Strategie per l'analisi della sensibilità alle perturbazioni delle matrici tridiagonali di Toeplitz complesse*

S. Noschese \& L. Pasquini

*Due Giorni di Algebra Lineare Numerica, Bologna, 6-7 marzo 2008

Matrix nearness problems

Normality, Defectiveness, Rank-deficiency [Henrici 62] [Wilkinson 65, 72, 84a, 84b, 86] [Ruhe 75, 87] [Demmel 87,90] [Higham 89] [Alam Bora 04] [Burke Lewis Overton 08]

$+$

Tridiagonal Toeplitz structure

(Structured distance to normality of a real tridiagonal Toeplitz matrix in [N., Pasquini, Reichel ETNA 07])

OUTLINE

- Well known formulae, simple computations and remarks
- Matrices in $\mathcal{N}_{\mathcal{T}}$, nearest matrix in $\mathcal{N}_{\mathcal{T}}$, structured distance from normality
- Normalized distance $d_{F}\left(T_{0}, \mathcal{N}_{\mathcal{T}}\right) /\left\|T_{0}\right\|_{F}$
- Matrices in $\mathcal{M}_{\mathcal{T}}$, nearest matrix in $\mathcal{M}_{\mathcal{T}}$, structured distance from $\mathcal{M}_{\mathcal{T}}$
- Normalized distance $d_{F}\left(T_{0}, \mathcal{M}_{\mathcal{T}}\right) /\left\|T_{0}\right\|_{F}$
- Sensitivity of the eigenvalues to perturbations in the matrix
- Matrices in $\mathcal{S}_{\mathcal{T}}$, nearest matrix in $\mathcal{S}_{\mathcal{T}}$, structured distance from $\mathcal{S}_{\mathcal{T}}$
- Sensitivity of the matrix T_{0}

WELL KNOWN FORMULAE, SIMPLE COMPUTATIONS AND REMARKS

$$
T=T(n ; \sigma, \delta, \tau)=\left[\begin{array}{ccccccc}
\delta & \tau & & & & & \\
\sigma & \delta & \tau & & & & \\
& \sigma & \cdot & \cdot & & & \\
& & \cdot & \cdot & \cdot & & \\
& & & \cdot & \cdot & \cdot & \\
& & & & \cdot & \cdot & \tau \\
& & & & \sigma & \delta
\end{array}\right]
$$

$$
\lambda_{h}(T)=\delta+2 \sqrt{\sigma \tau} \cos \frac{h \pi}{n+1}, \quad h=1: n
$$

[Bellman 60]

If $\sigma \tau \neq 0, T$ has n simple eigenvalues which lie on the closed segment of the complex plane

$$
\delta+t e^{i(\arg \sigma+\arg \tau) / 2}, \quad t \in \mathbf{R}
$$

$$
|t| \leq 2 \sqrt{|\sigma||\tau|} \cos \frac{\pi}{n+1}
$$

The eigenvalues are symmetrically arranged with respect to δ. If $\sigma=0$ and $\tau \neq 0$ [or: if $\sigma \neq 0$ and $\tau=0], T$ has the unique eigenvalue δ which is defective and has geometric multiplicity 1 . Right and left eigenvectors are the first and the last column [or: the last and the first column], respectively, of the identity matrix I. The case $\sigma=\tau=0$ is trivial.

Right and left eigenvector components:

$$
x_{h k}=(\sigma / \tau)^{k / 2} \sin \left(\frac{h k \pi}{n+1}\right), k=1: n, h=1: n
$$

[Meyer 00]

$$
y_{h k}=(\overline{\tau / \sigma})^{k / 2} \sin \left(\frac{h k \pi}{n+1}\right), k=1: n, h=1: n
$$

A structured analysis reduces to the case of $\sigma \tau \neq 0$ and to the study of the sensitivity to perturbations on σ and τ.

This is confirmed by the eigenvectors, which do not depend on δ.

