Grid transfer operators for multigrid methods

Marco Donatelli
University of Insubria
Department of Physics and Mathematics

"Due Giorni di Algebra Lineare Numerica" Bologna 6-7, March 2008

Outline

(1) Convergence analysis

The geometric Multigrid method (MGM) for PDE MGM for Toeplitz matrices
Equivalence of the two approaches
(2) A generalization of the MGM for Toeplitz matrices

New Galerkin conditions
Numerical results
(3) B-spline grid transfer operators

Classic grid transfer operators The B-spline of order 4 Numerical results

MultiGrid method (MGM)

Multigrid idea
(1) apply a simple iterative method (smoother),
(2) project the system in the subspace where the smoother is ineffective, solve the resulting system and interpolate the solution to improve the previous approximation (CGC = coarse grid correction).

MultiGrid method (MGM)

Multigrid idea
(1) apply a simple iterative method (smoother),
(2) project the system in the subspace where the smoother is ineffective, solve the resulting system and interpolate the solution to improve the previous approximation (CGC = coarse grid correction).

The Galerkin approach
$A_{k}=R A_{n} P$, where A_{n} is the coefficient matrix and A_{k} is the coarse matrix. Moreover $R=P^{T}$, with $R=$ restriction and $P=$ prolongation.

MultiGrid method (MGM)

Multigrid idea
(1) apply a simple iterative method (smoother),
(2) project the system in the subspace where the smoother is ineffective, solve the resulting system and interpolate the solution to improve the previous approximation (CGC = coarse grid correction).

The Galerkin approach
$A_{k}=R A_{n} P$, where A_{n} is the coefficient matrix and A_{k} is the coarse matrix. Moreover $R=P^{T}$, with $R=$ restriction and $P=$ prolongation.

Two-grid iteration matrix (TGM): $T G M=C G C \cdot S$

- $S=$ smoother iteration matrix,
- $C G C=I-P A_{k}^{-1} R A_{n}$.

The constant coefficient case

The classic convergence analysis for multigrid methods assumes:

- d-dimensional PDE with constant coefficients

$$
(-1)^{q} \sum_{i=1}^{d} \frac{\mathrm{~d}^{2 q}}{\mathrm{~d} x_{i}^{2 q}} u(x)=g(x), \quad x \in \Omega=(0,1)^{d}, q \geq 1
$$

The constant coefficient case

The classic convergence analysis for multigrid methods assumes:

- d-dimensional PDE with constant coefficients

$$
(-1)^{q} \sum_{i=1}^{d} \frac{\mathrm{~d}^{2 q}}{\mathrm{~d} x_{i}^{2 q}} u(x)=g(x), \quad x \in \Omega=(0,1)^{d}, q \geq 1
$$

- Periodic boundary conditions on $\partial \Omega$ or an infinite domain.

The constant coefficient case

The classic convergence analysis for multigrid methods assumes:

- d-dimensional PDE with constant coefficients

$$
(-1)^{q} \sum_{i=1}^{d} \frac{\mathrm{~d}^{2 q}}{\mathrm{~d} x_{i}^{2 q}} u(x)=g(x), \quad x \in \Omega=(0,1)^{d}, q \geq 1
$$

- Periodic boundary conditions on $\partial \Omega$ or an infinite domain.
- Discretization by centered finite difference of minimal precision on a uniform grid.
- The coarse problem is the rediscretization of the same PDE (Galerkin for black-box MGM since it is more robust).

Local Fourier Analysis

The Fourier transform of the discrete differential operator is

$$
\hat{L}(\omega)=\sum_{j \in \mathbb{Z}^{d}} l_{\mathrm{j}} \mathrm{e}^{\mathrm{i}\langle j||\omega\rangle},
$$

where $\omega \in[-\pi / h, \pi / h]^{d}$ denotes the frequencies for the current discretization step h and

$$
l_{j}=\frac{h^{d}}{(2 \pi)^{d}} \int_{[-\pi / h, \pi / h]^{d}} \hat{L}(\omega) \mathrm{e}^{-\mathrm{i}\langle j h \mid \omega\rangle} \mathrm{d} \omega .
$$

