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Introduction

We are interested in numerical methods for evaluating

exp(A)

and the product exp(τA) y, when

A ∈ R
n×n is a square, real, sparse and large matrix,

with a particular structure, i.e.

• skew-symmetric (A = −AT );

• Hamiltonian (ATJ = −JA, with J =





0 I

−I 0



);

• skew-symmetric and Hamiltonian.

y ∈ R
n×p is a square (or rectangular) matrix which satisfies a geometric

condition;

τ is a scaling factor which may be associated with the step size in a time

integration method for ODEs.



Introduction

We recall the following definitions:

The set of orthogonal matrices:

O(n) =
{

Y ∈ R
n×n|Y non singular and Y TY = I

}

The set of symplectic matrices:

S(2n) =
{

Y ∈ R
2n×2n|Y non singular and Y TJY = J

}

The Stiefel manifold or the set of rectangular matrices with orthonormal

columns:

S(n, p) =
{

Y ∈ R
n×p|Y of rank p and Y TY = Ip

}

.

Observe that:

• A skew-symmetric matrix ⇒ exp(A) orthogonal;

• A Hamiltonian matrix ⇒ exp(A) symplectic;

• A skew symmetric and Hamiltonian matrix⇒ exp(A) ortho-symplectic;

Recall that the product of two orthogonal (resp. symplectic) matrices is

again an orthogonal (resp. symplectic) matrix.



Introduction

Main motivation of this study: construction of geometric numerical in-

tegrators for ODEs with invariants of orthogonal and symplectic type, for

instance

ODEs evolving on the set of the orthogonal matrices;

ODEs evolving on the set of symplectic matrices;

ODEs evolving on the Stiefel manifold;

This kind of ODEs may arise, for instance, in

• the numerical computation of Lyapunov exponents of nonlinear dy-

namical systems;

• the numerical solution of advenction-diffusion-reaction PDEs;

• the smooth QR decomposition of a matrix A(t) depending on a pa-

rameter t.



Magnus methods

Application to ODEs

Let y(t) be the solution of the linear differential system

y′ = A(t)y, y(0) = y0

.

Magnus’s method provides

y(t) = exp(Ω(t))y0.

where Ω(t) is a square matrix function satisfying a suitable ODE.

A(t) skew-symmetric ⇒ Ω(t) skew-symmetric ⇒ exp(Ω(t)) orthogonal.

Then if yT
0 y0 = I ⇒ yT (t)y(t) = I, for all t > 0.



Magus methods

Standard numerical methods are not structure-preserving.

Examples of structure-preserving methods are Magnus methods of 2nd

and fourth order:

MG2 MG4

An = A(tn + τ/2); An,1 = A(tn + (1
2
−

√
3

6
)τ )

ωn = An; An,2 = A(tn + (1
2 +

√
3

6 )τ )

yn+1 = exp(τωn)yn ωn = 1
2
(An,1 + An,2) +

√
3

12
τ [An,2, An,1];

yn+1 = exp(τωn)yn

with tn = t0 + nτ .

The main computational requirement is that the numerical so-

lution yn+1 must preserve the geometric behavior of the theo-

retical one.

This means that exp(τωn) needs to be an orthogonal matrix

at each n.



Methods in literature

Methods in literature

Several methods may be found in literature to approximate the expo-

nential matrix. Some of these may be splitted in

No structure-preserving methods:

• Padé and Chebyshev approximants;

• Arnoldi methods based on Krylov subspaces of dimension m < n

used to approximate exp(τA)y where y is a vector (see Hochbruk,

Lubich, Moret, Simoncini);

Structure-preserving methods:

• Methods for approximating exp(τA) to a given order of accuracy with

respect to τ . These methods are based on splitting techniques which

exploit the structure of A (see Iserles and Celledoni).

• Methods based on the generalized polar decomposition of A. (see

Iserles and Zanna, and Munthe-Kaas).

• All these methods have a cost of κn3 flops where the constant κ

increases with the order of the approximation.



The case of A skew-symmetric and y square matrix

The skew-symmetric case

We need to compute an approximation of

exp(A)Y with A = −AT and Y square orthogonal matrix.

We may use a decomposition method based on two main steps:

• A is first reduced into a tridiagonal (and skew-symmetric) form H by

using the tridiagonalization Lanczos process; at the end of this step

we have A = QTHQ;

• then an effective Schur decomposition of H is obtained via the SVD

of a bidiagonal matrix B of half size.

(see also Golub and van Loan book).



Schur decompositions of A

We observe that:

• The Lanczos process takes advantage from the possible sparsity of A

due to the matrix-vector products involved.

