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Abstract

In this paper, we study the differences between algebraic and geometric solutions
of hyperbolicity equations for ideally triangulated 3-manifolds, and their relations
with the variety of representations of the fundamental group of such manifolds into
PSL(2, C).

We show that the geometric solutions of compatibility equations form an open
subset of the algebraic ones, and we prove uniqueness of the geometric solutions of
hyperbolic Dehn filling equations.

In the last section we study some examples, doing explicit calculations for three
interesting manifolds.
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1 Introduction

One of the most useful tools for studying the hyperbolic structures on 3-
manifolds is the technique of ideal triangulations, introduced by Thurston in
[16] to study the hyperbolic structures of the complement of the figure-eight
knot. An ideal triangulation of an open 3-manifold M is a description of M as
a disjoint union of copies of the standard tetrahedron with vertices removed
(ideal tetrahedron), glued together by a given set of face-pairing maps. Once
one has an ideally triangulated manifold M , the idea is to construct a hyper-
bolic structure on M by defining it on each tetrahedron and then by requiring
that such structures are compatible with a global one on M . A complete finite-
volume hyperbolic structure with totally geodesic faces on an oriented ideal
tetrahedron is described by a complex number, called its modulus. Then, the
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properties of hyperbolic structures of M (if any) translate to algebraic equa-
tions on the moduli. We refer the reader to [16], [12], [1], [13], [14] for more
details on ideal triangulations and hyperbolicity equations.

The main question is to decide whether a solution of the hyperbolicity equa-
tions actually defines a structure on M . The main problems arise when flat
or negatively oriented tetrahedra appear. In terms of moduli a tetrahedron
is flat (resp. negatively oriented) if the imaginary part of its modulus is zero
(negative). A solution is called positive (resp. partially flat) if the moduli have
positive (non negative) imaginary part. In this paper, we introduce the notion
of geometric solution to describe those choices of moduli defining a structure
on M (see Sections 3 and 4 for definitions). The main known results on the
matter are:

• (Thurston [16]) Any positive solution of the hyperbolicity equations is geo-
metric.
• (Petronio and Weeks [14]) Any partially flat solution of compatibility and

completeness equations satisfying an additional condition on the angles is
geometric.
• (Epstein-Penner decomposition [4]) Any noncompact, complete hyperbolic

3-manifold of finite volume admit an ideal triangulation with a geometric
partially flat solution of compatibility and completeness equations.
• (Petronio and Porti [13]) Any solution sufficiently close to the Epstein-

Penner decomposition is geometric.
• There exist examples of cusped manifolds admitting Dehn fillings which

are hyperbolic and such that no ideal triangulations are known having a
positive solution of the hyperbolic Dehn filling equations. For example the
(3, 1)-filling of the m007 SnapPea manifold ([17]).

In this work, we study the space of algebraic solutions of the compatibility
equations, showing that near nondegenerate solutions it has the local structure
of a branched covering of the space of representations Hom(π1(M), Isom+(H3)).
We prove that the set of geometric solutions of the compatibility equations
is an open subset of the set of algebraic ones; we prove the uniqueness of ge-
ometric solutions of the hyperbolic Dehn filling equations; we give examples
of non-geometric solutions of compatibility and completeness equations. The
paper is structured as follows.

In Section 2 we recall the definition of ideal triangulation and modulus of a
tetrahedron.

In Sections 3 and 4 we give the systems of the compatibility and hyperbolic
Dehn filling equations, and we give the definition of geometric solution of such
systems.

Sections 5 and 6 are devoted respectively to the study of algebraic and geo-
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metric solutions of the above systems.

In Section 7 we do explicit calculations for some interesting examples. Namely,
first we study two one-cusped manifolds admitting non-unique algebraic so-
lutions for the compatibility and completeness equations and a (unique) ge-
ometric one. Then we study a non-hyperbolic manifold admitting a partially
flat solution of the compatibility and completeness equations.

Acknowledgments. I wish to thank Joan Porti and Carlo Petronio. I also
thank the referee for its helpful comments. This work was partially supported
by the Centre de Recerca Matemàtica (Barcelona), the Scuola Normale Supe-
riore di Pisa, and INdAM.

2 Ideal triangulations with moduli

We fix here the class of manifolds we consider, namely the class of ideally
triangulated cusped 3-manifolds.

Definition 1 (Cusped manifold) A cusped manifold is an orientable 3-
manifold M diffeomorphic to the interior of a compact manifold M whose
boundary ∂M consists of a union of tori. A cusp of M is a closed regular
neighborhood of a component of ∂M .

We denote by M̂ the compactification of M obtained by adding one point for

each cusp of M . If M̃ is the universal covering of M , we denote by
̂̃
M the

space obtained by adding to M̃ one point for each lift of each cusp of M .

The points added to M (or M̃) are called ideal points. To each ideal point p
of M corresponds a torus Tp of the boundary of M . We fix a smooth product
structure Tp× [0,∞) on the cusp corresponding to p. Such a structure induces
a cone structure, obtained from Tp× [0,∞] by collapsing Tp× {∞} to p, on a

neighborhood Cp of p in M̂ . We lift such structures to the universal covering.

If p̃ is an ideal point of M̃ that projects to the ideal point p of M , we denote
by Np̃ the cone at p̃. We regard Np̃ as the quotient obtained from Pp̃ × [0,∞]
by collapsing Pp̃×{∞} is collapsed to a point, and where Pp̃×{t} projects to
the torus Tp × {t} for t <∞.

For an ideal point p corresponding to T , the lifts of p to an ideal point of
̂̃
M correspond to the conjugates of π1(T ) in π1(M) (via the correspondence
p̃↔ Stab(p̃)).

Definition 2 (Ideally triangulated manifold) Let M be a cusped mani-
fold. An ideal triangulation of M is a finite, smooth triangulation of M̂ hav-
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ing the set of ideal points as 0-skeleton. An ideally triangulated manifold is
a cusped manifold equipped with a finite smooth ideal triangulation τ which is
compatible with the product structures of the cusps. Namely, for each cusp Cp

we require τ ∩ (Tp × {0}) to be a triangulation of Tp and the restriction to Cp
of τ to be the product triangulation.

It is well-known that any cusped manifold can be ideally triangulated. Indeed,
ideal triangulations can be viewed as the dual of standard spines, and any
cusped manifold admits a standard spine (see for example [1] and [11]).

We recall now the definition of modulus of an ideal tetrahedron. An ideal tetra-
hedron in H

3
is the convex hull of four distinct points in ∂H3. An orientation

of an ideal tetrahedron is an ordering of its vertices, up to even permutations.
When the four points do not lie in a 2-plane, these orientations correspond
to the two orientations as a manifold. Using the model C × R+ for H3, we
may apply an isometry to assume that the vertices are (0, 1,∞, z), where the
modulus z is the cross-ratio [v1 : v2 : v3 : v4]. The cross sections by the horo-
spheres C × {t} are rescalings of the triangle {0, 1, z} in C, and it follows
that the hyperbolic structure of the ideal tetrahedron is determined by the
similarity structure of this horospherical triangle at a vertex. Changing the
ordering of the vertices by an even permutation changes z to an element in
the set {z, 1

1−z
, 1 − 1

z
}. This ambiguity may be avoided by fixing a preferred

edge e of the tetrahedron and arranging the vertices (v1, v2, v3, v4) so that e
joins v1 to v3. Choosing the edge opposite to e gives the same modulus.

In the sequel we tacitly assume that an orientation and an edge for each
tetrahedron have been fixed.

Definition 3 Let τ be an ideal triangulation of M . A choice of moduli z =
{zi, i ∈ I} for τ is a choice of a complex number zi 6= 0, 1 for each tetrahedron
∆i of τ . We write (τ, z) to mean an ideal triangulation τ with a choice of
moduli z for τ .

3 Compatibility equations, developing maps and holonomy

In this section, we recall some standard facts about ideal triangulations with
moduli, we introduce the system C of compatibility equations and we give the
definition of geometric solution of C. We refer the reader to [16], [12], [1], [13],
[14], [8] for more details. For this section, M will be an ideally triangulated
manifold with a triangulation τ and a choice of moduli z for τ .

