Analisi Matematica B Ingegneria e scienze informatiche – Cesena 2018/19

Aggiornato al 16 dicembre 2018

Informazioni pratiche:

• Docenti: Daniele Morbidelli ed Eleonora Cinti (http://www.dm.unibo.it/~eleonora.cinti5/Teaching.html)

(1)

Materiale di riferimento: Bramanti, Pagani Salsa, Matematica: calcolo infinitesimale e algebra lineare)

1. Argomenti svolti (Daniele Morbidelli). Lista provvisoria

1.1. Mercoledí 17 settembre 2018 e giovedí 18 settembre 2018

Insiemi. Operazioni con gli insiemi. Insiemi numerici \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} . disuguaglianza tra numeri reali. Equazioni e disequaioni di primo grado. Equazioni e disequazioni di secondo grado. Il valore assoluto di un numero $x \in \mathbb{R}$. Funzioni $f: A \to B$. Grafico di una funzione. Le funzioni affini.

Esercizi

• Risolvere le disequazioni

$$x^2 - 2x < 0$$
, $5 < x^2 + 2x$, $bx^2 + 1 < 0$, con $b \in \mathbb{R}$.

- Scrivere l'equazione della retta passante per i punti $P_1 = (1, -2)$ e $P_2 = (4, 5)$.
- Tracciare i grafici delle funzioni $f_1(x) = -x + 1$, $f_2(x) = -x + 3$ e in generale di f(x) = -x + q con q qualsiasi.
- Trovare il/i punti di intersezione tra i grafici delle funzioni affini f_1 e f_2 cosí definitie

$$f_1(x) = x + 2$$
 $f_2(x) = \frac{1}{2}x - 5$

1.2. Lunedí 23 settembre, mercoledí 25 settembre, gio 24

Funzioni iniettive suriettive, biunivoche. Funzione valore assoluto. Funzioni potenza di esponente positivo. Funzione esponenziale naturale e sue proprietà. Funzioni monotone crescentie decrescenti debolmente e strettamente. FunzionI logaritmo in varie basi. Funzioni composte. Funzione inversa di una funzione biunivoca. Esempi vari. Angoli e loro misure in radianti.

Esercizi

1. Tracciare un grafico qualitativo delle funzioni

$$f(x) = \log(x^2), \quad f(x) = \log(3^x), \qquad f(x) = \log((3/4)^x).$$

(il dominio della prima è $\mathbb{R} \setminus \{0\}$).

- 2. Dato $a \in]0, +\infty[\setminus \{1\}, \text{ stabilire per quali coppie } x, y \in \mathbb{R} \text{ vale } a^x = e^y.$
- 3. Tracciare i grafici delle funzioni f_1 , f_2 , f_3 seguenti

$$f_1(x) = (x-1)^2$$
, $f_2(x) = \log(x-1)$, $f_3(x) = -(x+2)^2$

a partire da quelli di $g_1(x) = x^2$, $g_2(x) = \log x$ e $g_3(x) = -x^2$ e individuando l'opportuna traslazione.

4. Tracciare il grafico di

$$f_4(x) = 1 + x^2$$
, $f_5(x) = -\frac{1}{2} + e^x$

a partire da quelli di $g_4(x) = x^2$ e $g_5(x) = e^x$ ed individuando l'opportuna traslazione che li collega.

5. Data la funzione $f:[1,+\infty[\to [1,+\infty[$

$$f(x) = 1 + (x - 1)^2,$$

verificare seguendo lo schema applicato in classe che f è biunivoca individuandone nel contempo l'inversa. Fatti i conti, vedificare che $f \circ f^{-1}$ e $f^{-1} \circ f$ sono l'identità su $[1, +\infty[$.

6. Esercizio analogo per la funzione $f: \mathbb{R} \to \mathbb{R}$, definita da

$$f(x) = \frac{e^x - e^{-x}}{2}$$

(trucco: usare la variabile $z = e^x$...).

7. Scrivere almeno tre misure diverse (non tutte dello stesso segno) dei seguenti angoli espressi in gradi: 30°, 45°, 60°, 90°.135°, 270°, 315°.

Lunedí 1 ottobre

Funzioni seno, coseno, tangente e arcotangente. Loro grafici e loro proprietà di base.