Local Fourier Analysis

The Fourier transform of the discrete differential operator is

$$
\hat{L}(\omega)=\sum_{j \in \mathbb{Z}^{d}} I_{j} \mathrm{e}^{\mathrm{i}\langle j| \omega|\omega\rangle},
$$

where $\omega \in[-\pi / h, \pi / h]^{d}$ denotes the frequencies for the current discretization step h and

$$
I_{j}=\frac{h^{d}}{(2 \pi)^{d}} \int_{[-\pi / h, \pi / h]^{d}} \hat{L}(\omega) \mathrm{e}^{-\mathrm{i}\langle j h \mid \omega\rangle} \mathrm{d} \omega .
$$

Example

1D Laplacian: $\left[I_{-1}, I_{0}, I_{1}\right]=\frac{1}{h^{2}}[-1,2,-1]$.

The convergence result

Theorem
Given a constant-coefficient PDE of order m, a necessary condition for non increasing the high frequencies arising from a CGC with a TGM it is

$$
\begin{equation*}
\gamma_{r}+\gamma_{p} \geq m, \tag{1}
\end{equation*}
$$

where γ_{p} and γ_{r} are the order of the prolongation and of the restriction respectively.

Definition
A prolongation (restriction) has order γ_{p} if it (its transpose) leaves unchanged all polynomials of order at least γ_{p}.

More general orders

Definition
The set of all corners of x is

$$
\Omega(x)=\left\{y \mid y_{j} \in\left\{x_{j}, \pi+x_{j}\right\}, j=1, \ldots, d\right\}
$$

and the set of the "mirror" points of x is $\mathcal{M}(x)=\Omega(x) \backslash\{x\}$.

More general orders

Definition
The set of all corners of x is

$$
\Omega(x)=\left\{y \mid y_{j} \in\left\{x_{j}, \pi+x_{j}\right\}, j=1, \ldots, d\right\}
$$

and the set of the "mirror" points of x is $\mathcal{M}(x)=\Omega(x) \backslash\{x\}$.
Definition (P. W. Hemker 1990)
For a grid transfer operator $B \in\{R, P\}$ (B is multiplied by 2^{d} when $B=P)$, for $x=\omega h,|x| \rightarrow 0$, the largest $s \geq 0$ such that

$$
\begin{array}{ll}
\hat{B}(x)=1+O\left(|x|^{s}\right), & \text { is the Low Frequency order (LF) } \\
\hat{B}(y)=O\left(|x|^{s}\right), \quad \forall y \in \mathcal{M}(x), & \text { is the High Frequency order (HF) }
\end{array}
$$

Toeplitz matrices and $\hat{L}(\omega)$

- The d-level Toeplitz matrix $T_{n}(f)$ is such that

$$
\left[T_{n}(f)\right]_{r, s}=a_{s-r}=a_{j}=\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} f(x) e^{-i(j|x\rangle} d x, \quad r, s, j \in \mathbb{Z}^{d}
$$

- $f \geq 0 \Leftrightarrow T_{n}(f)$ is positive definite.

Toeplitz matrices and $\hat{L}(\omega)$

- The d-level Toeplitz matrix $T_{n}(f)$ is such that

$$
\left[T_{n}(f)\right]_{r, s}=a_{s-r}=a_{j}=\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} f(x) e^{-\mathrm{i} j j|x\rangle} d x, \quad r, s, j \in \mathbb{Z}^{d}
$$

- $f \geq 0 \Leftrightarrow T_{n}(f)$ is positive definite.
- The changing of variable $x=\omega h \Rightarrow a_{j}=l_{j}$ and $f(x)=\hat{L}(\omega)$.

Toeplitz matrices and $\hat{L}(\omega)$

- The d-level Toeplitz matrix $T_{n}(f)$ is such that

$$
\left[T_{n}(f)\right]_{r, s}=a_{s-r}=a_{j}=\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} f(x) e^{-\mathrm{i}\langle j \mid x\rangle} d x, \quad r, s, j \in \mathbb{Z}^{d} .
$$

- $f \geq 0 \Leftrightarrow T_{n}(f)$ is positive definite.
- The changing of variable $x=\omega h \Rightarrow a_{j}=l_{j}$ and $f(x)=\hat{L}(\omega)$.

