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Convergence analysis

MultiGrid method (MGM)

Multigrid idea

1 apply a simple iterative method (smoother),

2 project the system in the subspace where the smoother is ineffective,
solve the resulting system and interpolate the solution to improve the
previous approximation (CGC = coarse grid correction).
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Convergence analysis

MultiGrid method (MGM)

Multigrid idea

1 apply a simple iterative method (smoother),

2 project the system in the subspace where the smoother is ineffective,
solve the resulting system and interpolate the solution to improve the
previous approximation (CGC = coarse grid correction).

The Galerkin approach
Ak = RAnP , where An is the coefficient matrix and Ak is the coarse
matrix. Moreover R = PT , with R = restriction and P = prolongation.

Two-grid iteration matrix (TGM): TGM = CGC · S

• S = smoother iteration matrix,

• CGC = I − PA−1
k RAn.
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Convergence analysis The geometric Multigrid method (MGM) for PDE

The constant coefficient case

The classic convergence analysis for multigrid methods assumes:

• d-dimensional PDE with constant coefficients

(−1)q
d

∑

i=1

d
2q

dx2q
i

u(x) = g(x), x ∈ Ω = (0, 1)d , q ≥ 1.
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• Periodic boundary conditions on ∂Ω or an infinite domain.
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The constant coefficient case

The classic convergence analysis for multigrid methods assumes:

• d-dimensional PDE with constant coefficients

(−1)q
d

∑

i=1

d
2q

dx2q
i

u(x) = g(x), x ∈ Ω = (0, 1)d , q ≥ 1.

• Periodic boundary conditions on ∂Ω or an infinite domain.

• Discretization by centered finite difference of minimal precision on a
uniform grid.

• The coarse problem is the rediscretization of the same PDE (Galerkin
for black-box MGM since it is more robust).
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Convergence analysis The geometric Multigrid method (MGM) for PDE

Local Fourier Analysis

The Fourier transform of the discrete differential operator is

L̂(ω) =
∑

j∈Zd

lje
i〈jh|ω〉,

where ω ∈ [−π/h, π/h]d denotes the frequencies for the current
discretization step h and

lj =
hd

(2π)d

∫

[−π/h, π/h]d
L̂(ω)e−i〈jh|ω〉

dω.
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Convergence analysis The geometric Multigrid method (MGM) for PDE

Local Fourier Analysis

The Fourier transform of the discrete differential operator is

L̂(ω) =
∑

j∈Zd

lje
i〈jh|ω〉,

where ω ∈ [−π/h, π/h]d denotes the frequencies for the current
discretization step h and

lj =
hd

(2π)d

∫

[−π/h, π/h]d
L̂(ω)e−i〈jh|ω〉

dω.

Example

1D Laplacian: [l−1, l0, l1] = 1
h2 [−1, 2, −1].
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Convergence analysis The geometric Multigrid method (MGM) for PDE

The convergence result

Theorem
Given a constant-coefficient PDE of order m, a necessary condition for non
increasing the high frequencies arising from a CGC with a TGM it is

γr + γp ≥ m, (1)

where γp and γr are the order of the prolongation and of the restriction
respectively.

Definition
A prolongation (restriction) has order γp if it (its transpose) leaves
unchanged all polynomials of order at least γp.
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Convergence analysis The geometric Multigrid method (MGM) for PDE

More general orders

Definition
The set of all corners of x is

Ω(x) = { y | yj ∈ {xj , π + xj}, j = 1, . . . , d}

and the set of the “mirror” points of x is M(x) = Ω(x) \ {x}.
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Convergence analysis The geometric Multigrid method (MGM) for PDE

More general orders

Definition
The set of all corners of x is

Ω(x) = { y | yj ∈ {xj , π + xj}, j = 1, . . . , d}

and the set of the “mirror” points of x is M(x) = Ω(x) \ {x}.

Definition (P. W. Hemker 1990)

For a grid transfer operator B ∈ {R ,P} (B is multiplied by 2d when
B = P), for x = ωh, |x | → 0, the largest s ≥ 0 such that

B̂(x) = 1 + O(|x |s), is the Low Frequency order (LF)

B̂(y) = O(|x |s), ∀y ∈ M(x), is the High Frequency order (HF)
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Convergence analysis MGM for Toeplitz matrices

Toeplitz matrices and L̂(ω)

• The d-level Toeplitz matrix Tn(f ) is such that

[Tn(f )]r ,s = as−r = aj =
1

(2π)d

∫

[−π,π]d
f (x)e−i〈j |x〉 dx , r , s, j ∈ Z

d .

