal triangulation we obtain, equations M imply that
the two triangles have the same modulus (see Figure 15). Thus, the two triangles are
either both positive or both negative, and it is easily checked that gluing together
such triangles, one obtains a Euclidean torus. r

Remark 9.5. To prove these results we used H5.1 and H5.2 in a crucial way. As we
have seen in the proof of Theorem 9.1, the hypothesis H5.2 is necessary in order to
have similarity maps while the hypothesis H5.1 is necessary only in order to apply a
strategy. Namely, if H5.1 is not satisfied, then it may be that z defines a similarity
structure on T , but we cannot use a strategy to define similarity maps.

Example 9.6. Take Cnf0g and make the quotient by the multiplication by 2. Then
Cnf0g=@ is a torus equipped with a similarity structure, and we can triangulate a
fundamental domain as in Figure 16. We can then assign moduli to the triangles in
the obvious way and it is clear that they are a solution of C but do not satisfy H5.1. If
we try to apply a strategy, we lose H5.2 at the initial steps. Moreover in this case it is
easy to check that no strategy works.

Figure 15. In a minimal triangulation, equations M imply z1 ¼ z2

Figure 16. A similarity structure without hypothesis H5.1
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10 Algebraic conditions on the moduli

In this section we give a complete characterization of the choices of moduli defining
similarity structures on the torus. This section is almost independent from Sections 5–
9 (we refer only to Lemma 5.3, Remark 9.3 and Corollary 9.4). We refer to Sections
2–4 for the general definitions.

Let t be a triangulation of the torus T and let z be a choice of moduli which is a
solution of equations C. Consider the universal covering R2 of T . Then t lifts to a
triangulation with moduli on R2. Let D : R2 ! C be a developing map which maps
each triangle Di in a straight one with modulus zi. Let h : H1ðTÞ ! A¤ðCÞ be the
representative of the holonomy map compatible with D.

Let hg1; g2i be a fixed generator of H1ðTÞ. Since hðg1Þ and hðg2Þ commute, we have
two cases:

1) Both hðg1Þ and hðg2Þ are translations.

2) hðg1Þ and hðg2Þ have a common fixed point, which we call axis. In this case we can
and will suppose that 0 A C is the axis of the holonomy. Thus h acts on C by mul-
tiplications, that is, for each g A H1ðTÞ and x A C, we have hðgÞðxÞ ¼ x � hðgÞð1Þ,
where the dot denotes the multiplication of C.

Definition 10.1. Let X be defined as follows. In Case 1) let X ¼ C, considered as the
universal covering of itself. In Case 2) let X be the universal covering of C� ¼ Cnf0g.
We put on X the pull-back similarity structure.

Remark 10.2. In both Cases 1) and 2), we have X ¼ C. In Case 1) the covering map
is the identity and the similarity structure on X is the usual one. In Case 2), the cover-
ing map X ! C� is the usual exponential map exp : C ! C�, the similarity structure
on C� is the usual one, while the similarity structure we consider on X is not the
usual one.

Proposition 10.3. In both Cases 1) and 2) the translations of X are similarity maps.

Proof. There is nothing to say in Case 1). In Case 2) the thesis follows because a
translation tðxÞ ¼ xþ x descends to the map yðyÞ ¼ yex which is a similarity map
on C�. r

Proposition 10.4. Suppose that in Case 2) the image of D does not contain the element

0. Then the map D lifts to a map ~DD : R2 ! X and h to a representation ~hh : H1ðTÞ !
A¤ðXÞ such that ~DD is ~hh-equivariant. Moreover, the image of ~hh consists of translations.

Proof. This is tautological in Case 1). Let us deal with Case 2). The map ~DD exists be-
cause 0 B ImðDÞ. We define ~hh as follows. For each g A H1ðTÞ and x A X we have

expð ~DDðgxÞÞ ¼ DðgxÞ ¼ hðgÞðDðxÞÞ ¼ DðxÞ � hðgÞð1Þ ¼ expð ~DDðxÞÞ � hðgÞð1Þ:
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Thus ~DDðgxÞ ¼ ~DDðxÞ þ xðg; xÞ with expðxðg; xÞÞ ¼ hðgÞð1Þ. The function xðg; xÞ, as a
function of x, is a continuous map from a connected space to a discrete space, and
then it is constant. It follows that xðg; xÞ ¼ xðgÞ. The function g ! ~hhðgÞ defined by
~hhðgÞðxÞ ¼ xþ xðgÞ is the requested representation. The second claim immediately
follows. r

Definition 10.5. We set ~hhðgiÞðxÞ ¼ xþ xi, i ¼ 1; 2. We say that ~hh has rank 2 over R if
x1 and x2 are linearly independent over R.