Example

1D Laplacian: $\hat{L}(\omega)=\frac{1}{h^{2}}(2-2 \cos (\omega h))$. The Toeplitz approach moves the factor $\frac{1}{h^{2}}$ to the rhs, thus $A_{n}=T_{n}(f)$, where $f(x)=2-2 \cos (x)$.

- For a factor $\frac{1}{h^{2 q}}$ the $f(x)$ vanishes at the origin with order $2 q$.

MGM convergence for Toeplitz matrices

- Galerkin approach: $A_{k}=P^{T} A_{n} P$.

MGM convergence for Toeplitz matrices

- Galerkin approach: $A_{k}=P^{T} A_{n} P$.
- Convergence analysis for the algebra case like τ or circulant algebra.

MGM convergence for Toeplitz matrices

- Galerkin approach: $A_{k}=P^{T} A_{n} P$.
- Convergence analysis for the algebra case like τ or circulant algebra.

Theorem (S. Serra-Capizzano and G. Fiorentino 1991, 1996) Let $A_{n}=\mathcal{C}_{n}(f)$ be circulant with f having a unique zero at x^{0}. Defining $P=\mathcal{C}_{n}(p) K_{n}^{\top}$, where K_{n} is the down-sampling and p is a trigonometric polynomial non identically zero and such that for each $x \in[-\pi, \pi)^{d}$

$$
\begin{equation*}
\limsup _{x \rightarrow x^{0}}\left|\frac{p(y)^{2}}{f(x)}\right|=c<+\infty, \quad \forall y \in \mathcal{M}(x) \tag{2a}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{y \in \Omega(x)} p(y)^{2}>0 \tag{2b}
\end{equation*}
$$

then the TGM converges in a number of iteration independent of n.

Equivalence of the two approaches

Theorem
In the case of

- constant coefficient PDE,
- periodic boundary conditions,
- $R=P^{T}$,
the two conditions (1) and (2a) are equivalents.

Equivalence of the two approaches

Theorem
In the case of

- constant coefficient PDE,
- periodic boundary conditions,
- $R=P^{T}$,
the two conditions (1) and (2a) are equivalents.

Remark

The (2b) is equivalent to require $L F>0$ that is necessary for an effective MGM (A. Brandt 1994) and arises from the same analysis for the Galerkin approach (I. Yavneh 1998).

Consequences of such equivalence

(1) For the Galerkin approach, the analysis with circulant matrices is more general since it includes also non differential problems, like for instance integral problems of the first kind.

Consequences of such equivalence

(1) For the Galerkin approach, the analysis with circulant matrices is more general since it includes also non differential problems, like for instance integral problems of the first kind.
(2) Allow to define a MGM for Toeplitz matrices with $R \neq P$.

Consequences of such equivalence

(1) For the Galerkin approach, the analysis with circulant matrices is more general since it includes also non differential problems, like for instance integral problems of the first kind.
(2) Allow to define a MGM for Toeplitz matrices with $R \neq P$.
(3) Give a comparison of the grid transfer operators used in the two approaches. More specifically, we will give a geometrical interpretation of the prolongations used for Toeplitz matrices when the generating function vanishes at the origin.

How to generalize the Galerkin condition

- $A_{k}=P^{T} A_{n} P$ is Toeplitz only for a prolongation of order at most 2 .

How to generalize the Galerkin condition

- $A_{k}=P^{T} A_{n} P$ is Toeplitz only for a prolongation of order at most 2 .
- If P has order greater than 2 , then $A_{k}=$ Toeplitz $+L$, where L is a low rank matrix.
- The rank of L affects both the implementation, the computational cost and the convergence.

How to generalize the Galerkin condition

- $A_{k}=P^{T} A_{n} P$ is Toeplitz only for a prolongation of order at most 2 .
- If P has order greater than 2 , then $A_{k}=$ Toeplitz $+L$, where L is a low rank matrix.
- The rank of L affects both the implementation, the computational cost and the convergence.
- To reduce the rank of L we can generalize the Galerkin approach:
(1) $A_{k}=R A_{n} P$ with $R \neq P$,
(2) A_{k} positive definite (the symbols of R and P both even or odd).