• In floating point arithmetic, the Lanczos process provides H tridiago-

nal but the orthogonality of Q could be lost and a re-orthogonalization

process could be required.

• For very large size problems, the storage of the columns of Q is the

main drawback of this technique. In this case, the Lanczos process

needs to be modified applying a storage procedure (see for instance

Bergamaschi and Vianello).



Schur decompositions of A

The second step of the method

Suppose A = QTHQ and n even integer.

In order to compute exp(H) we consider:

P = (e1, e3, . . . , en−1, e2, e4, . . . , en) (1)

where (e1, e2, . . . , en) is the canonical basis of R
n.

Then

P THP =

(

0 −B

BT 0

)

, (2)

where B is a bi-diagonal square matrix of half size w = n
2
.

Consider the SVD of B

B = UΣV T ,

with Σ = diag(σ1, σ2, . . . , σw) and σ1 > σ2 > . . . σw > 0.



The second step of the method

Then we can prove that:

exp(A) = QPT (U, V, Σ)P TQT

where:

T (U, V, Σ) =

(

U cos(Σ)UT −U sin(Σ)V T

V sin(Σ)UT V cos(Σ)V T

)

,

with

cos(Σ) = diag(cos σ1, cos σ2, . . . , cos σw),

sin(Σ) = diag(sinσ1, sin σ2, . . . , sin σw).

N. Del Buono & L. Lopez & R. Peluso, SISC 2005.



Flops count

Flops count

When A is sparse, the main computational cost of this procedure is 35
8
n3

flops, which should be compared with the ones of Matlab routines for

matrix exponential which generally varies between 20n3 and 30n3 flops;

Instead, when A is a full matrix, the main computational cost is 51
8
n3

flops.

Decay behavior

Although exp(A) is dense matrix, one can take computational advantages

of the possible decay of entries of exp(H) away from the main diagonal.

This behavior may be exploited in defining a banded approximation of

T (U, V, Σ).



Numerical comparisons

Numerical comparisons

We have compared this approach (Matlab routine AExp) with the two

Matlab functions

• Expm computing the exponential of A using a scaling and squaring

algorithm with Padé approximations

• Expm3 evaluating exp(A) via eigenvalues and eigenvectors decompo-

sition.

Comparisons are done in terms of

• Flops (counted by Matlab 5.3 routine flops);

• Global error, defined as the 2-norm of the difference of AExp and

Expm;

• Orthogonal error, defined as the distance of the computed exponential

from the orthogonal manifold (i.e. ‖[exp(A)]T exp(A)− In‖F , where

‖ · ‖F is the Frobenius norm on matrices)



Numerical comparisons

Comparisons on sparse skew-symmetric matrices A of different dimensions

n and entries randomly generated in [−10, 10].

n Method Flops Global error Orthogonal error

AExp 901977 8.3755e-14 2.0214e-13

50 Expm 2659508 - 1.7765e-14

Expm3 5211760 - 2.6031e-14

AExp 7086541 8.2599e-14 1.9544e-13

100 Expm 22970654 - 2.1794e-13

Expm3 40787683 - 6.7479e-14

AExp 56085753 2.1696e-13 4.1762e-13

200 Expm 182544884 - 8.7616e-14

Expm3 318170737 - 1.8904e-13



Numerical comparisons

Comparisons on full skew-symmetric matrices A of different dimensions n

and entries randomly generated in [−10, 10].

n Method Flops Global error Orthogonal error

AExp 1122393 8.0830e-14 1.6458e-13

50 Expm 3409432 - 3.6161e-13

Expm3 5244994 - 7.9323e-15

AExp 8863773 1.2236e-13 2.7711e-13

100 Expm 26969568 - 5.9092e-13

Expm3 41191787 - 1.6379e-14

AExp 70437373 3.0713e-13 6.2590e-13

200 Expm 230548400 - 1.7157e-12

Expm3 318310721 - 3.9922e-14



Hamiltonian and skew-symmetric matrices

Hamiltonian and skew-symmetric matrices

Consider the case of M skew symmetric and Hamiltonian matrix :

M =





A B

−B A



 ,

with A ∈ R
n×n is a skew-symmetric matrix (A⊤ = −A)

and B ∈ R
n×n is symmetric (i.e., B⊤ = B).

We start by analyzing the case in which M has the special form

M =





0 B

−B 0



 ,

that is with A = 0.



A special case

The Schur decomposition of M may be derived by the decomposition

B = UΛU⊤

U orthogonal and Λ =diag(λ1, . . . , λn).