In the language of (X,G)-structures, an oriented (possibly incomplete) hyper-
bolic manifold is a space equipped with an (H3, Isom+(H3))-atlas. Given (τ, z),
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the idea is to use the hyperbolic structures defined by z on the tetrahedra as
local charts for an (H3, Isom+(H3))-atlas for M . In order to succeed in this
construction, a necessary condition is that for each edge e of τ the product of
moduli around e is 1. Such conditions can be written as a system C of algebraic
equations on the moduli, having the form

±
∏

i

zαi

i (1− zi)βi = 1

where αi, βi ∈ Z depend on the combinatorial data. These equations are called
compatibility equations.

For a hyperbolic manifold N , it is well-known that there exist a developing
map D : Ñ → H3 and a holonomy representation h : π1(N) → Isom+(H3)
such that D is an h-equivariant local diffeomorphism (see for example [15]). A
similar picture holds for ideally triangulated manifolds with a choice of moduli
satisfying C.

The following proposition is a basic fact about ideal triangulations with mod-
uli, see for example [16], [1], [12], [8] for a proof and details.

Proposition 4 Let M be an ideally triangulated manifold and let z be a choice
of moduli. Then, equations C are satisfied if and only if there exist a map

D :
̂̃
M → H

3
and a representation h : π1(M)→ Isom+(H3) such that:

• D maps each lift ∆̃i of each tetrahedron ∆i of τ to an hyperbolic ideal
tetrahedron of H3 with modulus zi.

• D is h-equivariant, that is, for each x ∈ ̂̃
M and α ∈ π1(M)

D(αx) = h(α)D(x)

where π1(M) acts on M̃ by deck transformations and on H3 via h.

Definition 5 A map D :
̂̃
M → H

3
and a representation h : π1(M) →

Isom+(H3) satisfying the conditions of Proposition 4 are called respectively
a developing map for z and a holonomy of z. When we need to emphasize that
D and h depend on z, we write D(z) and h(z).

Remark 6 The maps D and h are not unique. Nevertheless, the conjugacy
class of the holonomy depends only on z.

Definition 7 (Hyperbolic map) Let N be a hyperbolic manifold with de-
veloping map DN : Ñ → H3. Let M be an ideally triangulated manifold with
a choice of moduli z. A map f : M → N is called hyperbolic w.r.t. z if it lifts
to a map f̃ : M̃ → Ñ such that DN ◦ f̃ extends to a developing map for z.
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Ñ

-

- H3
DN

Fig. 1. Hyperbolic map

Definition 8 (Geometric solution of C) Suppose M is an ideally triangu-
lated manifold. We say that a choice of moduli z is a geometric solution of
C if there exist a hyperbolic structure S on M and a proper degree-one map
f : M → MS which is hyperbolic w.r.t. z (where MS means M with the
structure S).

The following facts are not hard to prove (see [8] for details).

Proposition 9 Any geometric solution of C is also an algebraic solution of
equations C.

Proposition 10 Let N be a hyperbolic manifold with holonomy hN . Let f :
M → N be a map hyperbolic w.r.t. z and let f∗ : π1(M) → π1(N) be the
induced homomorphism. Then h(z) = hN ◦ f∗.

4 Hyperbolic Dehn filling equations

For this section, M ' int(M) will be an cusped manifold with an ideal tri-
angulation τ = ({∆i}). For each boundary torus Tn we fix a basis (µn, λn)
of H1(Tn,Z). We denote by (p, q) a set {(pn, qn)} of Dehn filling parameters,
where each (pn, qn) is either a pair of coprime integers or the symbol ∞. The
symbol z will denote a choice of moduli for τ satisfying C.

In this section we introduce a system of equations on the moduli, called hyper-
bolic Dehn filling equations, which depend on a chosen set (p, q) of Dehn filling
parameters. When the moduli have positive imaginary part, such equations
imply that the completion of the hyperbolic structure defined by the moduli
on M is the Dehn filling of M described by (p, q). The principal condition
expressed by these equations is that if m is a loop in a boundary torus killed
in homology by the filling, then the holonomy of m is trivial.

Hyperbolic Dehn filling equations can be written down without restrictions
on the imaginary parts of the moduli, but in general there is not an obvious
geometric interpretation of their solutions. For this reason, we distinguish
between algebraic and geometric solutions of the equations.
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First of all, we recall the definition of Dehn filling of a manifold.

Definition 11 (Dehn filling) Let (p, q) be a set of Dehn filling parameters.
For each n such that (pn, qn) 6= ∞, let Ln be an oriented solid torus, mn be
a meridian of T ′

n = ∂Ln, ln be a loop in Tn such that [ln] = pnµn + qnλn and
ϕn : Tn → T ′

n be an orientation-reversing homeomorphism such that ϕn(ln) =
mn. The Dehn filling of M with parameters (p, q) is the manifold

M(p,q) = int
(
M t {Ln}

/
{ϕn}

)

The tori Ln are called filling tori.

We notice that not all the boundary tori are filled in M(p,q). Namely, a torus Tn
is filled if and only if (pn, qn) 6=∞. If (pn, qn) =∞ for all n , then M(p,q) = M .

Consider now a complete hyperbolic manifold N , so Ñ = H3, and let γ be an
oriented geodesic in N . Since γ is oriented, for any lift γ̃ ⊂ H3 the endpoint
of γ̃ is well-defined.

Definition 12 Let N, γ be as above. Let f : M → N be a hyperbolic map
w.r.t z. If f̃ : M̃ → H3 is a lift of f , we say that f spirals around γ near an
ideal point v if f̃ carries any lift of v to the endpoint of a lift of γ.

Let T ⊂ ∂M be a boundary torus. Consider the half-space model C × R+ of
H3 and a developing map D such that the vertex corresponding to T is lifted
to a vertex mapped to ∞ by D. Then, the group h(π1(T )) consists of maps
which fix ∞. By considering the restriction to ∂H3 ≡ CP1 of the elements of
h(π1(T )), we obtain a representation hT : π1(T ) → Aff(C). Since h is well-
defined up to conjugation, then the dilation component of hT is well-defined,
and it is a representation ρT : π1(T )→ C∗.

Since π1(T ) is abelian, its image hT (π1(T )) consists of maps which commute
with each other. Therefore, it is easy to see that either they are all translations,
or they have a common fixed point. In the former case we have ρT ≡ 1. In
the latter case, up to conjugation, we can suppose that the fixed point is 0.
Thus we get hT = ρT , in the sense that for all α ∈ π1(T ) and ζ ∈ C, we have
hT (α)(ζ) = ρT (α) · ζ .

Remark 13 In the following, by writing ρT ≡ 1 we mean that hT (π1(T ))
consists of translations and by hT = ρT we mean that hT (π1(T )) consists of
maps which fix 0.

To write the equations, we need to work with log(ρT ). In the following defini-
tion we fix a suitable determination of the logarithm of ρT .

Definition 14 (Logarithm of Dilation component) Let D be a develop-
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ing map for z. Let T ⊂ M be a boundary torus of M , pushed a little inside
M , and let T̃ ⊂ M̃ one if its lifts. Consider the model C× R+ of H3 so that
the ideal point corresponding to T̃ is mapped to ∞. Suppose that hT = ρT and
suppose that the following condition holds:

The developed image of T̃ does not intersect the line (0,∞).

Then we choose a determination of log(ρT ) as follows: let H be the universal
covering of H3 \ (0,∞) made by using the covering exp : C→ C∗. Let x0 and
x̃0 be base-points in T and T̃ . Let η : [0, 1] → T be a loop at x0 and η̃ be its
lift starting from x̃0. Let α̃ : [0, 1]→ C∗ be the horizontal component of D ◦ η̃.
As D ◦ η̃ lifts to H, the path α̃ lifts to a path α : [0, 1] → C. Since hT = ρT ,
then α̃(1) = ρT ([η]) · α̃(0), and then α(1) = log(ρT ([η])) + α(0).

