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Bound Constrained Least-Squares Problems

minl≤x≤u q(x) = 1
2‖Ax − b‖2

2 + µ‖x‖2

Vectors l ∈ (IR ∪ −∞)n and u ∈ (IR ∪∞)n are lower and
upper bounds on the variables.

A ∈ IRm×n, b ∈ IRm, µ ≥ 0 are given and m ≥ n. We expect
A to be large and sparse.

We allow the solution x∗ to be degenerate:

x∗i = li or x∗i = ui , ∇qi (x
∗) = 0, for some i , 1 ≤ i ≤ n

.
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We limit the presentation to NNLS problems:

minx≥0 q(x) = 1
2‖Ax − b‖2

2

We assume A has full column rank ⇒ there is a unique
solution x∗.

Let g(x) = ∇q(x) = AT (Ax − b) and D(x) be the diagonal
matrix with entries:

di (x) =

{
xi if gi (x) ≥ 0
1 otherwise

The core of our procedure is an Inexact Newton-like method
applied to the First Order Optimality condition for NNLS:

D(x)g(x) = 0
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Inexact Newton Interior Point methods for D(x)g(x) = 0

[Bellavia, Macconi, Morini, NLAA, 2006]

The method uses ideas of [Heinkenschloss, Ulbrich, Ulbrich,

Math. Progr., 1999]

Let E (x) be the diagonal positive semidefinite matrix with
entries:

ei (x) =

{
gi (x) if 0 ≤ gi (x) < x2

i or gi (x)2 > xi

0 otherwise .

Let W (x) and S(x) be the diagonal matrices

W (x) = (E (x) + D(x))−1 S(x) = (W (x)D(x))
1
2

Note that (S(x))2
i ,i ∈ (0, 1] and (W (x)E (x))i ,i ∈ [0, 1).
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k-th iteration

Solve the s.p.d. system:

Zk p̃k = −Skgk + rk , ‖rk‖ ≤ ηk‖WkDkgk‖

where ηk ∈ [0, 1) and Zk ≡ Z (xk) is given by:

Zk = ST
k (ATA + D−1

k Ek)Sk = ST
k ATASk + WkEk

Form the step pk = Sk p̃k

Project it onto an interior of the positive orthant:

p̂k = max{σ, 1− ‖P(xk + pk)− xk‖ } (P(xk + pk)− xk),

where σ ∈ (0, 1) is close to one.
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Globalization Phase Set:

xk+1 = xk + (1− t)p̂k + tpC
k t ∈ [0, 1)

where pC
k is a constrained Cauchy step.

t is chosen to guarantee a sufficient decrease of the objective
function q(x).

Strictly positive iterates

Eventually t = 0 is taken ⇒ up to quadratic convergence can
be obtained without assuming strict complementarity at x∗.
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The Linear Algebra Phase: normal equations

The system
Zk p̃k = −Skgk

represents the normal equations for the least-squares problem

min
p̃∈IRn

‖Bδp̃ + h‖

with

Bδ =

(
ASk

W
1
2

k E
1
2
k

)
, h =

(
Axk − b

0

)
.
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The Linear Algebra Phase: augmented system

The step p̃k can be obtained solving:(
I ASk

SkAT −WkEk

)
︸ ︷︷ ︸

Hδ

(
q̃k

p̃k

)
=

(
−(Axk − b)

0

)

Note that WkEk is positive semidefinite and

vTWkEkv ≥ δvT v , ∀v ∈ IRn,

where 1 > δ = mini (wkek)i .
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Conditioning issues

Let 0 < σ1 ≤ σ2 . . . ≤ σn, be the singular values of ASk

Assume σ1 << 1.

If δ = 0 then

κ2(H0) ≤ 1 + σn

σ2
1

κ2(B0) ≤ 1 + σn

σ1
,

i.e. κ2(H0) may be much greater than κ2(B0).

If δ > 0 (regularized system), then

κ2(Hδ) ≤
1 + σn

δ
κ2(Bδ) ≤

1 + σn√
δ

,

i.e. If δ > σ1: κ2(Hδ) (κ2(Bδ)) may be considerably smaller
than κ2(H0) (κ2(B0))
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The Regularized I.P. Newton-like method

If σ1 is not small, the regularization does not deteriorate
κ2(Hδ) with respect to κ2(H0).