• f ≥ 0 ⇔ Tn(f ) is positive definite.
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(2π)d

∫

[−π,π]d
f (x)e−i〈j |x〉 dx , r , s, j ∈ Z

d .

• f ≥ 0 ⇔ Tn(f ) is positive definite.

• The changing of variable x = ωh ⇒ aj = lj and f (x) = L̂(ω).
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Convergence analysis MGM for Toeplitz matrices

Toeplitz matrices and L̂(ω)

• The d-level Toeplitz matrix Tn(f ) is such that

[Tn(f )]r ,s = as−r = aj =
1

(2π)d

∫

[−π,π]d
f (x)e−i〈j |x〉 dx , r , s, j ∈ Z

d .

• f ≥ 0 ⇔ Tn(f ) is positive definite.

• The changing of variable x = ωh ⇒ aj = lj and f (x) = L̂(ω).

Example

1D Laplacian: L̂(ω) = 1
h2 (2 − 2 cos(ωh)). The Toeplitz approach moves

the factor 1
h2 to the rhs, thus An = Tn(f ), where f (x) = 2 − 2 cos(x).

• For a factor 1
h2q the f (x) vanishes at the origin with order 2q.
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Convergence analysis MGM for Toeplitz matrices

MGM convergence for Toeplitz matrices

• Galerkin approach: Ak = PTAnP .
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Convergence analysis MGM for Toeplitz matrices

MGM convergence for Toeplitz matrices

• Galerkin approach: Ak = PTAnP .

• Convergence analysis for the algebra case like τ or circulant algebra.

Theorem (S. Serra-Capizzano and G. Fiorentino 1991, 1996)

Let An = Cn(f ) be circulant with f having a unique zero at x0. Defining
P = Cn(p)KT

n , where Kn is the down-sampling and p is a trigonometric
polynomial non identically zero and such that for each x ∈ [−π, π)d

lim sup
x→x0

∣

∣

∣

∣

p(y)2

f (x)

∣

∣

∣

∣

= c < +∞, ∀ y ∈ M(x), (2a)

∑

y∈Ω(x)

p(y)2 > 0, (2b)

then the TGM converges in a number of iteration independent of n.

Marco Donatelli (University of Insubria) Due Giorni di Algebra Lineare Numerica 9 / 27



Convergence analysis Equivalence of the two approaches

Equivalence of the two approaches

Theorem
In the case of

• constant coefficient PDE,

• periodic boundary conditions,

• R = PT ,

the two conditions (1) and (2a) are equivalents.
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Convergence analysis Equivalence of the two approaches

Equivalence of the two approaches

Theorem
In the case of

• constant coefficient PDE,

• periodic boundary conditions,

• R = PT ,

the two conditions (1) and (2a) are equivalents.

Remark
The (2b) is equivalent to require LF > 0 that is necessary for an effective
MGM (A. Brandt 1994) and arises from the same analysis for the Galerkin
approach (I. Yavneh 1998).
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Convergence analysis Equivalence of the two approaches

Consequences of such equivalence

1 For the Galerkin approach, the analysis with circulant matrices is
more general since it includes also non differential problems, like for
instance integral problems of the first kind.
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2 Allow to define a MGM for Toeplitz matrices with R 6= P .
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Convergence analysis Equivalence of the two approaches

Consequences of such equivalence

1 For the Galerkin approach, the analysis with circulant matrices is
more general since it includes also non differential problems, like for
instance integral problems of the first kind.

2 Allow to define a MGM for Toeplitz matrices with R 6= P .

3 Give a comparison of the grid transfer operators used in the two
approaches. More specifically, we will give a geometrical
interpretation of the prolongations used for Toeplitz matrices when
the generating function vanishes at the origin.
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A generalization of the MGM for Toeplitz matrices New Galerkin conditions

How to generalize the Galerkin condition

• Ak = PTAnP is Toeplitz only for a prolongation of order at most 2.
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A generalization of the MGM for Toeplitz matrices New Galerkin conditions

How to generalize the Galerkin condition

• Ak = PTAnP is Toeplitz only for a prolongation of order at most 2.

• If P has order greater than 2, then Ak = Toeplitz + L, where L is a
low rank matrix.

• The rank of L affects both the implementation, the computational
cost and the convergence.
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A generalization of the MGM for Toeplitz matrices New Galerkin conditions

How to generalize the Galerkin condition

• Ak = PTAnP is Toeplitz only for a prolongation of order at most 2.