The points α(0) and α(1) depend only on the homotopy class of η and on the
choice of the base-points. If we change the base-points, the determination of
log(ρT ([η])) does not change.

We are now ready to give the hyperbolic Dehn filling equations.

Definition 15 (Dehn filling equations) Let (p, q) = {(pn, qn)} be a set of
Dehn filling parameters. For each n, let ρn(z) be the dilation component of
the holonomy of the n-th boundary torus Tn, when z varies on the space of
solutions of the compatibility equations. We say that z is an algebraic solution
of the (p, q)-equations if for each n we have:

- If (pn, qn) =∞, then ρn(z) ≡ 1.
- If (pn, qn) 6= ∞, then hTn

(z) = ρn(z), the condition of Definition 14 holds,
and

pn log(ρn(z)[µn]) + qn log(ρn(z)[λn]) = 2πi.

We say that z is a geometric solution of the (p, q)-equations if, denoting by
N = M(p,q) the Dehn filling of M with parameters {(pn, qn)}, we have:

a) N is complete hyperbolic and the cores of the filling tori are disjoint geodesics
{γn}.

b) There exists a proper map f : M → N \ {γn} ⊂ N of degree 1, which is
hyperbolic w.r.t. z.

c) For each n with (pn, qn) 6=∞, if vn denotes the ideal point corresponding to
Tn, then f spirals around γn near vn, where γn has the orientation induced
by the Dehn filling parameters (pn, qn).

Remark 16 When all the coefficients (pn, qn) are ∞, then the system of the
(p, q)-equations is nothing but the classical system M of the so-called com-
pleteness equations. When the moduli have positive imaginary part, equations
M imply that the hyperbolic structure defined by the moduli on M is complete
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(of finite volume).

The following fact is not hard to prove (see [8] for details).

Proposition 17 For any (p, q), each geometric solution of the (p, q)-equations
is also algebraic.

Remark 18 It is well-known that any algebraic solution of (p, q)-equations
such that each zn has positive imaginary part is geometric. In Section 7 we
give examples of algebraic solutions that are not geometric.

5 Algebraic solutions of hyperbolicity equations

In this section we study the space of algebraic solutions of compatibility equa-
tions. We show that there is a one-to-finite correspondence between represen-
tations of the fundamental group of a given ideally triangulated 3-manifold
and (algebraic) solutions of C for such a manifold. This gives another way to
see the space of generalized Dehn filling coefficients.

For this section we keep the notation fixed in Section 4. When z is a solution
of C, h(z) will denote its holonomy. To simplify notations, we often omit to
indicate the base-points for the fundamental groups. For any boundary torus
Tn, we assume that a representative π1(Tn) < π1(M) of the conjugacy class
of its fundamental group has been fixed. For each isometry γ ∈ Isom+(H3)

let Fix(γ) denote the set of the points of H
3

fixed by γ. For a subgroup
Γ < Isom+(H3) we set Fix(Γ) = ∩γ∈ΓFix(γ).

It is easily checked that the following fact holds (see for example [8]).

Lemma 19 For any abelian subgroup Γ of Isom+(H3), Fix(Γ) is not empty.
Moreover,

(1) Fix(Γ) ∩ ∂H3 is infinite if and only if Γ = {Id}.
(2) Fix(Γ) ∩ ∂H3 = ∅ if and only if Γ is a dihedral group generated by two

rotations of angle π around orthogonal axes.
(3) Fix(Γ)∩∂H3 contains a single point if and only Γ contains only parabolic

isometries.
(4) Otherwise Fix(Γ) ∩ ∂H3 contains exactly two points.

For any representation ρ : π1(M)→ Isom+(H3), we denote by Dρ the set of all

ρ-equivariant maps from the ideal points of M̃ to ∂H3. Because of equivariance,
if D ∈ Dρ and q is an ideal point of M̃ , then D(q) ∈ ρ(Stab(q)). Moreover,
the elements of Dρ can be constructed as in the proof of the next proposition.
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Proposition 20 Let ρ : π1(M) → Isom+(H3) be a representation. Suppose
that for any boundary torus Tn, ρ(π1(Tn)) is not dihedral. Then the set Dρ
is not empty. If, in addition, the ρ-images of the fundamental groups of all
the boundary tori are not trivial, then Dρ is finite. Moreover, Dρ consists of
one element if and only if the ρ-images of the fundamental groups of all the
boundary tori are parabolic.

Proof. We prove the first claim by showing how to construct an element D
of Dρ. Let q be an ideal point of M̃ . The stabilizer Stab(q) of q in π1(M) is
conjugate to the fundamental group of some boundary torus. It follows that
ρ(Stab(q)) is not dihedral, so by Lemma 19 it has at least one fixed point x in
∂H3. Define D(q) = x and extend D to the π1(M)-orbit of q by equivariance.
Do the same for the remaining ideal points.

Now, let Tn be a boundary torus. By Lemma 19, if ρ(π1(Tn)) is not trivial,
then it has one or two fixed points in ∂H3. Thus, in the construction of D,
when one has to choose the image of an ideal point, one has at most two
possibilities. Since the ideal points of M are finite in number, then in M̃ there
is only a finite number of π1(M)-orbits of ideal points. Therefore, one has
to make only a finite number of choices. The last claim directly follows from
point (3) of Lemma 19. 2

In the sequel, let the symbol ∗ denote the degenerate modulus, with the mean-
ing that an ideal tetrahedron has modulus ∗ if and only if it is a degenerate
tetrahedron (it has two or more coincident vertices).

Theorem 21 (Representations determine moduli) Suppose that ρ : π1(M)→
Isom+(H3) is a representation such that for any boundary torus Tn, ρ(π1(Tn))
is not dihedral. Then, each element D of Dρ induces a choice zD of moduli in
(C\{0, 1})∪{∗}. Moreover, if zD contains no ∗-moduli, then it is an algebraic
solution of C with holonomy ρ.

Proof. The choice of moduli zD is defined simply by taking, for each ∆i of τ ,
the modulus of the convex hull of the D-image of the vertices of any lift ∆̃i of
∆i, setting the modulus to ∗ if D is not injective on the vertices of ∆̃i. This
definition is unambiguous because of the equivariance of D. If zD contains
no ∗-moduli then, by induction on the n-skeleta, one can easily construct a
developing map for zD that extends D. Thus by Proposition 4, zD is a solution
of C. The holonomy of zD is ρ because of the ρ-equivariance of D. 2

Remark 22 If ϕ ∈ Isom+(H3) and ρ′ = ϕ ◦ ρ ◦ ϕ−1, then a natural corre-
spondence between Dρ and Dρ′ is defined by mapping D ∈ Dρ to the element
ϕ ◦D ∈ Dρ′. Note that zD = zϕ◦D.

We give now a topological description of the sets Dρ when ρ varies in the space
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Hom
(
π1(M,x0), Isom+(H3)

)
. Let p1, . . . , pk be the ideal points of M , and for

all n = 1, . . . , k let qn be a lift of pn. Let D be the topological subspace of
Hom

(
π1(M,x0), Isom+(H3)

)
× (∂H3)k defined by

D =
⋃

ρ

{
{ρ} × Fix

(
ρ(Stab(q1))

)
× · · · × Fix

(
ρ(Stab(qk))

)}

and let p be the projection p : D → Hom
(
π1(M,x0), Isom+(H3)

)
.

By Proposition 20, for any representation ρ, a bijection between p−1(ρ) and
Dρ is well-defined by mapping (ρ, x1, . . . , xk) to the element D of Dρ such that
D(qn) = xn. In the sequel we identify Dρ with p−1(ρ).

The space D is strictly related to the space of generalized Dehn filling coeffi-
cients. We briefly recall some results in this field, referring the reader to [16], [3]
and [2] for a detailed discussion.