Consequently the analysis is lead on the eigenvalues $\lambda_{h}\left(T_{0}\right), h=1: n$, of the matrix $T_{0}=$ $T(n ; \sigma, 0, \tau)$

Spectral radius $\rho(T)=\max \left(\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right)=$ $\max \left(\left|\delta+2 \sqrt{\sigma \tau} \cos \frac{\pi}{n+1}\right|,\left|\delta+2 \sqrt{\sigma \tau} \cos \frac{n \pi}{n+1}\right|\right)$.

In particular:
$\rho\left(T_{0}\right)=2 \sqrt{|\sigma||\tau|} \cos \frac{\pi}{n+1}$.
And, if T_{0}^{-1} exists ($\sigma \tau \neq 0, n$ even),

$$
\rho\left(T_{0}^{-1}\right)=\frac{1}{2 \sqrt{|\sigma||\tau|} \cos \frac{n \pi}{2(n+1)}} .
$$

MATRICES IN $\mathcal{N}_{\mathcal{T}}$, NEAREST MATRIX IN

 $\mathcal{N}_{\mathcal{T}}$, STRUCTURED DISTANCE FROM NORMALITY$\mathcal{T}:=$ the subspace of $\mathbf{C}^{n \times n}$ formed by the tridiagonal Toeplitz matrices
$\mathcal{N}:=$ the algebraic variety of the normal matrices of $\mathbf{C}^{n \times n}$
$\mathcal{N}_{\mathcal{T}}:=$ the algebraic variety of the normal tridiagonal Toeplitz matrices of $\mathbf{C}^{n \times n}$

$$
\mathcal{N}_{\mathcal{T}}=\mathcal{N} \bigcap_{\mathcal{T}}
$$

$$
d_{F}\left(T, \mathcal{N}_{\mathcal{T}}\right):=\min _{T^{*} \in \mathcal{N}_{\mathcal{T}}}\left\|T-T^{*}\right\|_{F}
$$

$$
T \text { is normal iff }|\sigma|=|\tau| \text {. }
$$

(Real case in [N., Pasquini, Reichel 07])
Theorem Let $T=T(n ; \sigma, \delta, \tau)$ be any matrix in \mathcal{T}. There is a unique matrix $T^{*}=$ $T^{*}\left(n ; \sigma^{*}, \delta^{*}, \tau^{*}\right) \in \mathcal{N}_{\mathcal{T}}$ that minimizes $\left\|T^{*}-T\right\|_{F}$ in $\mathcal{N}_{\mathcal{T}}$

$$
\begin{aligned}
& \sigma^{*}=\frac{|\sigma|+|\tau|}{2} e^{i \arg \sigma}, \\
& \delta^{*}=\delta, \\
& \tau^{*}=\frac{|\sigma|+|\tau|}{2} e^{i \arg \tau} .
\end{aligned}
$$

Proof.

$$
\begin{gathered}
\sigma^{*}=\rho^{*} e^{i \arg \sigma}, \tau^{*}=\rho^{*} e^{i \arg \tau} \\
u(\rho)=(\rho-|\sigma|)^{2}+(\rho-|\tau|)^{2} \\
\rho^{*}=\frac{|\sigma|+|\tau|}{2}
\end{gathered}
$$

\diamond
Remark The eigenvalues of the normal tridiagonal Toeplitz matrix $T^{*}=T^{*}\left(n ; \sigma^{*}, \delta^{*}, \tau^{*}\right)$ closest to $T=T(n ; \sigma, \delta, \tau)$ are
$\lambda_{h}\left(T^{*}\right)=\delta+(|\sigma|+|\tau|) e^{i(\arg \sigma+\arg \tau) / 2} \cos \frac{h \pi}{n+1}$,
for $h=1: n$, and lie on the closed segment

$$
\begin{gathered}
\delta+t e^{i(\arg \sigma+\arg \tau) / 2}, \quad t \in \mathbf{R} \\
|t| \leq(|\sigma|+|\tau|) \cos \frac{\pi}{n+1}
\end{gathered}
$$