⇓
Clear benefit from regularization ( see also [Saunders, BIT,

1995][Silvester and Wathen, SINUM, 1994] )

Modification of the Affine Scaling I.P. method:

Z̃k p̃k = −Skgk + rk

where

Z̃k = ST
k (ATA + D−1

k Ek + ∆k)Sk

= ST
k ATASk + WkEk︸ ︷︷ ︸

Zk

+ ∆kS2
k

and ∆k is diagonal with entries in [0, 1).
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Fast convergence of the method is preserved (in presence of
degeneracy, too)

The globalization strategy of [BMM] can be applied with
slight modifications.

The least square problem and the augmented system are
regularized:

Bδ =

(
ASk

C
1
2
k

)

Hδ =

(
I ASk

SkAT −Ck

)
where

Ck = WkEk + ∆kS2
k
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Features of the method

Let τ ∈ (0, 1) be a small positive threshold and

Ik = {i ∈ {1, 2, . . . , n}, s.t. (s2
k )i ≥ 1− τ},

Ak = {1, 2, . . . , n}/Ik , n1 = card(Ik),

then Sk = diag((Sk)I , (Sk)A)

Note that S2
k + WkEk = I . When xk converges to x∗,

limk→∞(Sk)I = I , limk→∞(Sk)A = 0.
limk→∞(WkEk)I = 0, limk→∞(WkEk)A = I .

Ik is expected to eventually settle down (inactive components
and possibly degenerate components)
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Solving the augmented system

The following partition on the augmented system is induced: I AI(Sk)I AA(Sk)A
(Sk)IA

T
I −(Ck)I 0

(Sk)AAT
A 0 −(Ck)A

 q̃k

(p̃k)I
(p̃k)A

 =

 −(Axk − b)
0
0


Eliminating (p̃k)A we get(

I + Qk AI(Sk)I
(Sk)IA

T
I −(Ck)I

)
︸ ︷︷ ︸

Hk

(
q̃k

(p̃k)I

)
=

(
−(Axk − b)

0

)

Hk ∈ IR(m+n1)×(m+n1)
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The Preconditioner

Note that

Hk =

(
I AI(Sk)I

(Sk)IA
T
I −(∆kS2

k )I

)
︸ ︷︷ ︸

Pk

+

(
Qk 0
0 −(WkEk)I

)

where Qk = AA(SkC−1
k Sk)AAT

A
When xk converges to x∗, (Sk)A → 0, (Ck)A → I , then

lim
k→∞

(Qk) = 0, lim
k→∞

(WkEk)I = 0.
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Factorization of the Preconditioner

Pk =

(
I AI(Sk)I

(Sk)IA
T
I −(∆kS2

k )I

)
can be factorized as

Pk =

(
I 0
0 (Sk)I

)(
I AI

AT
I −(∆k)I

)
︸ ︷︷ ︸

Πk

(
I 0
0 (Sk)I

)

If Ik and ∆k remain unchanged for a few iterations, the
factorization of matrix Πk does not have to be updated.

Ik is expected to eventually settle down.
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Eigenvalues

P−1
k Hk has

at least m − n + n1 eigenvalues at 1
the other eigenvalues are positive and of the form

λ = 1 + µ, µ =
uTQku + vT (WkEk)I v

uTu + vT (∆kS2
k )I v

,

where (uT , vT )T is an eigenvector associated to λ.

if µ is small: the eigenvalues of P−1
k Hk are clustered around

one. This is the case when xk is close to the solution.
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Eigenvalues (xk far away from x∗)

The eigenvalues of P−1
k Hk have the form λ = 1 + µ and

If (∆k)i,i = δ > 0 for i ∈ Ik ,

µ ≤ ‖AA(Sk)A‖2

τ
+

τ

δ(1− τ)

If (∆k)i,i =

{
(wk)i (ek)i for i ∈ Ik and (wk)i (ek)i 6= 0
δ > 0 for i ∈ Ik and (wk)i (ek)i = 0

µ ≤ ‖AA(Sk)A‖2

τ
+

1

1− τ

⇒ Better distribution of the eigenvalues.