Let R(M) = Hom(π1(M), SL(2,C)) be the variety of representations of π1(M)
into SL(2,C) and let χ(M) = R(M)//SL(2,C) be its variety of characters. For
ρ ∈ R(M), its character χρ is its projection to χ(M) and can be viewed as
the map χρ : π1(M)→ C defined by χρ(γ) = trace(ρ(γ)).

For each j = 1, . . . , k let sj be a slope in Tj. If χ0 is the character of the
holonomy of the complete structure of M (if any), then (see for example [2])
there exists a branched covering

p : V ⊂ Ck →W ⊂ χ(M) (1)

where V and W are neighborhoods respectively of 0 and χ0 such that, if
χρ = p(u1, . . . , uk), then 2 cosh(uj/2) = ±trace(ρ(sj)). Thus, the p-fiber of a
point is a finite set with a 2-to-1 choice for each uj 6= 0.

We show now that also the projection p : D → Hom
(
π1(M,x0), Isom+(H3)

)

has a branched covering structure which is strictly related to the one of p. We
denote by parabolic order of ρ the number P (ρ) of boundary tori where ρ is
parabolic:

P (ρ) = #{n ∈ {1, . . . , k} : ρ(π1(Tn)) is parabolic}.

The parabolic order stratifies Hom
(
π1(M,x0), Isom+(H3)

)
as follows. Let

Par(l)(M) = {ρ ∈ Hom
(
π1(M,x0), Isom+(H3)

)
: P (ρ) ≤ l};

then

Hom
(
π1(M,x0), Isom+(H3)

)
=

k⋃

l=0

Par(l)(M).
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Proposition 23 Let ρ0 : π1(M,x0) → Isom+(H3) be a representation such
that ρ0(π1(Tn)) is not dihedral nor trivial for any of the Tn. Then there exists

a neighborhood U of ρ0 in Hom
(
π1(M,x0), Isom+(H3)

)
such that the restriction

of p to p−1(U) is a branched covering whose branched locus is stratified by the
parabolic order. More precisely, if U (l) denotes U ∩ Par(l)(M), then for each l

p : p−1
(
U (l) \ U (l−1)

)
−→ U (l) \ U (l−1)

is a finite covering which branches at U (l+1). Moreover, if there exists D0 ∈
Dρ0 such that zD0

contains no ∗-moduli, then U can be choosen such that for
each path α : [0, 1] → U , with α(0) = ρ0, and each lift α̃ : [0, 1] → D with
α̃(0) = D0, no ∗-moduli appear in zα̃(t) for t ∈ [0, 1].

Proof. Since for ρ0(π1(Tn)) to be trivial or dihedral is a closed condition, we
may choose a neighborhood U of ρ0 in which each ρ(π1(Tn)) is nontrivial
and not dihedral for any of the Tn. Suppose that ρ0 ∈ U (l) \ U (l−1). It is not
restrictive to assume that ρ0(π1(Tn)) is parabolic for n = 1, . . . , l. Thus, since
ρ0 ∈ U (l), ρ0(π1(Tn)) is not parabolic for n > l, and the same holds for any
ρ ∈ U (l).

By Proposition 20, for ρ ∈ U (l) the set Dρ consists of a finite number of points.
Let now α : [0, 1]→ U (l)\U (l−1) be a continuous path with α(0) = ρ0. The sets
Fix(ρ(Stab(qn))) depend continuously on ρ. Moreover, since α(t) ∈ U (l)\U (l−1),

the cardinality of the sets Fix
(
α(t)(Stab(qn))

)
depends continuously on t. It

follows that for any D0 ∈ Dρ0 there exists a unique lift α̃ : [0, 1] → D with
α̃(0) = D0 and p(α̃(t)) = α(t), and this proves that p is a finite covering of
U (l) \ U (l−1).

If ρ ∈ U (l) \ U (l−1) approaches a representation ρ ∈ U (l+1) \ U (l), then there
is a torus, say Tl+1, such that ρ(π1(Tl+1)), which is not parabolic, approaches
a parabolic group. Then the two points of Fix(ρ(π1(Tl+1))) converge to the
same point, which is Fix(ρ(π1(Tl+1))). Thus, two fibers of the covering glue
together, and this shows that there is an effective branch at U (l+1). The last
claim follows since zα̃(t) depends continuously on t. 2

When a cuspidal group becomes parabolic, the type of branching of the map
p : D → Hom(π1(M), Isom+(H3)) is of the type C 3 z → z2. This is exactly
the branch-type of the covering p̄ : V ⊂ Ck → W ⊂ χ(M).

To see the analogy with the space of generalized Dehn filling coefficients,
consider the character-map χ : Hom

(
π1(M,x0), Isom+(H3)

)
→ χ(M)

χ : ρ 7→ χρ.

Suppose that ρ0 is the holonomy of the complete hyperbolic structure of M

12



(if any). Let U be a neighborhood as in Proposition 23 and let V,W be as
in (1). It is not restrictive to assume W = χ(U). Then, using the fact that
the coverings p and p have the same behavior at the branch locus, one can see
that the map χ lifts to a map

χ̃ : p−1(U) ⊂ D → V ⊂ Ck

such that χ ◦ p = p ◦ χ̃.

The following diagram resumes the correspondences between D, the space of
algebraic solutions, Hom

(
π1(M,x0), Isom+(H3)

)
and χ(M).

D

?
p

Hom
(
π1(M,x0), Isom+(H3)

)

-χ̃

χ(M)

?
p

χ

Ck

-

� Theorem 21{zD, D ∈ Dρ}
6Inclusion

?

If no
∗-moduli

{ Algebraic
solutions

}
-

holonomies

Fig. 2. The space D

6 Geometric solutions of hyperbolicity equations

In this section we study the space of geometric solutions of compatibility and
hyperbolic Dehn filling equations. We show that the set of geometric solutions
of C is an open subset of the set of algebraic ones. We also show that the
geometric solutions of hyperbolic Dehn filling equations are unique.

For this section we keep the notation fixed at the beginning of Section 5.

We show now that the set of geometric solutions of C is an open subset of
the set of algebraic ones. We recall that, for each cusp Cn, we fixed a product
structure on the lift Nn

∼= Pn× [0,∞] of Cn, where Pn covers the torus Tn and
Pn × {∞} ∼ qn (see Definition 1).

Lemma 24 Let h0 be the holonomy of a geometric solution of C. Then there
exists a neighborhood U of h0 in Hom

(
π1(M,x0), Isom+(H3)

)
such that p|p−1(U)

is a branched covering and, for each ρ ∈ U and D ∈ Dρ, there exists a local

diffeomorphism Dρ : M̃ → H3 such that:

(1) Dρ is a developing map for a (possibly incomplete) hyperbolic structure
Sρ on M with holonomy ρ.

(2) The map Dρ “extends” D. More precisely, in each Nn, Dρ maps all the
sets of the form {x} × [0,∞] to geodesic rays ending at D(qn).

13



(3) The maps Dρ can be chosen continuously in D w.r.t. the compact C1-

topology of maps M̃ → H3.

Proof. This is nothing but Lemma 1.7.2 of [3] or Lemma B.1.10 of [2]. These
Lemmas are stated and proved starting from the holonomy of a complete
hyperbolic structure of M , but it is not hard to see that they hold if one
starts from the holonomy of a geometric solution of C, the proofs remaining
substantially the same. 2

Theorem 25 (Geometric solutions are an open set) The set of geomet-
ric solutions of C is open in the set of algebraic solutions of C.

Proof. Let z0 be a geometric solution of C and let h0 be its holonomy. By
Definition 8, there exists a hyperbolic structure S0 on M with holonomy h0,
a developing map D0 for S0 and a map f : M →M such that, if f̃ is a lift of
f , D0 ◦ f̃ is a developing map for z0 (Figure 3).

M̃

?