Mercoledí 3 ottobre e giovedí 14 ottobre

Successioni numeriche. Limiti di successioni (definizioni). Teoremi del confronto (*) e della permanenza del segno (*). Limiti di somme, prodotti e quozienti. Punti di accumulazione di un insieme $A \subset \mathbb{R}$. Definizione di limite di funzione $\lim_{x\to c} f(x) = L$.

Esercizi

Utilizzando gli argomenti descritti in classe,, risolvere le disequazioni

$$\begin{aligned} \log(x) &\leq -1 & \log(1+|x|) < 5 & 2^{x+1} < 3^x & 2^{x^2} < 3^x \\ e^x &< e, & e^{x^2} < 2, & e^{x+5} > 7 \\ \log(1+e^x) &> 5, & 2^x < 3, & 2^x > 3^{x^2} & e^{x^2-x-4} < 1 & e^{|x|+1} < 2e^{x^2-x-4} \end{aligned}$$

Calcolare

$$\lim_{n \to +\infty} \frac{\sqrt{1+n+\alpha^2n^2}}{1-n^{3/4}} \quad \text{ per ogni } \alpha \in \mathbb{R}$$

Calcoalare

$$\lim_{nto+\infty} n^{\alpha}(\sqrt{1+n^2}-n) \text{ per ogni } \alpha \in \mathbb{R}$$

Verificare se sono monotone crescenti le successioni (a_n) cosí definite

$$a_n = e^n - n$$
, $a_n = \sin(n) - 2n$, $a_n = \log(\sqrt{n}) + n - \log(n)$ $a_n = \sin(\frac{\pi}{2}n)$.

Usare solo la definizione. Proibito fare derivate.

Lunedí 8, mercoledí 10 e giovedí 11 ottobre

Disuguaglianza $\sin x < x < \tan(x)$ per $x \in]0,\pi/2[$ (*). Limiti destri/sinistri. Esercizi. Definizione di funzione continua (*). Definizione di punto di massimo/minimo locale e globale. Enunciato del Teorema di Weierstrass. Analisi dei mimiti notevoli delle funzioni $\frac{\sin x}{x}$, $\frac{e^x-1}{x}$ e $\log(1+x)/x$. Definizione di rapporto incrementale e derivata.

Esercizi

Usando i i procedimenti presentati in classe, calcolare

$$\begin{split} &\lim_{x \to 0^-} \frac{x}{\sqrt{x^2 - ax}} \quad \text{con } a \ge 0 \quad \lim_{x \to -\infty} \frac{1 + e^{-x}}{1 - e^{-1/x}} \quad \lim_{x \to \pi/2^-} \frac{1 + x^2}{\cos x} \\ &\lim_{x \to -\pi^+} \frac{x}{\sin x} \quad \lim_{x \to 0^-} \frac{|x|^{1/2}}{\log(1 - \sin x)} \quad \lim_{x \to 1^-} \frac{\log(2 + x)}{(x - 1)\sin(x - 1)} \\ &\lim_{x \to 1^-} \frac{1}{(x - 1)^3} \quad \lim_{x \to 2^-} \frac{\log(x^{-1})}{x - 2} \\ &\lim_{x \to 0 \pm} e^{1/x} \quad \lim_{x \to \pm \infty} e^{1/x} \quad \lim_{x \to 0} \log(\sin^2(x)) \\ &\lim_{x \to 0 \pm} \frac{\log(\frac{1}{2} + x)}{1 - \cos x} \quad \lim_{x \to 0^-} \frac{1}{bx^2 + x^3} \quad \text{per ogni } b \in \mathbb{R} \\ &\lim_{x \to 0^+} \frac{1}{e^x - 1} \quad \lim_{x \to -1^-} \frac{1}{e^x - e^{-1}} \quad \lim_{x \to 0^+} \frac{e^{x^2}}{\sin(x)} \\ &\lim_{x \to 0^-} \frac{x - 1}{e^{x^2} - 1} \quad \lim_{x \to 1^-} \frac{\log(2 + x)}{(x - 1)\sin(x - 1)} \quad \lim_{x \to -\infty} x^2 e^{-x} \\ &\lim_{x \to +\infty} e^x + \sin(x) \quad \lim_{x \to -\infty} e^x - 2e^{-x} \quad \lim_{x \to +\infty} \exp(x^2 + \sin(x)) \\ &\lim_{x \to 0} \frac{e^x - 1}{\sin x \cos x} \quad \lim_{x \to -2^-} \frac{\log(x + 3)}{(x + 2)^2 \cos(x + 2)} \quad \lim_{x \to 1^-} \frac{\log(2 - x)}{(x - 1)\sin(x - 1)} \\ &\lim_{x \to 0} \frac{a^x - 1}{b^x - 1} \quad \text{per ogni } a, b \in]0, +\infty[\setminus \{1\}] \\ &\lim_{x \to 0} (1 + bx)^{1/x} \quad \text{per ogni } b \in \mathbb{R}. \end{split}$$