Note that, since

$$
|\sigma|+|\tau|-2 \sqrt{|\sigma||\tau|}=(\sqrt{|\sigma|}-\sqrt{|\tau|})^{2}
$$

this segment properly contains the preceding one.

$$
d_{F}\left(T, \mathcal{N}_{\mathcal{T}}\right)=\sqrt{\frac{n-1}{2}}\|\sigma|-| \tau\|
$$

Remark $d_{F}\left(T, \mathcal{N}_{\mathcal{T}}\right)$ is independent of δ but it depends on δ the closest normal matrix T^{*}. Moreover, $T_{1}=T\left(n, \sigma, \delta_{1}, \tau\right), T_{2}=T\left(n, \sigma, \delta_{2}, \tau\right)$, implies $\left\|T_{1}^{*}-T_{2}^{*}\right\|_{F}=\left\|T_{1}-T_{2}\right\|_{F}=\sqrt{n}\left|\delta_{1}-\delta_{2}\right|$.

Theorem $T \notin \mathcal{N}_{\mathcal{T}}$.

$$
\left\|\lambda-\lambda^{*}\right\|_{\infty}<(\sqrt{|\sigma|}-\sqrt{|\tau|})^{2}
$$

Proof.
$\left|\lambda_{h}(T)-\lambda_{h}\left(T^{*}\right)\right|=|2 \sqrt{|\sigma||\tau|}-|\sigma|-|\tau||\left|\cos \frac{h \pi}{n+1}\right|$

$$
=(\sqrt{|\sigma|}-\sqrt{|\tau|})^{2}\left|\cos \frac{h \pi}{n+1}\right|<(\sqrt{|\sigma|}-\sqrt{|\tau|})^{2} .
$$

Theorem

$$
\frac{\left\|\lambda-\lambda^{*}\right\|_{\infty}}{d_{F}\left(T, \mathcal{N}_{\mathcal{T}}\right)}<\sqrt{\frac{2}{n-1}} \frac{(\sqrt{|\sigma|}-\sqrt{|\tau|})}{(\sqrt{|\sigma|}+\sqrt{|\tau|})} .
$$

Remark

$$
\lim _{T \rightarrow T^{*}} \frac{\left\|\lambda-\lambda^{*}\right\|_{\infty}}{d_{F}\left(T, \mathcal{N}_{\mathcal{T}}\right)}=0
$$

DISTANCE $d_{F}\left(T_{0}, \mathcal{N}_{\mathcal{T}}\right) /\left\|T_{0}\right\|_{F}$

$$
\frac{d_{F}\left(T_{0}, \mathcal{N}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}}=\frac{\| \tau / \sigma|-1|}{\sqrt{2} \sqrt{|\tau / \sigma|^{2}+1}}
$$

i) in the case of $\sigma \tau \neq 0$, one has

$$
0 \leq \frac{d_{F}\left(T_{0}, \mathcal{N}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}}<\frac{\sqrt{2}}{2}
$$

and the normalized structured distance decreases from $\sqrt{2} / 2$ to 0 when when T grows balanced;
ii) it results $\frac{d_{F}\left(T_{0}, \mathcal{N}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}}=0$, iff $|\sigma|=|\tau|$;
iii) it results $\frac{d_{F}\left(T_{0}, \mathcal{N}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}}=\frac{\sqrt{2}}{2}$, in the remaining cases $\sigma=0, \tau \neq 0$, and $\sigma \neq 0, \tau=0$.