Remark 10.6. The previous definition is equivalent to saying that x1=x2 B RU fyg or
that x1 y2 0 x2 y1, if we set xk ¼ xk þ iyk, for k ¼ 1; 2.

Remark 10.7. As in Lemma 5.3, one can see that the conditions that 0 B ImðDÞ and
that ~hh has rank 2 over R do not depend on the choice of D.

Theorem 10.8. Let z be a choice of moduli for a triangulation of T such that C is sat-

isfied and, in Case 2), suppose that 0 B ImðDÞ. Suppose that ~hh has rank 2 over R. Then

z defines a similarity structure on T.

Proof. Since x1 and x2 are linearly independent, the action of H1ðTÞ on X via ~hh is
free and properly discontinuous. So X ¼ X=~hh is well-defined and is a torus with a
similarity structure. Moreover a map f : T ! X obtained by pushing-down ~DD is
well-defined. Obviously f induces on each Di the same structure defined by zi.

We prove now that deg f ¼G1. The homotopy class of f is completely determined
by f�. Since f� is an isomorphism between p1ðTÞ and p1ðXÞ, it is easy to construct a
map g : T ! X of degreeG1 such that g� ¼ f�. Then f is homotopic to g and thus
has degreG1. r

The converse of Theorem 10.8 is also true, so its hypotheses are necessary and suf-
ficient conditions in order for z to define a similarity structure on T .

Theorem 10.9. Suppose that a choice of moduli defines a similarity structure on T , then
the hypotheses of Theorem 10.8 are satisfied.

Proof. Consider a similarity map f : T ! T 0 of degree G1, where T 0 is a torus
equipped with a similarity structure. The existence of f implies that equations C
hold. Moreover f lifts to a map ~jj : R2 ! ~TT 0 ( ~TT 0 and R2 are the universal covering
of T 0 and T) such that the obvious diagram is commutative.

Since degð f Þ ¼G1, it is easy to check that f� is an isomorphism. Moreover, since
the diagram is commutative, the holonomy of T is the composition of f� with the
holonomy of T 0.

If T 0 is a Euclidean torus, then ~TT 0 is exactly C with its similarity structure, so ~jj is a
developing map, the holonomy consists of translations and so it has no axis.

Otherwise consider a developing map D 0 : ~TT 0 ! C for T 0. It is clear that ImðD 0Þ
does not contain the axis of the holonomy. The map D 0 � ~jj is a developing map for
T and then its image does not contain the axis of the holonomy.
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We have now to check that the holonomy has rank 2 over R. It is easy to check
that T 0 is the quotient of X under the image of ~hh. Suppose that x1 and x2 are linearly
dependent on R. Then the image of ~hh is isomorphic to a subgroup of R and then it is
either cyclic or dense in R. In both cases T 0 cannot be a torus. r

Theorems 10.8 and 10.9 completely characterize the choices of moduli z defining
similarity structures on the torus. Moreover, as the following proposition shows,
the set of moduli defining structures on T is open in the space of solutions of equa-
tions C.

Proposition 10.10. If z defines a similarity structure on T , then all choices of moduli

near z which satisfy C define similarity structures on T.

Proof. Let z 0 be a solution of C su‰ciently close to z and let D 0 and h 0 be the corre-
sponding developing and holonomy maps. First, suppose that the holonomy corre-
sponding to z has an axis. Since to have an axis that lies outside the image of a devel-
oping map is an open condition, it follows that also h 0 has an axis outside the image
of a developing map. Moreover, also the map ~DD 0 used to define ~hh 0 is close to the map
~DD, so the x 0

i ’s are close to the xi’s. Since the condition on the xi’s is an open one, alsoeh 0h 0 has rank 2 over R, and the assertion follows.
Now suppose that h consists of translations. If also h 0 consists of translations, then

as above eh 0h 0 has rank 2 over R. Suppose that h 0 has an axis. We have to check that the
axis lies outside the image of D 0 and that eh 0h 0 has rank 2 over R. Since h consists of
translations, if z 0 is su‰ciently close to z, then

h 0ðg1Þx ¼ ð1þ b1Þxþ h1; h 0ðg2Þx ¼ ð1þ b2Þxþ h2

with bi @ 0 and hi @ xi. Therefore, the fixed point of h 0ðgiÞ is �hi=bi. It follows that
the axis of h 0 goes to y as z 0 ! z. If F HR2 is a fundamental domain for T , then the
developed image of F depends continuously on z, that is, if z 0 is close to z, then D 0ðF Þ
is close to DðFÞ. Since the axis of h 0 goes to y as z 0 ! z, for z 0 su‰ciently close to z

it lies outside D 0ðFÞ and so, by h 0-equivariance of D 0, we have that the axis of h 0 lies
outside the image of D 0.