TGM conditions

Theoretical problem: If $r \neq p$ the CGC is again a projector, but it is not longer orthogonal with respect to the scalar product $\left\langle\mathbf{y}, \mathbf{x}>_{A_{n}}=\mathbf{y}^{H} A_{n} \mathbf{x}\right.$.

TGM conditions

Theoretical problem: If $r \neq p$ the CGC is again a projector, but it is not longer orthogonal with respect to the scalar product $\left\langle\mathbf{y}, \mathbf{x}>_{A_{n}}=\mathbf{y}^{H} A_{n} \mathbf{x}\right.$.

TGM conditions (conjecture) Let $A_{n}=\mathcal{C}_{n}(f)$ with f having a unique zero at x^{0}. Defining $R=K_{n} \mathcal{C}_{n}(r)$ and $P=\mathcal{C}_{n}(p) K_{n}^{\top}$ such that for each $x \in[-\pi, \pi)^{d}$

$$
\begin{gather*}
\limsup _{x \rightarrow x^{0}}\left|\frac{r(y) p(y)}{f(x)}\right|=c<+\infty, \quad \forall y \in \mathcal{M}(x), \\
\sum_{y \in \Omega(x)} r(y) p(y) \neq 0, \tag{3b}
\end{gather*}
$$

then defining $A_{k}=R A_{n} P$ the TGM is optimal.

Equivalence result

The previous conjecture is motivated by the following
Theorem
In the case of

- constant coefficient elliptic PDE,
- periodic boundary conditions,
the two conditions (1) and (3a) are equivalents.

MGM implementation

Theorem

Let $A_{n}=\mathcal{C}_{n}(f), P=\mathcal{C}_{n}(p) K_{n}^{T}, R=K_{n} \mathcal{C}_{n}(r)$, with f, p, r trigonometric polynomials, p and r satisfying the conditions (3). Then
(1) $A_{n / 2}=R A_{n} P=\mathcal{C}_{n / 2}(\hat{f})$ where

$$
\begin{equation*}
\hat{f}(x)=\frac{1}{2^{d}} \sum_{y \in \Omega(x / 2)} r(y) f(y) p(y), \quad x \in[-\pi, \pi)^{d} . \tag{4}
\end{equation*}
$$

(2) if $x^{0} \in[-\pi, \pi)^{d}$ is a zero of f, then $y^{0}=2 x^{0} \bmod 2 \pi$ is a zero of \hat{f}. The order of y^{0} for \hat{f} is exactly the same as the one of x^{0} for f.

TGM: numerical results

- Smoother $=$ weighted Richardson
- $A_{n}=T_{n}(f)$ with $f(x)=(2+2 \cos (x))^{3}$
- $z(x)=\left(2+2 \cos \left(x-x_{0}\right)\right)^{\frac{\delta_{z}}{2}}, \delta_{z}=2 j, z \in\{r, p\}$

TGM: numerical results

- Smoother $=$ weighted Richardson
- $A_{n}=T_{n}(f)$ with $f(x)=(2+2 \cos (x))^{3}$
- $z(x)=\left(2+2 \cos \left(x-x_{0}\right)\right)^{\frac{\delta_{z}}{2}}, \delta_{z}=2 j, z \in\{r, p\}$

TGM iteration numbers varying the orders δ_{r} and δ_{p}.

n	$\delta_{r}=2$	$\delta_{r}=2$	$\delta_{r}=4$
	$\delta_{p}=2$	$\delta_{p}=4$	$\delta_{p}=4$
15	219	65	51
31	607	72	52
63	1501	76	51
127	>2000	77	50
255	>2000	78	49