Lunedí 15, mercoledí 17, giovedí 18

Calcolo con la definziione delle derivate delle funzioni affini, esponenziale, logaritmo, radice e seno (*). Formula per la derivata del prodotto (*). Legame tra continuità e derivabilità (*). Derivaa di quoziente. Simboli di "o piccolo" $f(x) = o((x - x_0)^k)$ per $x \to x_0$. Approssimazione di Taylor del primo ordine per funzioni derivabili (*). Formula per la derivata di funzioni composte (*).

Esercizi

Calcolare le derivate delle seguenti funzioni

Esercizio 1.1. Calcolare le derivate delle seguenti funzioni:

$$\frac{d}{dx}\cos(2x)$$
, $\frac{d}{dx}e^{x^2}$, $\frac{d}{dx}\log(1+3x^2)$, $f(x) = a^{x\cos x}$, $(a > 0)$, $f(x) = \sin(1+2\cos x)$,

$$f(x) = (x + e^{2x} + x \sin x)^2$$
, $f(x) = \frac{1 + \sqrt{x}}{1 + 2x^{3/2}}$, $f(x) = \exp(\sin(x^2))$, $f(x) = x^2 e^{-2x} \sin x$.

Esercizio 1.2. Calcolare le seguenti derivate:

$$f(x) = x^{2} \sin x + 2 \cos x \qquad f(x) = x^{2} (\sin x + 2 \cos x) \qquad f(x) = (2x^{3} - x) (2x^{3} + x)$$

$$f(x) = (-x^{2} + x - 1) e^{x} \qquad f(x) = 4x \sqrt{x} - 5x \sqrt[3]{x} \qquad f(x) = x \log x - x$$

$$f(x) = \frac{2x - 1}{2x^{3}} \qquad f(x) = \frac{1}{3 \log x} \qquad f(x) = \frac{4}{x^{2}} - \frac{x^{2}}{4}$$

$$f(x) = \frac{x + a^{x}}{x - a^{x}}, \quad a > 0 \qquad f(x) = \frac{x \log x}{\sqrt{x}} \qquad f(x) = \frac{1}{\sin x \cos x}$$

$$f(x) = 4 \sin(2x) - 3\cos(3x + 1) \qquad f(x) = \log(x^{2} - 5x + 4) \qquad f(x) = \sqrt{x^{2} - 5x + 4}$$

$$f(x) = e^{x^{2} - 5x + 4} \qquad f(x) = \sin^{3} x + \sin(x^{3}) \qquad f(x) = \tan(1 + x + 3x^{2})$$

$$f(x) = x^{4} (2x^{2} - 5)^{3} \qquad f(x) = (\log x)^{2} + 3 \log x + 2 \qquad f(x) = x^{2} - x^{2}$$

$$f(x) = \log \log x \qquad f(x) = \frac{1}{\sqrt{1 - x^{2}}} \qquad f(x) = \sqrt{\frac{4x^{2} + 3}{2x - 1}}$$

$$f(x) = \sqrt{\log(x^{2} + 1)} \qquad f(x) = \left(\frac{a}{a - x}\right)^{2}, \quad a > 0 \qquad f(x) = \lambda e^{-\lambda x}, \quad \lambda > 0$$

$$f(x) = x^{r-1} e^{-x}, \quad r > 0 \qquad f(x) = x^{a-1} (1 - x)^{b-1}, \quad a, b > 0 \qquad f(x) = \frac{1}{1 + \exp(-x)},$$