This decomposition may be obtained by the Lanczos process:

Q⊤BQ = T

with T symmetric tridiagonal matrix and Q orthogonal, then we may

digonalize T

S⊤TS = Λ

with S orthogonal.

Finally computing the previous orthogonal matrix U as U = QS.

In floating-point arithmetic the columns of the matrix Q could progres-

sively lose their orthogonality, hence a re-orthogonalization procedure could

be required.



Hamiltonian and skew-symmetric matrices

Hence,

M =





0 UΛU⊤

−UΛU⊤ 0



 ,

and we can show that:

exp(M) =





U cos(Λ) U⊤ U sin(Λ) U⊤

−U sin(Λ) U⊤ U cos(Λ) U⊤





where

• cos(Λ) = diag(cos(λ1), cos(λ2), . . . , cos(λn))

• sin(Λ) = diag(sin(λ1), sin(λ2), . . . , sin(λn))



A special case

If Y is ortho-symplectic then

Y =





Y1 Y2

−Y2 Y1





with the constrains:

Y T
1 Y1 + Y T

2 Y2 = In, Y T
1 Y2 − Y T

2 Y1 = 0.

If the matrix product

exp(M)Y =





U cos(Λ) U⊤ U sin(Λ) U⊤

−U sin(Λ) U⊤ U cos(Λ) U⊤









Y1 Y2

−Y2 Y1





is required, then:

• We can avoid to compute the matrices U cos(Λ) U⊤ and U sin(Λ) U⊤

explicitly;

• Only the two blocks (1, 1) and (1, 2) in exp(M)Y need to be com-

puted .



Splitting techniques

Splitting techniques

We now consider the general case:

M =





A B

−B A



 , A 6= 0.

In the context of numerical methods for ODEs, splitting techniques are

often used to reduce the cost of the exponential evaluation.

We may consider the following natural splitting

M = M1 + M2 =

=





0 B

−B 0



 +





A 0

0 A





N. Del Buono & L. Lopez & T. Politi, to appear.



Splitting techniques

and to approximate the exponential map, we may apply:

• the first order accuracy approximation

exp(M) ∼= exp(M1) exp(M2)

• or the Strang second order approximation scheme

exp(M) ∼= exp

(

1

2
M2

)

exp(M1) exp

(

1

2
M2

)

.

• To compute exp(M2) effective methods for skew-symmetric matrices

can be used;

• To compute exp(M1) the Schur decomposition method can be adopted;

• These splitting techniques preserve the geometric properties of the

exponential, that is they provide matrices which are ortho-symplectic.



General case

The general case

A general Hamiltonian and skew-symmetric matrix

M =





A B

−B A





can be proved to be similar (by means of an ortho-symplectic matrix) to

a canonical Hamiltonian and skew-symmetric matrix of the form




0 Ω

−Ω 0





with Ω diagonal matrix.

However, this transformation method may be expensive and in the context

of ODEs splitting techniques should be used.



Functions of Hamiltonian and skew-symmetric matrices: Numerical Test

Numerical Tests

Comparisons between the Matlab function expm and our procedure to

compute exp(M) for matrices M with zero diagonal blocks (i.e., A = 0).

2n Meth Flops Glob. err. Orth. err. Sympl. err.

50 O-Schur 486396 8.5197e-15 4.1587e-14 4.1587e-14

expm 1651126 - 4.1412e-14 4.1412e-14

100 O-Schur 3555279 2.9592e-13 1.3000e-12 1.3000e-12

expm 14950096 - 1.7453e-14 1.2249e-14

200 O-Schur 28459034 2.0328e-11 8.5270e-11 8.5270e-11

expm 134396604 - 7.0984e-14 4.6904e-14

500 O-Schur 426743229 3.7416e-11 1.4595e-10 1.4595e-10

expm 2.0898e+9 - 1.9512e-13 1.4210e-13



Numerical Test

Computation of exp(M) in case of M in the general form (i.e. A 6= 0)

by using splitting techniques, (n = 200).

Meth Flops Glob. err. Orth. err. Sympl. err.

Expm 134548784 - 7.1416e-14 5.1095e-14

Splitting1 42828234 1.4855e-4 4.7570e-13 4.7570e-13

Splitting2 44827914 1.5752e-6 4.9231e-13 4.9231e-13



The rectangular case

The rectangular orthogonal case

Suppose we need to compute an approximation of

Z = exp(A)V

with A skew-symmetric;

V matrix of size n × p (p << n) and with orthonormal columns.