• If P has order greater than 2, then Ak = Toeplitz + L, where L is a
low rank matrix.

• The rank of L affects both the implementation, the computational
cost and the convergence.

• To reduce the rank of L we can generalize the Galerkin approach:

1 Ak = RAnP with R 6= P ,
2 Ak positive definite (the symbols of R and P both even or odd).
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A generalization of the MGM for Toeplitz matrices New Galerkin conditions

TGM conditions

Theoretical problem: If r 6= p the CGC is again a projector, but it is not
longer orthogonal with respect to the scalar product <y, x>An

= y
HAnx.
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A generalization of the MGM for Toeplitz matrices New Galerkin conditions

TGM conditions

Theoretical problem: If r 6= p the CGC is again a projector, but it is not
longer orthogonal with respect to the scalar product <y, x>An

= y
HAnx.

TGM conditions (conjecture) Let An = Cn(f ) with f having a unique zero
at x0. Defining R = KnCn(r) and P = Cn(p)KT

n such that for each
x ∈ [−π, π)d

lim sup
x→x0

∣

∣

∣

∣

r(y)p(y)

f (x)

∣

∣

∣

∣

= c < +∞, ∀ y ∈ M(x), (3a)

∑

y∈Ω(x)

r(y)p(y) 6= 0, (3b)

then defining Ak = RAnP the TGM is optimal.

Marco Donatelli (University of Insubria) Due Giorni di Algebra Lineare Numerica 13 / 27



A generalization of the MGM for Toeplitz matrices New Galerkin conditions

Equivalence result

The previous conjecture is motivated by the following

Theorem
In the case of

• constant coefficient elliptic PDE,

• periodic boundary conditions,

the two conditions (1) and (3a) are equivalents.
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A generalization of the MGM for Toeplitz matrices New Galerkin conditions

MGM implementation

Theorem
Let An = Cn(f ), P = Cn(p)KT

n , R = KnCn(r), with f , p, r trigonometric
polynomials, p and r satisfying the conditions (3). Then

1 An/2 = RAnP = Cn/2(f̂ ) where

f̂ (x) =
1

2d

∑

y∈Ω(x/2)

r(y)f (y)p(y), x ∈ [−π, π)d . (4)

2 if x0 ∈ [−π, π)d is a zero of f , then y0 = 2x0
mod 2π is a zero of f̂ .

The order of y0 for f̂ is exactly the same as the one of x0 for f .
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A generalization of the MGM for Toeplitz matrices Numerical results

TGM: numerical results

• Smoother = weighted Richardson

• An = Tn(f ) with f (x) = (2 + 2 cos(x))3

• z(x) = (2 + 2 cos(x − x0))
δz
2 , δz = 2j , z ∈ {r , p}
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A generalization of the MGM for Toeplitz matrices Numerical results

TGM: numerical results

• Smoother = weighted Richardson

• An = Tn(f ) with f (x) = (2 + 2 cos(x))3

• z(x) = (2 + 2 cos(x − x0))
δz
2 , δz = 2j , z ∈ {r , p}

TGM iteration numbers varying the orders δr and δp.

n δr = 2 δr = 2 δr = 4
δp = 2 δp = 4 δp = 4

15 219 65 51
31 607 72 52
63 1501 76 51
127 > 2000 77 50
255 > 2000 78 49
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A generalization of the MGM for Toeplitz matrices Numerical results

MGM: numerical results

An = Tn(f ) with f (x) = (2 + 2 cos(x))2.

1 For δr = δp = 2, An(i) = T
(i)
n (z̃), where z̃(x) = (2 − 2 cos(x))2.

2 For δr = 2 and δp = 4 we have An(i) = 2iT
(i)
n (z̃) + cie1e

T
1 + ciene

T
n .

3 For δr = δp = 4, An(i) = Toeplitz + 4 rank correction, moreover the
bandwidth of the Toeplitz part is not longer 5 but it becomes 7.