A scaling of A at the beginning of the process is advisable.
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Solving the augmented system by PPCG

We can adopt the Projected Preconditioned
Conjugate-Gradient (PPCG) [Gould, 1999], [Dollar, Gould,

Schilders, Wathen, SIMAX, 2006]

It is a CG procedure for solving indefinite systems:(
H A
AT −C

)(
p
q

)
=

(
−g

0

)
with H ∈ IRm×m symmetric, C ∈ IRn×n (n ≤ m) symmetric,
A ∈ IRm×n full rank, using preconditioners of the form:(

G A
AT −T

)
with G symmetric, T nonsingular.
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When C is nonsingular, PPCG is equivalent to applying PCG
to the system

(H + AC−1AT )p = g

with preconditioner:

G + AT−1AT

In our case, it is equivalent to applying PCG to the system:

(I + Qk + AI(SkC−1
k Sk)IA

T
I )︸ ︷︷ ︸

Fk

q̃k = −(Axk − b),

using ther preconditioner

Gk = I + AI(∆k)−1
I AT

I ,
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Eigenvalues of G−1
k Fk

.

If (∆k)i ,i = (wk)i (ek)i for i ∈ Ik , then the eigenvalues of
G−1

k Fk satisfy:

1− 1

2− τ
≤ λ ≤ 1 +

‖AA(Sk)A‖2

τ
.

Drawback: Differently from the previous results, no cluster of
eigenvalues at 1 is guaranteed

Advantage: PPCG is characterized by a minimization property
and requires a fixed amount of work per iteration

DUE GIORNI DI ALGEBRA LINEARE NUMERICA 2008 KKT Systems in Bound Constrained Least-Squares Problems



Introduction
The regularized Newton-like method

Iterative linear algebra
Numerical experimentation

Implementation issues

Dynamic regularization:

(∆k)i ,i =

{
0, if i 6∈ Ik (i .e.(wk)i (ek)i > τ)
min{max{10−3, (wk)i (ek)i}, 10−2}, otherwise.

Iterative solver: PPCG with adaptive choice of the tolerance
in the stopping criterion.

Linear systems are solved with accuracy that increases as the
solution is approached.
PPCG is stopped when the preconditioned residual drops below

tol = max(10−7,
ηk‖WkDkgk‖
‖ATSk‖1

).
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To avoid preconditioner factorizations: at iteration k + 1
freeze the set Ik and the matrix ∆k if

#(IT PPCG )k ≤ 30 & |card(Ik+1)− card(Ik)| ≤ 10.

If Ik is empty (i.e. ‖Sk‖ ≤ 1− τ):

we apply PCG to the normal system

(ST
k ATASk + Ck)p̃k = −SkA

T (Axk − b).
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Matlab code, εm = 2. 10−16.

The threshold τ is set to 0.1

Initial guess x0 = (1, . . . , 1)T .

Succesfull termination:
qk−1 − qk < ε (1 + qk−1),
‖xk − xk−1‖2 ≤

√
ε ( 1 + ‖xk‖2 )

‖P(xk − gk)− xk‖2 < ε
1
3 ( 1 + ‖gk‖2 )

or
‖P(xk − gk)− xk‖2 ≤ ε

with ε = 10−9.

A failure is declared after 100 iterations.
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Test Problems

The matrix A is the transpose of the matrices in the
LPnetlib subset of The University of Florida Sparse Matrix
Collection. We discarded the matrices with m < 1000 and the
matrices that are not full rank.

A total of 56 matrices.

Dimensions ranges up to 105

The vector b is set equal to b = −A(1, 1, . . . , 1)T

When ‖A‖1 > 103, we scaled the matrix using a simple row
and column scaling scheme.
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Numerical Results

On a total of 56 test problems we succesfully solve 51 tests:

41 test problems are solved with less than 20 nonlinear
iterations.

In 40 tests the average number of PPCG iterations does not
exceed 40.

In 8 tests the solution is the null vector. At each iteration
Ik = ∅, ST

k ATASk + Ck ' I and the convergence of the linear
solver is very fast.
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Savings in the number of preconditioner factorizations
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Percent Reduction in the dimension n

• We solve augmented system of reduced dimension m + n1
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Future work

More experimentation, using also QMR and GMRES

Develop a code for the more general problem:

minl≤x≤u q(x) = 1
2‖Ax − b‖2

2 + µ‖x‖2

If µ > 0:

A may also be rank deficient
the augmented systems are regularized “naturally”

Comparison with existing codes (e.g. BCLS (Fiedlander),
PDCO (Saunders))
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