M

-f̃

M

?f

M̃

-

- H3
D0

Fig. 3. The hyperbolic map f

Let U be a neighborhood of h0 such that the conclusions of Proposition 23
and Lemma 24 hold for U . Then for any algebraic solution z of C such that
h(z) ∈ U there exists a hyperbolic structure S

z
on M and a developing map

D
z

for S
z

such that, if gz = Dz ◦ f̃ (see Figure 4), then

zgz = z

where we used the symbol g
z

also for the restriction of g
z

to the ideal points.
Moreover, since h(z) depends continuously on z, D

z
depends continuously on

z. To show that z is a geometric solution of C, we construct a hyperbolic map
f
z

from M to (M,S
z
) by perturbing the initial hyperbolic map f .

Let ϕ
z

:
̂̃
M → H3 be a developing map for z which coincides with g

z
on the

ideal points and depends continuously on z (Figure 4). Moreover, we require
ϕ

z0
= D0 ◦ f̃ .

Such a ϕ
z

can be easily constructed by straightening g
z
. Moreover, using

convex combinations along geodesics in H3, an h(z)-equivariant homotopy
H

z
: M̃ × [0, 1]→ H3 can be constructed such that

H
z
(x, 0) = g

z
(x) H

z
(x, 1) = ϕ

z
(x).

14



M̃ H3

?g
z

= D
z
◦ f̃

M̃

--
ϕ

z

���������������:
f̃

D
z

Fig. 4. The maps gz and ϕz

More precisely, for any x ∈ M̃ , the map [0, 1] 3 t 7→ H
z
(x, t) parametrizes

the geodesic segment from g
z
(x) and ϕ

z
(x) (the parameter being a multiple of

the arc-length depending of the distance between g
z
(x) and ϕ

z
(x)). The fact

that ϕ
z

is a developing map does not imply in general that z is geometric.
The problem is that ϕ

z
should be the lift of a map M → M , and this may

not happen if, for example, looking at the restriction of ϕ
z

to a cusp, one sees
that its image intersects the axis of the holonomy of the cusp.

With Figure 4 in mind, the idea to rule out pathologies is to try to lift the
homotopy H

z
to a homotopy of f̃ , that is, to a map F

z
: M̃ × [0, 1]→ M̃ such

that

F
z
(x, 0) = f̃(x) and H

z
(x, t) = D

z
◦ F

z
(x, t).

At the 0-level, clearly we set F
z
(x, 0) = f̃(x). Since D

z
is a local diffeomor-

phism, H
z
can be locally lifted a little near the 0-level. Since M̃ is not compact,

it is not clear a priori how long H
z

lifts, and how this depends on the point x.

For any x, z define

εx,z = sup
{
s ∈ [0, 1] : H

z
continuously lifts if restricted to {x} × [0, s]

}
.

Since ϕ
z0

= D0 ◦ f̃ , the homotopy H
z0

is constant in t, that is H
z0

(x, t) =
ϕ

z0
(x). Therefore εx,z0

= 1.

Lemma 26 For every compact set E ⊂ M̃ there exists a neighborhood B of
z0 such that for all z ∈ B and x ∈ E, we have εx,z = 1.

Proof. We only sketch the proof, which can be found with all details in [8].

Since the local diffeomorphisms D
z

converge to D0 when z goes to z0, for any
y ∈ M̃ there exists a neighborhood A(y) of y in M̃ and a neighborhood By of
z0 such that for any z ∈ By the map D

z
is a diffeomorphism with the image

when restricted to A(y). Moreover, the neighborhoods By’s can be chosen in
such a way that they are intersection of the space of solutions of C with balls of
Ck centered at z0, and one can prove (see [8]) that the neighborhoods A(y)’s
and By’s can be chosen in such a way that radii of the balls By are lower
semicontinuous in y. Define now

R(x) = sup{s ∈ R : |z− z0| < s⇒ εx,z = 1}
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Since D
z
→ D0 as z→ z0, and since ϕ

z0
= D0 ◦ f̃ = g

z0
, the maps ϕ

z
and g

z

become closer and closer as z→ z0. It follows that for every x ∈ M̃ if |z− z0|
is small enough, then the whole geodesic segment joining ϕ

z
(x) to g

z
(x) is

completely contained in D
z
(A(f̃(x))). It follows that for all x ∈ M̃ , R(x) > 0,

and it turns out (see [8]) that there is no converging sequence (xn) ⊂ M̃ such
that

limR(xn) = 0.

Then, the function

R(x) = sup
{
ξ : M̃ → R lower semicontinuous s.t. ξ(x) ≤ R(x)

}

is lower semicontinuous and strictly positive.

For any compact set E, by lower semicontinuity, the function R has a minimum
in E, which is strictly positive. It follows that there exists a neighborhood B
of z0 such that for all z ∈ B and x ∈ E we have εx,z = 1. 2

In particular, we choose E as follows. Let M0 be the closure of M minus the
cusps (so M0 ' M), let M̃0 be its lift and let E be a fundamental domain of
M̃0 for the action of π1(M).

Thus, for z ∈ B, the homotopy H
z

lifts to F
z

on the points of E, and F
z

extends to the whole M̃0 by equivariance. For any x ∈ M̃0 we set

f̃
z
(x) = F

z
(x, 1).

Clearly, ϕ
z

= D
z
◦ f̃

z
on M̃0, and we will show in Lemma 27 that f̃

z
extends

to the whole
̂̃
M , keeping the property that

ϕ
z

= D
z
◦ f̃

z
.

By equivariance, f̃
z

projects to a map f
z

: M →M which is hyperbolic w.r.t.
z because ϕ

z
is a developing map for z. Moreover the degree of f

z
continuously

depends on z, so it is constant 1. Then each z ∈ B is a geometric solution of
C. This completes the proof of Theorem 25. 2

Lemma 27 The map f̃
z

extends to the whole
̂̃
M , keeping the property that

ϕ
z

= D
z
◦ f̃

z
.

Proof. For each n = 1, . . . , k, the map f̃
z

is defined on Pn × {0} (Nn
∼= Pn ×

[0,∞] is the product structure on the nth cups, see Definition 1). Moreover,
since ϕ

z
is a developing map for z, it is not restrictive to suppose that it
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maps sets of the form {x}× [0,∞] ⊂ Nn to geodesic rays ending at gz(qn). By
Property 2 of Lemma 24, such rays lift to M̃ . It follows that ϕz lifts on the
cusps to a map extending f̃

z
. 2

We prove now the uniqueness of the geometric solutions of hyperbolic Dehn
filling equations.

Proposition 28 Suppose that the Dehn filling N = M(p,q) is hyperbolic. Let
S1 and S2 be two finite-volume, complete hyperbolic structures on N such
that the cores γn of the filling tori are geodesics for both S1 and S2. Then
there exists an orientation-preserving isometry α : (N,S1) → (N,S2) such
that α(γn) = γn for all n.

Proof. By rigidity, the identity Id : (N,S1) → (N,S2) is homotopic to an
isometry α. Thus for each n the loop γn is freely homotopic to α(γn). By
hypothesis γn is geodesic for both S1 and S2. Since α is an isometry it follows
that α(γn) is a geodesic for S2. Hence γn and α(γn) are geodesics for S2 and
they are freely homotopic, so they must coincide. 2

Lemma 29 If the Dehn filling coefficients (p, q) are such that there exists a
geometric solution of the (p, q)-equations, then M(p,q) has finite volume.

Proof. Let z be a geometric solution of the (p, q)-equations. By definition,
M(p,q) is complete hyperbolic. Let vol(zi) be the volume of a hyperbolic ideal
tetrahedron of modulus zi, with vol(zi) < 0 if =(zi) < 0. Since by definition of
geometric solution there exists a proper degree-one map f : M →M(p,q) \{γn}
which is hyperbolic w.r.t. z, then

vol(M(p,q)) = vol(Im(f)) ≤
∑
|vol(zi)| <∞.

2

Lemma 30 Let (p, q) be a set of Dehn filling coefficients and let z and w be
two geometric solutions of the (p, q)-equations. Then there exists ψ ∈ Isom+(H3)
such that h(w) = ψ ◦ h(z) ◦ ψ−1.