W -cycle iteration numbers varying the orders δr and δp.

n δr = 2 δr = 2 δr = 4
δp = 2 δp = 4 δp = 4

31 25 23 22
63 32 23 21
127 35 23 21
255 37 23 20
511 37 23 20
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B-spline grid transfer operators Classic grid transfer operators

Interpolation operators

• 1D case:
• even components: the solution computed in the coarse grid
• odd components: interpolation
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B-spline grid transfer operators Classic grid transfer operators

Interpolation operators

• 1D case:
• even components: the solution computed in the coarse grid
• odd components: interpolation

• Interpolation operators:
• linear interpolation: 1

2 [1 2 1]
• cubic interpolation: 1

16 [−1 0 9 16 9 0 − 1]
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B-spline grid transfer operators Classic grid transfer operators

Interpolation operators

• 1D case:
• even components: the solution computed in the coarse grid
• odd components: interpolation

• Interpolation operators:
• linear interpolation: 1

2 [1 2 1]
• cubic interpolation: 1

16 [−1 0 9 16 9 0 − 1]

• d-dimensional case: tensor product
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B-spline grid transfer operators Classic grid transfer operators

Grid transfer operators for Toeplitz matrices

• p(x) =
∏d

j=1(1 + cos(xj − x
(0)
j ))q for f (x(0)) = 0 with order 2q.
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B-spline grid transfer operators Classic grid transfer operators

Grid transfer operators for Toeplitz matrices

• p(x) =
∏d

j=1(1 + cos(xj − x
(0)
j ))q for f (x(0)) = 0 with order 2q.

• For PDE x(0) = 0 and p(x) can be generalized as

ϕm(x) = 2−dm

d
∏

j=1

(

1 + e
−ixj

)m
.
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B-spline grid transfer operators Classic grid transfer operators

Grid transfer operators for Toeplitz matrices

• p(x) =
∏d

j=1(1 + cos(xj − x
(0)
j ))q for f (x(0)) = 0 with order 2q.

• For PDE x(0) = 0 and p(x) can be generalized as

ϕm(x) = 2−dm

d
∏

j=1

(

1 + e
−ixj

)m
.

• ϕm has HF= m and LF= 2.
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B-spline grid transfer operators Classic grid transfer operators

Grid transfer operators for Toeplitz matrices

• p(x) =
∏d

j=1(1 + cos(xj − x
(0)
j ))q for f (x(0)) = 0 with order 2q.

• For PDE x(0) = 0 and p(x) can be generalized as

ϕm(x) = 2−dm

d
∏

j=1

(

1 + e
−ixj

)m
.

• ϕm has HF= m and LF= 2.

• Grid transfer operator with HF= m can be obtained from
ϕm(x)ψm(x) such that ψm(y) 6= 0 for all y ∈ M(0) and ψm(0) = 1.
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B-spline grid transfer operators Classic grid transfer operators

B-spline refinement coefficients

• The coefficients of ϕm are the refinement coefficients of the B-spline
of order m in the MRA.

• φm(x) = ϕm(x)eix⌊m
2
⌋ defines centered B-spline.
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B-spline grid transfer operators Classic grid transfer operators

B-spline refinement coefficients

• The coefficients of ϕm are the refinement coefficients of the B-spline
of order m in the MRA.

• φm(x) = ϕm(x)eix⌊m
2
⌋ defines centered B-spline.

The refinement coefficients hk 6= 0, k ∈ Z for 2mφm in the 1D case.

m h−2 h−1 h0 h1 h2

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
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B-spline grid transfer operators Classic grid transfer operators

B-spline refinement coefficients

• The coefficients of ϕm are the refinement coefficients of the B-spline
of order m in the MRA.

• φm(x) = ϕm(x)eix⌊m
2
⌋ defines centered B-spline.

The refinement coefficients hk 6= 0, k ∈ Z for 2mφm in the 1D case.

m h−2 h−1 h0 h1 h2

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

• m = 2q ⇒ vertex centered discretization.

• m = 2q + 1 ⇒ cell centered discretization.
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B-spline grid transfer operators The B-spline of order 4

Interpolation and B-spline

• q = 1 ⇒ linear interpolation.
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B-spline grid transfer operators The B-spline of order 4

Interpolation and B-spline

• q = 1 ⇒ linear interpolation.

• The cubic interpolation has HF = LF = 4 and its generating function
is gc(x) = ϕ4(x)(2 − cos(x)) with stencil 1

32 [−1 0 9 16 9 0 − 1].
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B-spline grid transfer operators The B-spline of order 4

Interpolation and B-spline

• q = 1 ⇒ linear interpolation.

• The cubic interpolation has HF = LF = 4 and its generating function
is gc(x) = ϕ4(x)(2 − cos(x)) with stencil 1

32 [−1 0 9 16 9 0 − 1].