We check now that eh 0h 0 has rank 2 over R. Since the image of h 0 is an abelian group,
it follows that b1=b2 ¼ h1=h2. With this notation, ex

0
i ¼ 1þ bi. Using the determina-

tion of the logarithm such that logðxÞ has imaginary part in ð�p; pÞ it turns out that
xi ¼ logð1þ biÞ. Thus for z 0 su‰ciently close to z we have

x 0
1

x 0
2

¼ logð1þ b1Þ
logð1þ b2Þ

@
b1
b2

¼ h1
h2

@
x1
x2

B RU fyg:

So eh 0h 0 has rank 2 over R. r

In Case 1) the hypothesis that ~hh has rank 2 over R can be easily checked, as the
following proposition shows. We recall that if equations M hold, then we can define
the algebraic area A as in Remark 9.3.
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Proposition 10.11. Suppose that z is a solution of C and M. Then ~hh has rank 2 over R
if and only if A0 0.

Proof. The only if part follows from Theorem 10.8. The if part follows because by
Corollary 9.4, z defines a Euclidean structure on T , then Theorem 10.9 applies. r

11 The Klein bottle

In this section we show how the problem of similarity structures on the Klein bottle
can be reduced to a problem on the torus.

Let t be a triangulation of the Klein bottle K and let us fix an orientation for each
triangle of t (clearly such orientations cannot be coherent because K is not orient-
able). If we consider the orienting double covering p : T ! K , then we can pull-
back t to a triangulation s ¼ p�ðtÞ on T . Clearly s can be coherently oriented (as
we do). Each triangle D of t is covered by exactly two triangles of s, mapped to D
one with the opposite orientation to the other.

Let z be a choice of moduli on t. Then z induces a choice of moduli z 0 on s in a
natural way. Namely, if p�1ðDÞ ¼ D1 UD2, if p preserves the orientation of D1 and z

is the modulus of D, then the modulus of D1 is z and that of D2 is z.
Now suppose that there exists a similarity map j from ðK ; t; zÞ to a Klein bottle J

equipped with a similarity structure. Let p : Y ! J be the orienting double covering.
The structure of J lifts to a structure of the torus Y . Moreover, as Lemma 11.2
shows, we can lift the map j to a similarity map between the orienting tori. If such
a map has degreeG1, then we say that z defines a similarity structure on K .

Clearly if z 0 defines a similarity structure on the torus, then we can push-down the
structure on K and then z defines a similarity structure on K . So we have the follow-
ing theorem:

Theorem 11.1. The choice of moduli z defines a similarity structure on K if and only if

z 0 does so on the torus.

Lemma 11.2. Let f : K ! J be a map between two Klein bottles and let p : T ! K

and p : Y ! J be their double orienting coverings. Then f lifts to a map j such that

the following diagram is commutative.

T ���!j Y

p

???y
???yp

K ���!f J

Proof. If there are no ambiguities, let us denote both p1ðKÞ and p1ðJÞ by
ha; b; abab�1i. So we have the commutation rule ab ¼ ba�1. Each element in p1ðKÞ
can be written in a unique way in the form bbaa. Now p�ðp1ðTÞÞH p1ðKÞ is the set of
elements of the form b2kax and the same for p�ðp1ðY ÞÞH p1ðJÞ. The map j exists if
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and only if f�p�ðp1ðTÞÞH p�ðp1ðYÞÞ. Then we only have to check that f�p�ðgÞ is of
the form b2kax for all g A p1ðTÞ.

Let f�ðaÞ ¼ bman and f�ðbÞ ¼ bsat. Since f� is a homomorphism, we have 1 ¼
f ðabab�1Þ ¼ bmanbsatbmanb�sað�1Þ sþ1t and it easily follows that m ¼ 0. Finally, since
ðbpaqÞr ¼ brpay with y A Z, then f�ðb2kaxÞ ¼ b2ksaz with z A Z and so it is of the re-
quested form for all k; x A Z. r
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