MATRICES IN $\mathcal{M}_{\mathcal{T}}$, NEAREST MATRIX IN $\mathcal{M}_{\mathcal{T}}$, STRUCTURED DISTANCE FROM NORMALITY

$\mathcal{M}:=$ the algebraic variety of the matrices of $\mathbf{C}^{n \times n}$ with multiple eigenvalues
$\mathcal{M}_{\mathcal{T}}:=$ the algebraic variety of the tridiagonal Toeplitz matrices of $\mathbf{C}^{n \times n}$ with multiple eigenvalues

$$
\mathcal{M}_{\mathcal{T}}=\mathcal{M} \cap \mathcal{T}
$$

$$
d_{F}\left(T, \mathcal{M}_{\mathcal{T}}\right):=\min _{T^{+} \in \mathcal{M}_{\mathcal{T}}}\left\|T-T^{+}\right\|_{F}
$$

$$
d_{F}\left(T, \mathcal{M}_{\mathcal{T}}\right)=\sqrt{n-1} \min \{|\sigma|,|\tau|\}
$$

$$
\begin{gathered}
d_{F}\left(T^{*}, \mathcal{M}_{\mathcal{T}}\right)=\sqrt{n-1} \frac{|\sigma|+|\tau|}{2} ; \\
d_{F}\left(T^{*}, \mathcal{M}_{\mathcal{T}}\right)-d_{F}\left(T, \mathcal{M}_{\mathcal{T}}\right)= \\
=\sqrt{n-1} \frac{\max \{|\sigma|,|\tau|\}-\min \{|\sigma|,|\tau|\}}{2} .
\end{gathered}
$$

NORMALIZED DISTANCE
 $d_{F}\left(T_{0}, \mathcal{M}_{\mathcal{T}}\right) /\left\|T_{0}\right\|_{F}$

$$
\frac{d_{F}\left(T_{0}, \mathcal{M}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}}=\frac{1}{\sqrt{\left|\frac{\max \{|\sigma|,|\tau|\}}{\min \{|\sigma|,|\tau|\}}\right|^{2}+1}}
$$

i) It results $0<\frac{d_{F}\left(T_{0}, \mathcal{M}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}} \leq \frac{\sqrt{2}}{2}$;
ii) it results $\frac{d_{F}\left(T_{0}, \mathcal{M}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}}=\frac{\sqrt{2}}{2}$ iff $|\sigma|=|\tau|$;
iii) $\lim _{\min \{|\sigma|,|\tau|\} \rightarrow 0} \frac{d_{F}\left(T_{0}, \mathcal{M}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}}=0$.

SENSITIVITY OF THE EIGENVALUES TO PERTURBATIONS IN THE MATRIX

$$
\begin{aligned}
& f(\sigma, \tau)=\lambda\left(T_{0}\right)=\left[\lambda_{1}\left(T_{0}\right), \lambda_{2}\left(T_{0}\right), \ldots, \lambda n\left(T_{0}\right)\right] \\
& f: D \subset \mathbf{C}^{2} \rightarrow f(D) \subset \mathbf{C}^{n}, D=\{(\sigma, \tau): \sigma \tau \neq 0\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|J_{f}(\sigma, \tau)\right\|_{F}=\sqrt{\frac{n-1}{2}} \sqrt{\left|\frac{\sigma}{\tau}\right|+\left|\frac{\tau}{\sigma}\right|} \\
& \left\|\Gamma_{f}(\sigma, \tau)\right\|_{2}=\left\|\Gamma_{f}(\sigma, \tau)\right\|_{F}=\sqrt{\frac{n}{2}}
\end{aligned}
$$

Remark Unlike the norms of Γ_{f}, the norm of J_{f} depends on σ and on τ. It reaches its absolute minimum $\sqrt{n-1}$ iff $|\sigma|=|\tau|$, i.e. iff T is normal, and tends to $+\infty$ when T grows unbalanced.
$* * *$

Since the eigenvalues of T_{0} [or: the eigenvalues of T] do not change if the product $\sigma \tau$ remains unchanged, to compute them as eigenvalues of a matrix, it could seem convenient to replace T_{0} with $T(n ; s, 0, t)$ [or: to replace T with $T(n ; s, \delta, t)$, where $s=\sqrt{|\sigma||\tau|} e^{i \arg \sigma}$, $t=\sqrt{|\sigma||\tau|} e^{i \arg \tau}$. Note that $T(n ; s, 0, t)$ and
$T(n ; s, \delta, t)$ are similar through a diagonal ma$\operatorname{trix} D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ to T_{0} and T, respectively. But

$$
\frac{d_{h+1}}{d_{h}}=\sqrt{\frac{|\sigma|}{|\tau|}} \quad h=1,2, \ldots, n
$$