Scrivere il polinomio di Taylor del primo ordine delle seguenti funzioni f nei punti x_0 indicati, assieme all'equazione della retta tangente al grafico di f in $(x_0, f(x_0))$.

$$f(x) = x \sin(x), \quad x_0 = \frac{\pi}{2}, \quad e \quad x_0 = -\frac{\pi}{4}$$
 $f(x) = \tan x, \quad x_0 = \pi/4$
 $f(x) = e^{x^2 - x}, \quad x_0 = 2$
 $f(x) = (1 + x)^{\alpha}, \quad x_0 = 0 \quad e \quad x_0 = -\frac{1}{2}, \quad .$

Lezioni lun 22, mer 24, gio 25 ottobre

Esercizi

Calcolare i limiti

$$\lim_{x \to 0+} \frac{\sinh(x^2 - x^3)}{x \sin x}, \quad \lim_{x \to 0} \frac{\arctan(x^2 - x^3)}{\sin^2 x}, \quad \lim_{x \to +\infty} \frac{e^x - x^3 - e^{2x}}{x - e^{\sqrt{x+1}}} \quad \lim_{x \to +\infty} \frac{x \log^2 x}{1 + x^2}$$

Usando il procedimento seguito in classe tracciare i grafici delle funzioni

$$f(x) = x \log(x), \qquad f(x) = \frac{x}{1 + x^2}$$

Scrivere i polinomi di Taylor del secondo ordine delle funzioni sotto nei punti indicati e le corrispondenti formule di approssimazione Taylor

$$f(x) = \sin x$$
, in $x_0 = 0$ e $x_0 = \pi/6$,
 $f(x) = (1+x)^{\alpha}$, in $x_0 = 0$
 $f(x) = \log(1+x)$, in $x_0 = 0$
 $f(x) = \frac{x+1}{x+3}$, in $x_0 = 1$ e $x_0 = -2$

Lun 29 e Mer 31 ottobre

Condizione sufficiente del secondo ordine per punti di massimo/minimo (*). Introduzione discorsiva alle somme di Riemann e all' integrale. Proprietà di linearità additività e monotonia.

Definizione di primitiva. Teor di Caratterizzazione delle primitive di una funzione f (*). Funzioni integrali. Teorema fondamentale del calcolo sulla derivata della funzione integrale. Formula di Torricelli (*).

Esercizi

Calcolare

$$\int_{0}^{2} (2x^{2} - 3x^{3}) dx, \qquad \int_{-1}^{-3} (3e^{x} - 2/x) dx \qquad \int_{2}^{3} \frac{1}{x} dx \qquad \int_{-4}^{-1} \frac{1}{x} dx$$
$$\frac{d}{dx} \int_{0}^{x} \cos(t + t^{3}) dt \qquad \frac{d}{dx} \int_{x}^{4} \frac{e^{t}}{t} dt \qquad \frac{d}{dx} \int_{1}^{x^{2}} (t\sqrt{t + 1} - 2) dt$$

(saranno svolti/corretti lunedí dal tutor, assieme ad altri)

Mercoledí 7 novembre, giovedí 15 novembre

Svolgimento esercizi assegnati. Formula di integrazione di funzioni del tipo g'(g(x))f'(x). Formula di integrazione per parti.

Esercizi

Usando le formule di integrazione delle funzioni elementari, di quelle della forma $(g' \circ f)f'$ e di integrazione per paerti calcolare

$$\int_{a}^{b} x \sin(x+1) dx \qquad \int_{2}^{3} x (e^{\pi x} - e^{-x^{2}}) dx, \qquad \int (x^{2} - x) \log(3x) dx, \qquad \int \frac{dx}{x \log x}, \qquad \int x \sqrt{1+x} dx$$

$$\int \frac{dx}{2x^{2} + 5}, \qquad \int \frac{dx}{2x^{2} - x - 1}, \qquad \int \frac{dx}{4x^{2} + 4x - 3}, \qquad \int \frac{dx}{x^{2} - 6x + 10}$$

$$\int \frac{\sin x}{1 + \cos^{\alpha} x} dx, \qquad \text{per } \alpha = 1, 2, \qquad \int (1 - x^{2}) e^{-x + 1} dx \qquad \int x^{3} e^{-2x^{2}} dx, \qquad \int \sin^{2}(3x) dx, \qquad \int x \log^{2} x dx$$