MGM: numerical results

$A_{n}=T_{n}(f)$ with $f(x)=(2+2 \cos (x))^{2}$.
(1) For $\delta_{r}=\delta_{p}=2, A_{n^{(i)}}=T_{n}^{(i)}(\tilde{z})$, where $\tilde{z}(x)=(2-2 \cos (x))^{2}$.
(2) For $\delta_{r}=2$ and $\delta_{p}=4$ we have $A_{n^{(i)}}=2^{\mathrm{i}} T_{n}^{(i)}(\tilde{z})+c_{i} e_{1} e_{1}^{T}+c_{i} e_{n} e_{n}^{T}$.
(3) For $\delta_{r}=\delta_{p}=4, A_{n^{(i)}}=$ Toeplitz +4 rank correction, moreover the bandwidth of the Toeplitz part is not longer 5 but it becomes 7 .
W-cycle iteration numbers varying the orders δ_{r} and δ_{p}.

n	$\delta_{r}=2$	$\delta_{r}=2$	$\delta_{r}=4$
	$\delta_{p}=2$	$\delta_{p}=4$	$\delta_{p}=4$
31	25	23	22
63	32	23	21
127	35	23	21
255	37	23	20
511	37	23	20

Interpolation operators

- 1D case:
- even components: the solution computed in the coarse grid
- odd components: interpolation

Interpolation operators

- 1D case:
- even components: the solution computed in the coarse grid
- odd components: interpolation
- Interpolation operators:
- linear interpolation: $\frac{1}{2}\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$
- cubic interpolation: $\frac{1}{16}\left[\begin{array}{lllllll}-1 & 0 & 9 & 16 & 9 & 0 & -1\end{array}\right]$

Interpolation operators

- 1D case:
- even components: the solution computed in the coarse grid
- odd components: interpolation
- Interpolation operators:
- linear interpolation: $\frac{1}{2}\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$
- cubic interpolation: $\frac{1}{16}\left[\begin{array}{lllllll}-1 & 0 & 9 & 16 & 9 & 0 & -1\end{array}\right]$
- d-dimensional case: tensor product

Grid transfer operators for Toeplitz matrices

- $p(x)=\prod_{j=1}^{d}\left(1+\cos \left(x_{j}-x_{j}^{(0)}\right)\right)^{q}$ for $f\left(x^{(0)}\right)=0$ with order $2 q$.

Grid transfer operators for Toeplitz matrices

- $p(x)=\prod_{j=1}^{d}\left(1+\cos \left(x_{j}-x_{j}^{(0)}\right)\right)^{q}$ for $f\left(x^{(0)}\right)=0$ with order $2 q$.
- For PDE $x^{(0)}=0$ and $p(x)$ can be generalized as

$$
\varphi_{m}(x)=2^{-d m} \prod_{j=1}^{d}\left(1+\mathrm{e}^{-\mathrm{i} x_{j}}\right)^{m}
$$

Grid transfer operators for Toeplitz matrices

- $p(x)=\prod_{j=1}^{d}\left(1+\cos \left(x_{j}-x_{j}^{(0)}\right)\right)^{q}$ for $f\left(x^{(0)}\right)=0$ with order $2 q$.
- For PDE $x^{(0)}=0$ and $p(x)$ can be generalized as

$$
\varphi_{m}(x)=2^{-d m} \prod_{j=1}^{d}\left(1+\mathrm{e}^{-\mathrm{i} x_{j}}\right)^{m}
$$

- φ_{m} has $\mathrm{HF}=m$ and $\mathrm{LF}=2$.

Grid transfer operators for Toeplitz matrices

- $p(x)=\prod_{j=1}^{d}\left(1+\cos \left(x_{j}-x_{j}^{(0)}\right)\right)^{q}$ for $f\left(x^{(0)}\right)=0$ with order $2 q$.
- For PDE $x^{(0)}=0$ and $p(x)$ can be generalized as

$$
\varphi_{m}(x)=2^{-d m} \prod_{j=1}^{d}\left(1+\mathrm{e}^{-\mathrm{i} x_{j}}\right)^{m}
$$

- φ_{m} has $\mathrm{HF}=m$ and $\mathrm{LF}=2$.
- Grid transfer operator with $\mathrm{HF}=m$ can be obtained from $\varphi_{m}(x) \psi_{m}(x)$ such that $\psi_{m}(y) \neq 0$ for all $y \in \mathcal{M}(0)$ and $\psi_{m}(0)=1$.