Individual condition numbers

$$
\begin{aligned}
\left\|x_{h}\right\|_{2}= & \sqrt{\sum_{k=1}^{n}\left(\frac{|\sigma|}{|\tau|}\right)^{k} \sin ^{2}\left(\frac{k h \pi}{n+1}\right)}, \quad h=1: n \\
\left\|y_{h}\right\|_{2}= & \sqrt{\sum_{k=1}^{n}\left(\frac{|\tau|}{|\sigma|}\right)^{k} \sin ^{2}\left(\frac{k h \pi}{n+1}\right)}, \quad h=1: n \\
& \left|y_{h}^{H} x_{h}\right|=\frac{n+1}{2}, \quad h=1: n
\end{aligned}
$$

$$
\begin{gathered}
\Downarrow \\
\kappa\left(\lambda_{h}(T)\right)=\frac{\left\|x_{h}\right\|_{2}\left\|y_{h}\right\|_{2}}{\left|y_{h}^{H} x_{h}\right|}= \\
=\frac{1-a^{n+1}}{(n+1) a^{n / 2}} \sqrt{f_{1}(a, n, h) f_{2}(a, n, h)}, \quad h=1: n
\end{gathered}
$$

where $a=\left|\frac{\min \{|\sigma|,|\tau|\}}{\max \{|\sigma|,|\tau|\}}\right|$,

$$
\begin{aligned}
& f_{1}(a, n, h)=\frac{1}{1-a}-\frac{1-a \cos \left(\frac{2 \pi h}{n+1}\right)}{\left(1-a \cos \left(\frac{2 \pi h}{n+1}\right)\right)^{2}+a^{2} \sin ^{2}\left(\frac{2 \pi h}{n+1}\right)} \\
& f_{2}(a, n, h)=\frac{1}{1-a}-\frac{\cos \left(\frac{2 \pi n h}{n+1}\right)-a}{\left(\cos \left(\frac{2 \pi n h}{n+1}\right)-a\right)^{2}+\sin ^{2}\left(\frac{2 \pi n h}{n+1}\right)} . \\
& \kappa\left(\lambda_{h}(T)\right)=1, h=1: n \quad \text { iff } \quad|\sigma|=|\tau| .
\end{aligned}
$$

Another way to measure the sensitivity of the eigenvalues

Let $\sigma=\min \{|\sigma|,|\tau|\}$ and consider the tridiagonal perturbation $E_{s}=T(n ;-s, 0,0)$ to the matrix $T=T(n ; \sigma, \delta, \tau)$. For $s \neq \sigma$, one gets a family $T+E_{s}$ of matrices with simple eigenvalues having as a limit for $s \rightarrow \sigma$ the defective matrix $T(n ; 0, \delta, \tau)$. The perturbation E_{σ} ($\left\|E_{\sigma}\right\|_{F}=\sqrt{n-1}|\sigma|$) brings all the eigenvalues in δ.

The more the original eigenvalue $\lambda_{h}(T)$ is far from δ, the higher is its sensitivity to the perturbation E_{σ}, and the higher is its "velocity":

$$
\begin{gathered}
v\left(\lambda_{h}(T)\right)=\frac{2 \sqrt{|\sigma||\tau|}\left|\cos \frac{h \pi}{n+1}\right|}{\sqrt{n-1}|\sigma|}= \\
=\frac{2}{\sqrt{n-1}} \sqrt{\frac{|\tau|}{|\sigma|}\left|\cos \frac{h \pi}{n+1}\right|}
\end{gathered}
$$

The larger is the ratio $\frac{|\tau|}{|\sigma|}$, the higher is the velocity of the eigenvalues, whereas the closer is the ratio to 1 , the lower the velocity is.