Lunedí 19 novembre

Formla cambio variabile negli integrali. Introduzione ai numeri complessi. Somma e prodotto

Esercizi

Calcolare

$$\int_0^{(\pi^3/8)} \sin{(x^{1/3})} dx \qquad \int_0^b \sqrt{1+x^2} \, dx \quad \text{per } b > 0$$

(porre $x = \sinh t$ e usare le proprietà delle funzioni iperboliche)

Calcolare le somme e i prodotti z+w e zw per z=1+2i e w=-2+i e per z=-1+3i, $w=\frac{1-i}{2}$, Calcolare anche thutte le potenze $i^2, i^3, i^4, i^5, \ldots$ e le potenze $(1+i)^k$ per $k=1,2,\ldots,8$.

1.3. Esercizi sul secondo modulo

Si veda la pagina della Prof. Cinti http://www.dm.unibo.it/~eleonora.cinti5/Teaching.html

26 novembre

Numeri complessi, Piano di Gauss. Rappresentazione trigonometrica di un numero complesso.

Esercizi (correzioni su questa pagina entro il fine settimana)

LINK ALLE SOLUZIONI

http://www.dm.unibo.it/~morbidel/compl_uno.jpg, http://www.dm.unibo.it/~morbidel/compl_due.jpg, http://www.dm.unibo.it/~morbidel/compl_tre.jpg

- Risolvere l'equazione algebrica $z^2 + 2z + 5 = 0$ e erificare che le soluzioni trovate risolvono davvero l'equazione richiesta.
- Scrivere il numero $z=1+i\in\mathbb{C}$ in forma trigonometrica $r\cos\theta+ir\sin\theta$. Applicando le proprietà del prodotto di due numeri complessi in forma trigonometrica, calcolare le potenze

$$(1+i)^2$$
, $(1+i)^3$, ..., $(1+i)^6$, $(1+i)^8$

- Scrivere il numero $1 + i\sqrt{3}$ in forma trigonometrica e calcolare $(1 + i\sqrt{3})^6$. Scrivere poi il risultato in forma cartesiana x + iy.
- Calcolare $(1-i)^4$, $(2-2i)^8$.
- Dati $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ e $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ con $r_2 > 0$ seguendo il procedimento applicato in classe per scrivere z_1z_2 , si scriva $\frac{z_1}{z_2}$ in forma trigonometrica.
- Verificare che il prodotto scalare (=prodotto interno) tra due vettori $z, w \in \mathbb{R}^2$ si scrive, nella forma $\text{Re}(z\bar{w})$, dove \bar{w} indica il complesso coniugato di $w \in \mathbb{C}$.
- Calcolare $(2\sqrt{3} 2i)^3$

Lunedí 3 e mercoledí 5 dicembre

Equazioni differenziali ordinarie del primo a variabili separabili. Equazioni differenziali ordinarie del secondo ordine a coefficienti costanti.

Esercizi

$$y' = \sqrt{1+y}\sin t \quad y(0) = 1$$
$$y'\log y == \frac{\cos t}{y} \quad y(1) = 2$$

$$y' = y^{2}t \quad y(0) = 0$$

$$y' = y^{2}t \quad y(1) = 1$$

$$y' = (y+1)^{2}t \quad y(0) = 1$$

$$y' = y(2-y) \quad y(0) = 1$$

$$yy' = t + ty^{2} \quad y(0) = 1$$

$$y' = te^{y} \quad y(1) = 1$$

$$y'' + 4y = 0 \quad \cos y(0) = 0 \text{ e } y'(0) = 1.$$

$$y'' - 4y = 0 \quad \cos y(-1) = 0 \text{ e } y'(-1) = 1.$$

$$9y'' - 6y' + y = 0 \quad \cos y(0) = 0 \text{ e } y'(0) = 1.$$

$$y'' + 6y' + 25y = 0 \quad \cos y(-1) = 0 \text{ e } y'(-1) = 1.$$

$$y'' - 2y' - 3y = 0, \quad \cos y(1) = y_0 \text{ e } y'(1) = v_0.$$

$$y'' = y - y', \quad \cos y(0) = -1 \text{ e } y'(0) = 1.$$

Calendario ultime lezioni

- Tutor, lunedí 17 pomeriggio, ore 14,30
- Prof. Cinti mercoledí 19 e giovedí 20 negli orari usuali. A disposizione per svolgere esercizi su entrambe le parti.
 - Ricevimento Morbidelli, venerdí 21 delle 9.30 alle 12 (ufficio numero 4020, secondo piano).