We need a procedure which provides an approximation Zm of Z with

orthonormal columns.

Motived by the rectangular structure of V , we would like to apply Arnoldi

approximations into Krylov subspces.



The rectangular orthogonal case

Case of V = [v], p = 1 and ‖v‖ = 1.

An effective method is the Arnoldi approximation of z = exp(A)v us-

ing Krylov subspace:

Km ≡ Km(A, v) = span{v, Av, . . . , Am−1v}

Vm s.t. range(Vm) = Km(A, q) and V T
m Vm = I

Arnoldi relation:

AVm = VmHm + hm+1,mvm+1e
T
m

A common approach

exp(A)v ≈ zm = Vm exp(Hm)e1, ‖v‖ = 1

and

‖v‖ = 1 ⇒ ‖zm‖ = 1.



Preserving orthogonality by block Krylov subspaces

Now, let V = [v1, . . . , vp] with orthonormal columns.

Regular Krylov subspaces Km(A, vi), i = 1, . . . , p,

A skew-sym ⇒ Hm,i skew-symmetric ⇒ exp(Hm,i) orthogonal

We may assume

exp(A)vi ≈ zm,i = Vm,i exp(Hm,i)e1, i = 1, . . . , p,

But it is not enough because

{zm,1, . . . , zm,p} are vectors of unit norm but not orthogonal vectors.



Block Krylov methods come to rescue

To preserve the orthonormal structure we need to use Block Krylov sub-

spaces:

Km(A, V ) = span{V, AV, . . . , Am−1V }
A basis of Km(A, V ) is generated by the block Lanczos recursion:

AVm = VmHm + Vm+1hm+1,mET
m

where:

• Vm = [V1, . . . , Vm] ∈ R
n×mp and V1 = V ,

• Hm is an mp × mp block tridiagonal and skew-symmetric matrix

Hm = (hij) with hij a p × p block,

• Vm+1 is n × p, hm+1,m is p × p and ET
m = [0, ..., 0, Ip].

L. Lopez & V. Simoncini, BIT 2006.



The rectangular orthogonal case

Then we have the following approximation

exp(A)V ∼= Vm exp(Hm)E1χ0

where χ0 ∈ R
p×p is such that V = VmE1χ0, and this approximation has

orthonormal columns.



The rectangular symplectic case

The rectangular symplectic case

Definition. Let Q ∈ R
2n×2p, we say that Q is a (rectangular) symplectic

matrix if

QTJQ = J2p.

A Hamiltonian and Q symplectic ⇒
Z = exp(A)Q is still a rectangular symplectic matrix.

We wish a symplectic approximation Zm of Z.

In order to obtain Zm we need a symplectic basis Vm of the subspace

Km(A, V ) and a Hamiltonian representation Hm of A.



The rectangular symplectic case

From Q we define the starting matrix V as

V = QP1

with P1 a suitable permutation matrix, so that

V TJV = P1J2pP
T
1 , (3)

Then V is symplectic upon permutation.

This permutation is commonly performed in the single vector case, i.e.

for p = 1.



The rectangular symplectic case

The algorithm proceeds by using the block Lanczos recurrence starting

with V , that is

AVm = VmHm + Vm+1hm+1,mET
m

and requiring the basis Vm to be symplectic upon permutation.

More precisely, the matrix Vm is constructed from the Lanczos recurrence

with

(VmPm)TJ(VmPm) = J2mp. (4)

Moreover the matrix P T
mHmPm will be Hamiltonian.



The rectangular symplectic case

The approximation to U = exp(A)V is then given by

Um = VmPm exp(P T
mHmPm)(VmPm)TJV,

which is equivalent to

Um = Vm exp(Hm)VT
mJV = Vm exp(Hm)E1P1J2pP

T
1 ,

and which is also symplectic upon permutation.

Stability problems and loss of symplecticity (or of rank) may destroy the

Hamiltonian structure of P T
mHmPm and some strategy should be used to

avoid this problem.

L. Lopez & V. Simoncini, BIT 2006.



An example

Linear Hamiltonian system:







y′ = Ay, A = J−1S

y(0) = y0

with S ∈ R
400×400 symmetric (eigs. in [1, 100])

Energy function: E(y(t)) = y(t)TSy(t) is constant for all t > 0.

Numerical symplectic integrator: starting with y(0) = y0,

yn+1 = exp(τA)yn, n ≥ 0 τ =
1

40

where yn is the numerical approximation of y(nτ ).



Conservation of energy. Error: |E(y
n
) − E(y(0))|
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L. Lopez & V. Simoncini, BIT 2006.