Proof. Let N = M(p,q) be the (p, q)-Dehn filling of M endowed with its hy-
perbolic structure, and let ı : M → N be one of the inclusions M → M(p,q).
Then, both representations h(z) and h(w) split along ı∗ : π1(M)→ π1(N) giv-
ing representations of π1(N) of maximal volume. By Lemma 29, the rigidity
theorem for representations of fundamental groups of finite-volume hyperbolic
manifolds (see [7, Theorem 1.4]) applies, and h(z) and h(w) are conjugate. 2

Theorem 31 For any Dehn filling coefficient (p, q) there exists at most one
geometric solution of the (p, q)-equations.

Proof. Let z be a geometric solution of the (p, q)-equations. By Proposi-
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tion 17, z is also an algebraic solution of the (p, q)-equations. In particular,
h(z)(π1(Tn)) is not dihedral for any boundary torus Tn. If D

z
is the restriction

of a developing map for z to the ideal points, then D
z
∈ Dh(z) and z = zDz

. By
Proposition 20, if for all n we have (pn, qn) =∞, then D is the unique element
of Dh(z). Otherwise, D is the unique element of Dh(z) that satisfies condition c)
of Definition 15. If w is another geometric solution of the (p, q)-equations, then
by Lemma 30 there exists ψ ∈ Isom+(H3) such that h(w) = ψ ◦ h(z) ◦ ψ−1.
As above, and by Proposition 28, D

w
is completely determined as an element

of Dh(w), and D
w

= ψ ◦D
z
∈ Dψ◦h(z)◦ψ−1 = Dh(w). Finally, by Remark 22

z = zDz
= zψ◦Dz

= zDw
= w.

2

Remark 32 Theorem 31 in particular implies the uniqueness of geometric
solutions of C+M, where M is the system of completeness equations recalled
in Remark 16. We notice that Lemma 30 can be proved using a version of
Mostow’s rigidity for cusped manifold (see for example [8]) instead of the rigid-
ity of representations.

7 Examples

In this section we explicitly compute the solutions of the compatibility and
completeness equations for some particular one cusped 3-manifolds.

• We study two bundles over S1, called LR3 and L2R3, with fiber a punctured
torus. These manifolds admit non-unique algebraic solutions and a (unique)
geometric one.
• We study a manifold with non-trivial JSJ decomposition, obtained by gluing

a Seifert manifold to the complement of the figure-eight knot. This manifold
is not hyperbolic but it admits a partially flat solution of the compatibility
and completeness equations.

The manifolds LR3 and L2R3 are interesting because on one hand they show
that the algebraic solutions are not unique, and on the other hand they pro-
vides examples of algebraic solutions which are not geometric (Proposition 33).
We notice that these “bad” solutions do not involve flat tetrahedra, and have
a good behavior on the boundary. Namely, the boundary torus inherits an
intrinsic Euclidean structure (up to scaling). This fact is surprising because
the geometry of a finite-volume hyperbolic 3-manifold is strictly related to
the geometry of its boundary. In fact, the equations on the moduli have an
interpretation as conditions on the geometry of the boundary. More precisely,
any ideal triangulation of M induces a triangulation of the boundary tori, by
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considering the manifold with boundary obtained by chopping off an open reg-
ular neighborhood of the ideal vertices. A modulus for the hyperbolic structure
of an ideal tetrahedron determines a modulus for the similarity structure of
the triangles obtained as horospherical sections near the vertices. So an ideal
triangulation with moduli of M induces a triangulation with moduli of the
boundary tori. The compatibility equations express the fact that the moduli
for the triangles lead to similarity structures on the tori. The completeness
equations express the fact that the structures of the boundary tori are Eu-
clidean. Moreover, when the imaginary part of the moduli is not negative, the
control of the geometry of the boundary implies a control of the one of the
whole M . For example, in order to have a complete finite-volume hyperbolic
structure on M , it suffices to check that the boundary tori have Euclidean
structures.

In [6] it is shown that any algebraic solution of the compatibility and com-
pleteness equations for the similarity structure of a triangulated torus leads
to a Euclidean structure, even if there are negative triangles, provided that
the algebraic sum of the areas of the triangles is not zero. So the example of
LR3 shows that the Euclidean situation in dimension 2 and the hyperbolic
one in dimension 3 become quite different when we allow the moduli to have
negative imaginary part.

The manifold with non-trivial JSJ decomposition that we study in the last
example is a manifold that admits an ideal triangulation with a positive,
partially flat solution of the compatibility and completeness equations. Such
a solution cannot be geometric as the manifold is not hyperbolic. This seems
to contradict [14] (see the introduction). Actually there is no contradiction
because in our example the conditions on the angles are not satisfied (see
below for details). This example shows that such conditions play a central
role for a solution to be geometric.

7.1 Notation

To begin with, we fix some notation. Let L and R be the following matrices
of SL(2,Z):

L =




1 1

0 1


 R =




1 0

1 1




Each element A of SL(2,Z) is conjugate to a product A = ±∏n
i=1A

ni

i , with
Ai ∈ {L,R} and ni ∈ N.

Let S be the punctured torus (R2 \ Z2)/Z2. Then each element A ∈ SL(2,Z)
induces a homeomorphism ϕA of S. Given A =

∏
Ani

i , we call
∏
Ani

i the
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manifold obtained from S × [0, 1] by gluing (x, 0) to (ϕA(x), 1). For such a
manifold, using the algorithm described in [5], one easily obtains an ideal
triangulation with

∑
ni tetrahedra.

We notice that the complement of the figure-eight knot is the manifold LR,
and its standard ideal triangulation with two tetrahedra is the one obtained
according to [5].

We use the following notation for labeling simplices. For each vertex v of a
tetrahedron X, we write Xv for the triangle obtained by chopping off the
vertex v from X, and Xv for the face of X opposite to v. Given a tetrahedron
X and two vertices v, w of X, by abuse of notation, we use the label w also
for the edge of the triangle Xv corresponding to the face Xw. A modulus for a
tetrahedron X is named zX and we will specify the edge to which it is referred.

7.2 The manifold LR3

Let M be the manifold LR3, i.e. the manifold obtained as described above

by using the element LR3 =




4 1

3 1


 =




1 1

0 1







1 0

1 1







1 0

1 1







1 0

1 1


 of SL(2,Z).

Using the algorithm described in [5], we get the ideal triangulation τ of M
with four tetrahedra, labeled A, B, C, D and pictured in Figure 5.
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���������������

HHHHHH

HHHHHH

0 1
1

3
2

2
1

���������������

HHHHHH

HHHHHH

0 1
1

4
3

3
2

A B

C D

Fig. 5. Ideal triangulation of M

We label the vertices of the tetrahedra as in Figure 5 (we use such labels
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because they are natural using the algorithm of [5]). The moduli are referred

to the edge 0 1
1

(note that this edge is common to all the tetrahedra).

The face-pairing rules of τ are, according to the arrows in the picture:

A
0

1 ←→ B
2

1 B
1

0 ←→ C
3

2 C
2

1 ←→ D
4

3 D
3

2 ←→ A
1

1

A
1

0 ←→ B0 B
1

1 ←→ C0 C
1

1 ←→ D0 D
1

1 ←→ A0

The induced triangulation on the boundary torus is described in Figure 6.
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Fig. 6. The triangulation of the boundary torus

We can now write down the compatibility and completeness equations. It is
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easy to check that C +M is equivalent to the system (2).

C





C1. zA(1− 1

zA
)2z2

Dz
2
Cz

2
B

1

1− zB
= 1

C2. (
1

1− zA
)2 1

1− zD
(1− 1

zB
)2 1

1− zC
= 1

C3. (1− 1

zD
)2 1

1− zC
zA = 1

C4. (1− 1

zC
)2 1

1− zD
1

1− zB
= 1

M. zDzCzB(1− zA) = 1

(2)

Moreover, the product of the four equations C is exactly the square of the
product of all the moduli, and so it is 1. So if three equations are satisfied,
then the remaining one must be. It follows that we can discard one of the C’s.