Regole d'esame

- Per gli esami è obbligatorio iscriversi sulla piattaforma almaesami.
- Alla prova scritta non si possono usare appunti o libri.
- La prova orale è facoltativa, ma a chi non sostiene la prova orale verrà verbalizzato il voto $x = \min\{25, y\}$, dove $y \le 30$ è il voto della prova scritta.
- La prova orale va sostenuta nello stesso appello della prova scritta
- Alla prova orale si chiederà allo studente di rispondere alle domande in forma scritta. I teoremi/formule che sono stati dimostrati sono etichetati da un asterisco.

Indicazioni per la prova scritta

La prova scritta consterà di 6 esercizi, a risposta aperta oppuure a scelta multipla. Degli esercizi a scelta multipla **non si dovrà scrivere alcuno svolgimento in bella copia**.

I primi quattro esercizi verteranno sui contenuti del primo modulo; gli ultimi due, sui contenuti del secondo modulo.

Esercizi modello per il primo modulo:

1. Calcolare i limiti

$$\lim_{x \to 0-} \frac{\log(1-x^2)}{x-\sin x} \qquad e \quad \lim_{x \to +\infty} \frac{xe^{2x}}{xe^x - e^{x^2}}$$

2. Calcolare i limiti

$$\lim_{x\to +\infty} \frac{3e^{2x}+e^{x-x^2}-e^{3x}}{xe^{2x}+2e^x\log x} \qquad \lim_{x\to 0-} \frac{\sin(2x-\alpha|x|)}{\log(\pi+x)|x-x^2|} \quad \text{con } \alpha\in\mathbb{R}.$$

3. Dire dove è definita e in che intervalli è crescante/decrescente la funzione

$$f(x) = \frac{x}{(x+1)^{3/2}}.$$

4. (Barrare la risposta esatta senza scrivere lo svolgimento)L'uguaglianza

$$\int_0^1 x e^{bx} dx = \frac{e^b - 1}{b^2} + \frac{2}{b}$$

è corretta per:

- \square b=2 \square $b=\log 2$ \square $b=2\log 2$ \square b=0 $\square b=1$ \square Nessuna delle precedenti
- 5. Risolvere il problema di Cauchy

$$y'' + 2y' + 3y = 0$$
 $y(0) = 1$, $y'(0) = 1$

6. Dette Re z la parte reale del numero $z \in \mathbb{C}$, dire quele delle seguenti affermazioni riguardanti il numero $z = (1 - i\sqrt{3})^7$ è corretta:

- 7. Risolvere il problema di Cauchy

$$y' = 1 + 4y^2, \quad y(1) = 0$$

e, detta y(t) la soluzione di tale problema, calcolare

$$\lim_{t \to 1} \frac{y(t)}{t^2 - 1}$$
 per pgni $b \in \mathbb{R}$.

8. Dire quanto vale la derivata della funzione

$$F(x) = \int_{x^2}^{3} \sqrt{1 + |t|^{1/2}} \, dt$$

9. Calcolare la derivata della funzione

$$F(x) = \int_{x}^{x^3} \sqrt{1 + t^2} dt$$

10. Calcolare

$$\lim_{x\to +\infty} \frac{xe^{2x-\alpha x^2}}{e^{3x}+e^{\sqrt{x}}+1} \quad \text{al variare di } \alpha \in \mathbb{R}$$

11. Scrivere il polinomio di Taylor di grado due per la funzione

$$f(x) = x\sqrt{1+x^2},$$

nel punto $x_0 = -1$.