B-spline refinement coefficients

- The coefficients of φ_{m} are the refinement coefficients of the B-spline of order m in the MRA.
- $\phi_{m}(x)=\varphi_{m}(x) \mathrm{e}^{\mathrm{i} x\left\lfloor\frac{m}{2}\right\rfloor}$ defines centered B-spline.

B-spline refinement coefficients

- The coefficients of φ_{m} are the refinement coefficients of the B-spline of order m in the MRA.
- $\phi_{m}(x)=\varphi_{m}(x) \mathrm{e}^{\mathrm{i} x\left\lfloor\frac{m}{2}\right\rfloor}$ defines centered B-spline.

The refinement coefficients $h_{k} \neq 0, k \in \mathbb{Z}$ for $2^{m} \phi_{m}$ in the 1D case.

m	h_{-2}	h_{-1}	h_{0}	h_{1}	h_{2}
1		1	1		
2		1	2	1	
3	1	3	3	1	
4	1	4	6	4	1

B-spline refinement coefficients

- The coefficients of φ_{m} are the refinement coefficients of the B-spline of order m in the MRA.
- $\phi_{m}(x)=\varphi_{m}(x) \mathrm{e}^{\mathrm{i} x\left\lfloor\frac{m}{2}\right\rfloor}$ defines centered B-spline.

The refinement coefficients $h_{k} \neq 0, k \in \mathbb{Z}$ for $2^{m} \phi_{m}$ in the 1D case.

m	h_{-2}	h_{-1}	h_{0}	h_{1}	h_{2}
1		1	1		
2		1	2	1	
3	1	3	3	1	
4	1	4	6	4	1

- $m=2 q \Rightarrow$ vertex centered discretization.
- $m=2 q+1 \Rightarrow$ cell centered discretization.

Interpolation and B-spline

- $q=1 \Rightarrow$ linear interpolation.

Interpolation and B-spline

- $q=1 \Rightarrow$ linear interpolation.
- The cubic interpolation has $H F=L F=4$ and its generating function is $g_{c}(x)=\varphi_{4}(x)(2-\cos (x))$ with stencil $\frac{1}{32}\left[\begin{array}{llllll}-1 & 0 & 9 & 16 & 9 & 0\end{array}-1\right]$.

Interpolation and B-spline

- $q=1 \Rightarrow$ linear interpolation.
- The cubic interpolation has $H F=L F=4$ and its generating function is $g_{c}(x)=\varphi_{4}(x)(2-\cos (x))$ with stencil $\frac{1}{32}\left[\begin{array}{lllllll}-1 & 0 & 9 & 16 & 9 & 0 & -1\end{array}\right]$.
- $\phi_{4}(x)=(1+\cos (x))^{2} / 4$ with stencil $\frac{1}{8}\left[\begin{array}{llll}1 & 4 & 6 & 4\end{array}\right]$.

Interpolation and B-spline

- $q=1 \Rightarrow$ linear interpolation.
- The cubic interpolation has $H F=L F=4$ and its generating function is $g_{c}(x)=\varphi_{4}(x)(2-\cos (x))$ with stencil $\frac{1}{32}\left[\begin{array}{lllllll}-1 & 0 & 9 & 16 & 9 & 0 & -1\end{array}\right]$.
- $\phi_{4}(x)=(1+\cos (x))^{2} / 4$ with stencil $\frac{1}{8}\left[\begin{array}{llll}1 & 4 & 6 & 4\end{array}\right]$.
- ϕ_{4} with respect to ϕ_{2} leaves unchanged the odd components but it reinforces those even with a quadratic approximation:

$$
y_{j}=\left\{\begin{array}{ll}
\left(x_{k}+x_{k+1}\right) / 2, & j=2 k+1, \\
\left(x_{k-1}+6 x_{k}+x_{k+1}\right) / 8, & j=2 k,
\end{array} \quad k=1, \ldots, n .\right.
$$