MATRICES IN $\mathcal{S}_{\mathcal{T}}$, NEAREST MATRIX IN $\mathcal{S}_{\mathcal{T}}$, STRUCTURED DISTANCE FROM SINGULARITY

$\mathcal{S}:=$ the algebraic variety of the singular matrices of $\mathbf{C}^{n \times n}$
$\mathcal{S}_{\mathcal{T}}:=$ the algebraic variety of the singular tridiagonal Toeplitz matrices of $\mathbf{C}^{n \times n}$

$$
\begin{gathered}
\mathcal{S}_{\mathcal{T}}=\mathcal{S} \bigcap \mathcal{T} \\
d_{F}\left(T_{0}, \mathcal{S}_{\mathcal{T}}\right):=\min _{T^{-} \in \mathcal{S}_{\mathcal{T}}}\left\|T_{0}-T^{-}\right\|_{F}
\end{gathered}
$$

i) If T_{0} is defective, one has rank $\left(T_{0}\right)=n-1$. Therefore, $d_{F}\left(T_{0}, \mathcal{S}\right)=0 ; d_{F}\left(T_{0}, \mathcal{S}_{\mathcal{T}}\right)=0$ and $T^{-} \equiv T_{0}$;
ii) if $\sigma \tau \neq 0$ and n is odd, one has: T_{0} is singular $\left(\operatorname{rank}\left(T_{0}\right)=n-1\right) \Rightarrow d_{F}\left(T_{0}, \mathcal{S}\right)=0$; $d_{F}\left(T_{0}, \mathcal{S}_{\mathcal{T}}\right)=0 ; T^{-} \equiv T_{0}$;
iii) if $\sigma \tau \neq 0$ and n is even, one has: $d_{F}\left(T_{0}, \mathcal{S}_{\mathcal{T}}\right)=$ $\sqrt{n-1} \min \{|\sigma|,|\tau|\}$ and one has

$$
0<\frac{d_{F}\left(T_{0}, \mathcal{S}_{\mathcal{T}}\right)}{\left\|T_{0}\right\|_{F}} \leq \frac{\sqrt{2}}{2} .
$$

SENSITIVITY OF THE MATRIX T_{0}

If $\sigma \tau \neq 0$ and n is even, one has the following upper bound for the distance from singularity of T_{0} :

$$
\begin{gathered}
d\left(T_{0}, \mathcal{S}\right)=\frac{1}{\left\|T_{0}^{-1}\right\|} \leq \min _{k=1: n}\left|\lambda_{k}\left(T_{0}\right)\right|= \\
=2 \sqrt{|\sigma||\tau|} \cos \frac{n \pi}{2(n+1)}
\end{gathered}
$$

and the following lower bound for the matrix condition number of T_{0} (i.e. for the reciprocal of the normalized distance from singularity $\left.d\left(T_{0}, \mathcal{S}\right) /\left\|T_{0}\right\|\right)$:

$$
\left\|T_{0}\right\|\left\|T_{0}^{-1}\right\| \geq \frac{\max _{k=1: n}\left|\lambda_{k}\left(T_{0}\right)\right|}{\min _{k=1: n}\left|\lambda_{k}\left(T_{0}\right)\right|}=\frac{\cos \frac{\pi}{n+1}}{\cos \frac{n \pi}{2(n+1)}}
$$

The structured matrix condition number of T_{0} in the Frobenius norm (i.e. the reciprocal of the structured normalized distance from singularity $\left.d_{F}\left(T_{0}, \mathcal{S}_{\mathcal{T}}\right) /\left\|T_{0}\right\|_{F}\right)$ is greater or equal to $\sqrt{2}$. If $|\sigma|=|\tau| \neq 0$ and n is even, it is equal to $\sqrt{2}$.

Remark Note that, if $|\sigma|=|\tau| \neq 0$ and n is even, the matrix condition number of T_{0} in the 2-norm is :

$$
\left\|T_{0}\right\|_{2}\left\|T_{0}^{-1}\right\|_{2}=\frac{\cos \frac{\pi}{n+1}}{\cos \frac{n \pi}{2(n+1)}}
$$