12. Stabilire in quali intervalli è crescente/decrescente la funzione

$$f(x) = \frac{1+x}{\sqrt{1+x^2}}$$

13. Calcolare i limiti

$$\lim_{x\to -\infty} xe^{\frac{1}{x}} \quad \mathrm{e} \quad \lim_{x\to 0+} \frac{\cos(x^2-x)\cdot \log(1+x)}{x^{5/2}-bx^2} \quad \text{ con } b\in \mathbb{R}.$$

14. Calcolare l'integrale

$$\int_{a}^{b} x(\sin x + \cos(x^{2}))dx$$

15. Analizzare dominio e intervalli di crescita/decrscita della funzione

$$f(x) = \frac{x^2 + 4}{x},$$

16. Calcolare i numeri complessi

$$(2+i)\left|\frac{3+i}{1-i}\right|$$
 e $(3+i)^2 + \operatorname{Im}(2-i^4)$, $\left|1+3i-\sqrt{2}(1+1)\right| + i\operatorname{Re}(2+i^5)$

17. Calcolare i limiti

$$\lim_{x \to 0+} \frac{\sin(x^2 - x)}{(x+2)\log(x+1)} \qquad e \qquad \lim_{x \to +\infty} \log(x\sqrt{1+x} - x^{3/2})$$

18. Stabilire in quali sottointervalli di]1, $+\infty$ [è crescente la funzione

$$F(x) = \int_2^x \frac{t - 3}{\log t} dt$$

19. Calcolare

$$\int_2^3 \frac{e^{1/x}}{x^2} dx$$

20. Calcolare

$$\lim_{x \to +\infty} \frac{x \arctan x}{(x^5 - 2x^3 + 1)^{1/3}}, \quad \lim_{x \to 0+} \frac{\log(\cos x)}{x^2 - 3x^{9/4}}.$$

- 21. È data la funzione $f:\mathbb{R}\to\mathbb{R}$ $f(x)=e^{-x^2}$ e sia $\mathrm{Graf}(f)$ il suo grafico. La retta di equazione $y=\frac{3-2x}{e}$
 - \Box Interseca Graf(f) in (0,1) \Box È tangente a Graf(f) in (1,e) (1.1)
 - \square Non interseca $\operatorname{Graf}(f)$ \square Ha pendenza $\frac{-2x}{e}$ (1.2)
 - \square È tangente a $\operatorname{Graf}(f)$ in $(1,e^{-1})$ \square Nessuna delle precedenti (1.3)

Argomenti prova orale

- Funzioni iniettive suriettive, biunivoche.
- Funzioni monotone crescenti e decrescenti debolmente e strettamente.
- Def. di limite di successione. Teoremi del confronto (*) e della per- manenza del segno (*).
- Definizione di limite di funzione.
- Disuguaglianza $\sin x < x < \tan(x)$ per $x \in [0, \pi/2]$ (*).
- Limiti destri/sinistri.
- Definizione di funzione continua (*).
- Definizione di punto di massimo/minimo locale e globale.
- Limite notevole $\frac{\sin x}{x}$ (*). Limiti notevoli $\frac{e^x-1}{x}$ e $\log(1+x)/x$. Definizione di rapporto incrementale e derivata.
- Calcolo con la definziione delle derivate delle funzioni affini, esponenziale, logaritmo, radice e seno (*).
- Legame tra continuità e derivabilità (*). Formula per la derivata del prodotto (*).
- Approssimazione di Taylor del primo ordine per funzioni derivabili (*).
- Formula per la derivata di funzioni composte (*).
- Teoremi di Fermat (*), Rolle (*) e Lagrange (*).
- Teorema sulla regola di de l'Hopital, (*) nel caso $\lim_{x\to a+} f(x)/g(x) = 0/0$.
- Teorema di catatterizzazione delle funzioni costanti (*) e delle funzioni crescenti/decrescenti debolmente su un intervallo (*).
- Formula per la derivata della funzione inversa (*). Esempio di arctan.
- Formula di Taylor del secondo ordine per funzioni con derivate seconde comtinue e resto in forma di Peano.
- Condizione sufficiente del secondo ordine per punti di massimo/minimo (*).
- Definizione di primitiva. Teor di Caratterizzazione delle primitive di una funzione *f* (*).
- Funzioni integrali. Teorema fondamentale del calcolo sulla derivata della funzione integrale.
- Formula di Torricelli (*).