Interpolation and B-spline

- $q=1 \Rightarrow$ linear interpolation.
- The cubic interpolation has $H F=L F=4$ and its generating function is $g_{c}(x)=\varphi_{4}(x)(2-\cos (x))$ with stencil $\frac{1}{32}\left[\begin{array}{lllllll}-1 & 0 & 9 & 16 & 9 & 0 & -1\end{array}\right]$.
- $\phi_{4}(x)=(1+\cos (x))^{2} / 4$ with stencil $\frac{1}{8}\left[\begin{array}{llll}1 & 4 & 6 & 4\end{array}\right]$.
- ϕ_{4} with respect to ϕ_{2} leaves unchanged the odd components but it reinforces those even with a quadratic approximation:

$$
y_{j}=\left\{\begin{array}{ll}
\left(x_{k}+x_{k+1}\right) / 2, & j=2 k+1, \\
\left(x_{k-1}+6 x_{k}+x_{k+1}\right) / 8, & j=2 k,
\end{array} \quad k=1, \ldots, n .\right.
$$

- Fix $y_{2 k}=x_{k}$ assumes that the coarse problem is a well representation of the fine problem and that it is well solved (TGM).

The B-spline of order 4

Let $B_{i}^{(n)}(t)=\binom{n}{i}(1-t)^{i} t^{n-i}, t \in[0,1], i=1, \ldots, n$, be the Bernstein polynomial of order n. Given the quadratic rational Bezier curve

$$
C(t)=\frac{\sum_{i=0}^{2} \omega_{i} b_{i} B_{i}^{(2)}(t)}{\sum_{i=0}^{2} \omega_{i} B_{i}^{(2)}(t)}
$$

- $b_{i}=x_{k+i-1}$ for $i=0,1,2$ (control points)
- $\omega_{1}=3 / 2$ and $\omega_{0}=\omega_{2}=1 / 2$ (weights)
then

$$
C\left(\frac{1}{2}\right)=\frac{x_{k-1}+6 x_{k}+x_{k+1}}{8}
$$

Quadratic approximation

Computation of the 5 points at the finer grid using the linear interpolation and the quadratic approximation

MGM vs. wavelets

- The factorization $g(x)=\varphi_{m}(x) \psi_{m}(x)$ is the same used to define the Daubechies wavelets (they was used for a TGM for Toeplitz matrices by L. Cheng et al. 2003 obtaining a projector with $\mathrm{HF}=4$).

MGM vs. wavelets

- The factorization $g(x)=\varphi_{m}(x) \psi_{m}(x)$ is the same used to define the Daubechies wavelets (they was used for a TGM for Toeplitz matrices by L. Cheng et al. 2003 obtaining a projector with $\mathrm{HF}=4$).
- The B-spline are not orthogonal, but they satisfy the quasi-interpolant Strang-Fix condition, i.e. they can well approximate "sufficiently" smooth functions.
- The orthogonality is not crucial since the MGM is an iterative method. Moreover, we would a basis for the low frequencies (the orthogonal space of the range of the smoother) but it is not exactly known or too expensive to compute.

Numerical results

We consider the following PDE

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(a(x) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} u(x)\right)=g(x), \quad x \in(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

with nonconstant $a(x)$.

- It has order $m=4$.
- V-cycle that is cheaper than the W-cycle in parallel implementations
- Smoother: Gauss-Seidel
- The condition for V-cycle is at least $\gamma_{r}+\gamma_{p}>m$.

Iteration numbers

V-cycle iteration numbers varying problem size n and $a(x)=(x-0.5)^{2}$.

restriction prolongation	ϕ_{2}	ϕ_{2}	ϕ_{2}	ϕ_{4}	ϕ_{4}
ϕ_{2}	ϕ_{4}	g_{c}	ϕ_{4}	g_{c}	
n	$\#$ iterations				
15	15	10	10	9	9
31	33	13	17	10	11
63	61	17	24	13	11
127	101	26	27	17	13
255	155	35	29	20	16
511	221	44	36	24	19
1023	284	53	46	27	22

- $g_{c}=$ cubic interpolation
- For the choices $\left(\phi_{2}, g_{c}\right)$ and $\left(\phi_{4}, \phi_{4}\right)$ the coarse matrices have the same bandwidth.

Conclusions

constant coefficients PDE + Galerkin approach geometric MGM \equiv MGM for Toeplitz matrices

MGM for Toeplitz matrices with $R \neq P$

B-spline grid transfer operators