We discard C2. UsingM in C1 and then C1 in C4 andM we obtain the following
system of equations, equivalent to C +M:





M. zDzC(1− zA)2 = −zA
C1. zA(1− zB) = 1

C3. ( zD−1
zD

)2 zA

1−zC
= 1

C4. ( zC−1
zC

)2 zA

1−zD

= 1

(3)

Solving the system, one finds four non-degenerate solutions; one completely
positive, giving the hyperbolic structure of M , and one with two negative
tetrahedra, and their conjugates (i.e. the same situations but with inverted
orientations). The following table contains numerical approximations of the
solutions. Note that even if the modulus zB is different from the modulus zA,
equation C1 implies that the geometric versions of A and B are isometric.
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Solution 1 Volumes

zA 0.4275047 + i1.5755666 0.9158907

zB 0.8395957 + i0.5911691 0.9158907

zC 0.7271548 + i0.2284421 0.5786694

zD 0.7271548 + i0.2284421 0.5786694

Solution 2 Volumes

zA 1.0724942 + i0.5921114 0.8144270

zB 0.2854042 + i0.3945194 0.8144270

zC −1.7271548− i0.6779619 −0.2398640

zD −1.7271548− i0.6779619 −0.2398640

In Figures 7 and 8, we describe what the triangulation of the boundary torus
of M looks like when we choose the moduli of Solution 2. There are two types
of triangles, the positive ones, relative to the tetrahedra A and B and the
negative ones, relative to C and D. In Figure 7 the four triangles of the top
quarter of the triangulation of Figure 6 are pictured.

0 1

ZD
•

ZDZC •
ZDZCZB
•

ZDZCZBZA
•

Fig. 7. The triangles D0, C0, B0, A0 with the moduli of Solution 2.

The two parts of Figure 8 are the top and bottom part of the triangulation of
Figure 6.

Now we look at the algebraic expression of the solutions. A simple calculation

23



?

6

-

�

?

6

-

�

��������9
B
B
B
B
B
B
B
BB�������1

-

�
�

�
�

��+

Fig. 8. Geometric triangulation of the boundary torus, Solution 2.

shows that the moduli can be expressed by equations (4):





zC = zD = w

zA =
w2

1− w
zB = 1− 1

zA
=
w2 + w − 1

w2

w4 + 2w3 − w2 − 3w + 2 = 0

(4)

The four solutions correspond to the four roots w1, w1, w2, w2 of the polynomial
P (w) = w4 + 2w3 − w2 − 3w + 2. Note that looking at the reduction (mod 2)
of P , one can see that P is irreducible over Z, and then also over Q.

The holonomy representation can be explicitly calculated as a function of w.
Let us fix a fundamental domain F for M obtained by taking one copy of each
tetrahedron and then performing the gluings:

A
1

0 ←→ B0 B
1

1 ←→ C0 C
1

1 ←→ D0

Consider now the geometric version of F , i.e. a developed image of F . The
holonomy is generated by the isometries corresponding to the remaining face-
pairing rules. We consider the upper half-space model of H3 with coordinates
in which the points 0, 1,∞ of ∂H3 are the vertices of D labeled respectively
3
2
, 0, 4

3
. Calculations show that in this model the holonomy is generated by the

elements of PSL(2,C) represented by the matrices:




1 w2

w2+w−1

0 1


 ,




0 −w
1
w
−w − 1


 ,




1 −w2

−1 w2 + w − 1
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that respectively correspond to the face-pairing rules

A0 −→ D
1

1 C
2

1 −→ D
4

3 B
2

1 −→ A
0

1

What is important is that the entries of such matrices are numbers belonging
to Q(w) (and this can be proved even without the explicit calculations).

Proposition 33 The Solution 2 is not geometric.

Proof. This obviously follows from the uniqueness of geometric solutions, but
we also give an alternative proof. Let w1 (resp. w2) be the root of P relative
to Solution 1 (resp. 2) of C +M. So w1 gives the hyperbolic structure of M .
Let hj : π1(M)→ PSL(2,C) be the holonomy representation relative to wj for
j = 1, 2. Since P is irreducible and the entries of the holonomy matrices are
in Q(w), it follows that a relation between elements holds for h1 if and only if
it holds for h2. Since h1 is the holonomy of the complete hyperbolic structure
of M , it is faithful, and it follows that also h2 is faithful.

The image of h2 cannot be discrete because otherwise H3/h2 would be a hy-
perbolic manifold M ′ with too small a volume. We notice that by the rigidity
of representations (see [7]) it follows that to obtain a contradiction, it is suffi-
cient to show that vol(h2) 6= vol(h1). By Proposition 10 the holonomy of any
geometric solution is discrete, so Solution 2 cannot be geometric. 2

From the fact that h2 is not discrete and Proposition 10 it follows that there
is no map, which is hyperbolic w.r.t. Solution 2, from LR3 to any hyperbolic
manifold. Finally, we show that the image of h2 is dense in PSL(2,C). We
need the following standard fact about PSL(2,C) (see for example [10] or [9]).

Lemma 34 Let G be a non-elementary subgroup of PSL(2,C) and suppose
that G is not discrete. Then the closure of G is either PSL(2,C) or it is
conjugate to PSL(2,R) or to a Z2-extension of PSL(2,R).

Proposition 35 The image of the holonomy relative to Solution 2 is dense
in PSL(2,C).

Proof. It is easy to check that the image of h2 is a non-elementary subgroup
of PSL(2,C). Suppose that its closure is conjugate to PSL(2,R) or to a Z2-
extension of PSL(2,R). Then there exist a line in C ∪ {∞} = ∂H3 which is
h2-invariant. Looking at the parabolic elements of h2, it is easy to see that
such a line does not exist. The conclusion follows by Lemma 34. 2

The example discussed so far is interesting for several reasons. On one hand
it shows that an algebraic solution of C +M can be non-geometric. On the
other hand it shows that there is no uniqueness of the algebraic solutions.
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Moreover this example does not involve flat tetrahedra, so it is quite “regular.”
Finally, the bad solution of C +M of LR3 has the property that “everything
works OK at the boundary,” namely, the triangulation with moduli induced
on the boundary torus defines on it a Euclidean structure (up to scaling).
Roughly speaking, this means that the cusp of LR3 would like to have a
complete hyperbolic structure of finite volume according to the bad solution
of C +M, but the rest of the manifold does not agree.

7.3 The manifold L2R3

In this section we do calculations for the manifold L2R3.

L2R3 =




1 1

0 1







1 1

0 1







1 0

1 1







1 0

1 1







1 0

1 1


 =




7 2

3 1


 .

Using the algorithm described in [5], we get the ideal triangulation τ of M
with five tetrahedra, labeled A, B, C, D, E and pictured in Figure 9.
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Face-pairing rules
(which respect arrows)
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A
0

1 ↔ B
2

1 B
1

1 ↔ C
3

1 C
1

0 ↔ D
5

2 D
3

1 ↔ E
7

3 E
5

2 ↔ A
1

1

A
1

0 ↔ B0 B
1

0 ↔ C0 C
2

1 ↔ D0 D
2

1 ↔ E0 E
2

1 ↔ A0

Fig. 9. Ideal triangulation of M

We label the vertices of the tetrahedra as in Figure 9. The moduli zA and
zB are referred to the edge 0 1

0
while zC , zD, zE to the edge 0 2

1
. The induced

triangulation on the boundary torus is that of Figure 10.