• φ4(x) = (1 + cos(x))2/4 with stencil 1
8 [1 4 6 4 1].
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B-spline grid transfer operators The B-spline of order 4

Interpolation and B-spline

• q = 1 ⇒ linear interpolation.

• The cubic interpolation has HF = LF = 4 and its generating function
is gc(x) = ϕ4(x)(2 − cos(x)) with stencil 1

32 [−1 0 9 16 9 0 − 1].

• φ4(x) = (1 + cos(x))2/4 with stencil 1
8 [1 4 6 4 1].

• φ4 with respect to φ2 leaves unchanged the odd components but it
reinforces those even with a quadratic approximation:

yj =

{

(xk + xk+1)/2, j = 2k + 1,
(xk−1 + 6xk + xk+1)/8, j = 2k,

k = 1, . . . , n.
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B-spline grid transfer operators The B-spline of order 4

Interpolation and B-spline

• q = 1 ⇒ linear interpolation.

• The cubic interpolation has HF = LF = 4 and its generating function
is gc(x) = ϕ4(x)(2 − cos(x)) with stencil 1

32 [−1 0 9 16 9 0 − 1].

• φ4(x) = (1 + cos(x))2/4 with stencil 1
8 [1 4 6 4 1].

• φ4 with respect to φ2 leaves unchanged the odd components but it
reinforces those even with a quadratic approximation:

yj =

{

(xk + xk+1)/2, j = 2k + 1,
(xk−1 + 6xk + xk+1)/8, j = 2k,

k = 1, . . . , n.

• Fix y2k = xk assumes that the coarse problem is a well representation
of the fine problem and that it is well solved (TGM).
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B-spline grid transfer operators The B-spline of order 4

The B-spline of order 4

Let B
(n)
i (t) =

(

n
i

)

(1 − t)i tn−i , t ∈ [0, 1], i = 1, . . . , n, be the Bernstein

polynomial of order n. Given the quadratic rational Bezier curve

C (t) =

∑2
i=0 ωibiB

(2)
i (t)

∑2
i=0 ωiB

(2)
i (t)

,

• bi = xk+i−1 for i = 0, 1, 2 (control points)

• ω1 = 3/2 and ω0 = ω2 = 1/2 (weights)

then

C
(1

2

)

=
xk−1 + 6xk + xk+1

8
.
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B-spline grid transfer operators The B-spline of order 4

Quadratic approximation

Computation of the 5 points at the finer grid using the
linear interpolation and the quadratic approximation
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MGM vs. wavelets

• The factorization g(x) = ϕm(x)ψm(x) is the same used to define the
Daubechies wavelets (they was used for a TGM for Toeplitz matrices
by L. Cheng et al. 2003 obtaining a projector with HF=4).
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MGM vs. wavelets

• The factorization g(x) = ϕm(x)ψm(x) is the same used to define the
Daubechies wavelets (they was used for a TGM for Toeplitz matrices
by L. Cheng et al. 2003 obtaining a projector with HF=4).

• The B-spline are not orthogonal, but they satisfy the
quasi-interpolant Strang-Fix condition, i.e. they can well approximate
“sufficiently” smooth functions.

• The orthogonality is not crucial since the MGM is an iterative
method. Moreover, we would a basis for the low frequencies (the
orthogonal space of the range of the smoother) but it is not exactly
known or too expensive to compute.
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Numerical results

We consider the following PDE







d
2

dx2

(

a(x)
d

2

dx2
u(x)

)

= g(x), x ∈ (0, 1),

u(0) = u(1) = 0

with nonconstant a(x).

• It has order m = 4.

• V -cycle that is cheaper than the W -cycle in parallel implementations

• Smoother: Gauss-Seidel

• The condition for V -cycle is at least γr + γp>m.
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Iteration numbers

V -cycle iteration numbers varying problem size n and a(x) = (x − 0.5)2.

restriction φ2 φ2 φ2 φ4 φ4

prolongation φ2 φ4 gc φ4 gc

n # iterations

15 15 10 10 9 9
31 33 13 17 10 11
63 61 17 24 13 11
127 101 26 27 17 13
255 155 35 29 20 16
511 221 44 36 24 19
1023 284 53 46 27 22

• gc = cubic interpolation

• For the choices (φ2, gc) and (φ4, φ4) the coarse matrices have the
same bandwidth.
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Conclusions

constant coefficients PDE + Galerkin approach
geometric MGM ≡ MGM for Toeplitz matrices

ւ ↓ ց

MGM for Toeplitz
matrices with R 6= P

B-spline grid
transfer operators

?
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