It is easy to see that the system of compatibility and completeness equations
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Fig. 10. Triangulation of the boundary torus

C +M is equivalent to the following one:





zAzB = zCzDzE

zC(1− zA) = 1

(1− zD)2z2
E = (1− zE)2z2

D

(zA − 1)2 = z2
A(1− zB)2

(1− 1

zE
)2 1

1− zD
(1− 1

zA
) = 1

Solving this system, we have found eight solutions. The following tables con-
tain numerical approximations of the solutions. Note that even if the modulus
zA is different from the modulus zC , the second equation implies that the ge-
ometric versions of A and C are isometric.
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Solution 1 volume Solution 2 volume

zA 0.75 + i0.6614378 0.9626730 0.75− i0.6614378 −0.9626730

zB 1.25 + i0.6614378 0.7413987 1.25− i0.6614378 −0.7413987

zC 0.5 + i1.3228756 0.9626730 0.5 − i1.3228756 −0.9626730

zD 1 ∗ 1 ∗
zE 1 ∗ 1 ∗

Solution 3 volume Solution 4 volume

zA 1.588633261 0 1.127804076 0

zB 1.370528159 0 1.113321168 0

zC −1.69885025 0 −7.824476637 0

zD 0.3783840018 0 0.2518509745 0

zE −3.387066549 0 −0.6371698130 0

Solution 5 volume Solution 6 volume

zA 0.4950484 + i0.3298695 0.7399514 0.4950484 − i0.3298695 −0.7399514

zB 0.6011109 + i0.9321327 1.0089809 0.6011109 − i0.9321327 −1.0089809

zC 1.3880304 + i0.9067580 0.7399514 1.3880304 − i0.9067580 −0.7399514

zD 0.5022247 + i0.2691269 0.6433681 0.5022247 − i0.2691269 −0.6433681

zE 0.6077815 + i0.3441339 0.7596486 0.6077815 − i0.3441339 −0.7596486

Solution 7 volume Solution 8 volume

zA 0.1467328 + i1.2472524 0.9386051 0.1467328 − i1.2472524 −0.9386051

zB 1.9069644 + i0.7908171 0.4782906 1.9069644 − i0.7908171 −0.4782906

zC 0.3736330 + i0.5461534 0.9386051 0.3736330 − i0.5461534 −0.9386051

zD 1.1826577 − i2.5849142 −0.7155138 1.1826577 + i2.5849142 0.7155138

zE −0.5956636 + i1.2429350 0.7019645 −0.5956636 − i1.2429350 −0.7019645

Solutions 1 and 2 contain degenerate tetrahedra. We notice that the non-
degenerate moduli of such solutions are exactly those that give the hyperbolic
structure on the manifold obtained by removing the tetrahedra D and E and
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adding the gluing rules:

C
1

0 ↔ A
1

1 via (0, 3
1
, 2

1
)↔ (0, 1

0
, 0

1
)

C
2

1 ↔ A0 via (0, 1
0
, 3

1
)↔ (0

1
, 1

0
, 1

1
).

Now we look at the algebraic expression of Solutions 3-8. Let P (x) = x6 +
4x5 + 3x4 + 3x3− 4x2 + 2. A simple calculation shows that the moduli can be
expressed in terms of roots of P by the following expressions:





zA = 1
22

(5w5 + 19w4 + 9w3 + 6w2 − 8w + 17)

zB = 1
44

(10w5 + 49w4 + 62w3 + 34w2 − 16w + 34)

zC = 1
11

(−12w5 − 39w4 − 4w3 − 10w2 + 72w − 32)

zD = 1
22

(−4w5 − 13w4 + 6w3 + 15w2 + 2w + 4)

zE = w

P (w) = 0

Solutions 3, 4, 7, 8 are not geometric because of uniqueness of geometric solu-
tions. Moreover, as in the case of LR3, the polynomial P is irreducible, and
the argument of Proposition 33 works in the present case.

7.4 A manifold with non-trivial JSJ decomposition

The manifold we consider in this section is obtained by gluing to the boundary
torus of the complement of the figure-eight knot a Seifert manifold. The result-
ing manifold, which we call M , clearly is not hyperbolic because it contains
an incompressible torus (the old boundary torus).

This example is interesting because the manifold M admits an ideal trian-
gulation with four tetrahedra such that there exists a positive, partially flat
solution of C +M. Obviously such a solution cannot be geometric, as M is
not hyperbolic. We remark that in the present example the moduli do not
satisfy the equations on the angles. Namely, when a modulus is positive, the
tetrahedron has well-defined dihedral angles at its edges, in such a way that
the sum of angles of any horospherical triangle is always 2π. Then in addiction
to equations C one can require that the sum of the angles around any edge
is exactly 2π. Such equations are called C∗. In [14] is proved that every par-
tially flat solution of C∗ +M is geometric. Here we produce a non-geometric,
partially flat solution of C +M that does not satisfy C∗. This shows that the
equations C∗ play a fundamental role in order to have hyperbolicity.
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We describe now our manifold M . We use the techniques of standard spines
to construct an ideal triangulation of M , referring to [11] for details on the
theory of spines. Let A be the following subset of C:

A = {z ∈ C : |z| ≤ 4, |z − 2| > 1, |z + 2| > 1}.

A is a disc with two holes. Let I ⊂ A be the set of points with zero real part.
Let S be the space obtained from A× [0, 1] by gluing (z, 0) to (−z, 1) and let
L be the Möbius strip coming from I. The manifold S is the Seifert manifold
we want to glue to complement of the figure-eight knot. We will refer to the
external and internal components of ∂S as Ce and Ci. Note that ∂L ⊂ Ce.

We glue Ce to the boundary torus of the complement of the figure-height knot.
To do this, we specify where we glue the boundary of the Möbius strip. We
use the classical triangulation of the complement of the figure-eight knot. If
one imagines looking from the cusp inside the complement of the figure-eight
knot, one gets the following picture:

Fig. 11. The boundary of the complement of the figure-eight knot

There, the eight equilateral triangles of the boundary are pictured. The dashed
lines represent the standard spine dual of the ideal triangulation, and the
marked line is where we glue ∂L.

Since S retracts to Ce ∪ L, a spine of M is obtained simply by gluing a
Möbius strip to the spine of the complement of the figure-eight knot as in
Figure 11. Such a spine has a vertex more than the old one, but is not standard.
Performing a lune move (see [11]) along the Möbius strip we obtain a standard
spine of M with five vertices. As the new spine is standard, its dual is an ideal
triangulation with five tetrahedra. Such a triangulation can be simplified with
an MP-move (this is the T -move of [11]), replacing the three new tetrahedra
with an equivalent pair of tetrahedra. At the end, we get the triangulation of
M sketched in Figure 12.

The tetrahedra labeled A and B are the old ones (those of the complement of
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1

0
1

1
1

1
0

0

F

G

t

b

γ

α

β

Fig. 12. The ideal triangulation of M

the figure-eight knot). The gluing rules are the following:

A
0

1 ↔ B
2

1 : (0, 1
0
, 1

1
)↔ (0, 1

0
, 1

1
) A

1

0 ↔ B0 : (0, 0
1
, 1

1
)↔ (1

0
, 1

1
, 2

1
)

A
1

1 ↔ B
1

0 : (0, 0
1
, 1

0
)↔ (0, 1

1
, 2

1
) A0 ↔ F γ : (0

1
, 1

1
, 1

0
)↔ (t, α, β)

B
1

1 ↔ Gγ : (0, 1
0
, 2

1
)↔ (b, β, α) F t ↔ Gb : (α, β, γ)↔ (α, β, γ)

F α ↔ Gβ : (β, γ, t)↔ (γ, α, b) F β ↔ Gα : (α, t, γ)↔ (γ, b, β)

The moduli zA and zB are referred to the edge 0 1
1

and zF , zG to αβ. The
triangulation of the boundary torus is that of Figure 13. It is readily checked
that the system of compatibility and completeness equations is equivalent to:





1

1− zA
· 1

zB
· zF
zG

= 1

zGzF = 1





(1− zA)2

zA
· z2

B

1− zB
= 1

zB(1− zA) = 1

From this, we easily get zG = zF and z2
F = 1. Since we are looking for non-

degenerate solutions, we have zF = zG = −1. Using this we get zA = zB and
z2
A−zA+1 = 0. Therefore, zA = zB = (1±i

√
3)/2. That is, the ideal tetrahedra

F and G are flat but not degenerate, while A and B are regular, exactly as
in the complement of the figure-eight knot. We notice that the space obtained
by gluing together the geometric versions of the tetrahedra A,B, F,G is not
a manifold.
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Fig. 13. Triangulation with moduli of the boundary torus
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