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The Perspective

As has been the case for linear systems with
structured matrices for a long time, the moment
has now come to recognize the need for
specialized eigenvalue algorithms for matrices
with structure.
As for linear systems with structure this will un-
doubtedly hinge on our ability to compute eigen-
values of structured matrices within the struc-
ture.
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Rank-Structured Eigenvalue Problems

Let A ∈ C
n×n satisfy

-) (rank-structured property)

max
1≤k≤n−1

{rank A(k + 1: n, 1: k), rank A(1 : k, k + 1: n)} ≤ p

-) (small rank perturbation property)

A = B + U · V T , B = BH and/or BH · B = In, U, V ∈ C
n×q

where p and q are small constants independent of n

Input: Given some condensed representation of A in
terms of O(n) parameters

Output: Compute numerical approximations of (some)
eigenvalues of A
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Our Numerical Linear Algebra for
Rank-Structured Matrices

A can be reduced to tridiagonal or Hessenberg form
B by unitary transformations at the cost of O(n2)
flops (Eidelman & G. & Gohberg, LAA 2007)

The Schur form of B can be computed by using a
fast adaptation of the QR method applied to B at the
cost of O(n2) flops (Eidelman & G. & Gohberg, NUMA 2008)

The Schur form of A can directly be computed by
using a fast adaptation of the QR method applied to
A at the cost of O(n2) flops (Bini & Eidelman & G. & Pan , Numer.

Math. 2005), (Bini & Eidelman & G. & Gohberg, SIMAX 2007), (Bini & Eidelman

& G. & Gohberg, Math. Comp. 2008)
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Some Challenging Problems

Proving the backward stability of fast algorithms
theoretically

Extending the fast algorithms to rank-structured
matrices where the property II is relaxed

Extending the fast algorithms to generalized
rank-structured eigenproblems

Designing fast subspace iteration methods for large
rank-structured eigenproblems
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Stability for Almost Hermitian
Eigenproblems

Theorem 1 (Eidelman & G. & Gohberg, NUMA 2008) The matrix A1

reconstructed by the generators computed by the fast
QR iteration applied to the generators of A0 is unitarily
similar to a small perturbation of A0.

More involved for Almost Unitary Eigenproblems.
Looking for new simplified parametrizations (joint
work with P. Boito)

Specialized balancing techniques for the generators

High relative accuracy for some subclasses (G., LAA

2008)
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A Numerical Example

T̂N =
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·eT
N

α 102 104 108 1015

max_err_abs 0.18e-12 0.16e-09 0.1e-03 0.86e+06

max_err_rel 0.18-13 0.16e-11 0.12e-7 0.26e-01

max_err_abs1 0.11e-13 0.13e-12 0.18e-08 0.57e-02
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Complex Symmetric Eigenproblems

“Polynomial Algebra by Values” ( Corless & Gonzalez- Vega & al.)



α c1 . . . cn

b1 λ1
... . . .

bn λn
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u = λ




β

1
. . .

1




u, β ∈ {0, 1}

β = 0 → Eigenvalue Problem for complex diagonal
plus rank-one matrices

β = 1 → Eigenvalue Problem for complex arrowhead
matrices
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Not Unitary Methods

This in an ongoing research with F. Uhlig

1. Transform A by diagonal similarity into complex
symmetric form B.

2. Reduce B by similarity into tridiagonal form

Theorem 2 Under the assumption that all the
transformations involved are well-defined, the matrix
B can be converted into tridiagonal form T by
similarity using complex-orthogonal transformations
at an overall cost of O(n2) operations and in O(n)
storage.

3. Compute the eigenvalues of T by using the DQR
method (Uhlig, Numer. Math. 1997)
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Experimental Evidence

The step 2 is numerically robust (with some
randomization)
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computed error

Errors for random arrowhead matrices of size n = 512

Problems are encountered when using the DQR
method: Deflation can lead to ill-conditioned
subproblems
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Hermitian Generalized Eigenproblems

Ax = λBx

–A,B rank-structured
–AHB = BHA+ small rank

ORF (Fasino& G. & Mastronardi & Van Barel, SIMAX 2005), RQF (Fasino&

G., NUMA 2007)

Σ = γA + δB, ∆ = γA − δB

ΣHΣ = ∆H∆ + small rank

Σx = µ∆x

(Σ∆−1)H · (Σ∆−1) = I+ small rank ⇒ transformation
into a unitary generalized eigenproblem
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Computing the Eigenvalues of Rational
Toeplitz Matrices

This in an ongoing research with M. Van Barel & K. Frederix
The Problem: Let us given two real polynomials

a(z) = a0+. . .+aqz
q, c(z) = cpz

−p+. . .+c1z
−1+c0+c1z+. . .+cpz

p,

where p ≤ q and a(z) has no zeros in |z| ≤ 1. The task is
to compute the eigenvalues of the symmetric rationally
generated Toeplitz matrices defined by

Tn =




t0 t1 . . . tn−1

t1
. . . . . . ...

... . . . . . . t1

tn−1 . . . t1 t0




, t(z) =
c(z)

a(z)a(1/z)
=

∞∑

j=−∞

t|j|z
j
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Where is the Generalized Eigenproblem?

Embedding in Matrix Algebras ( Arbenz; Di Benedetto)

(C1 + U1 · V
T
1 )x = λ(C2 + U2 · V

T
2 )x

–C1, C2 are simultaneously diagonalizable

(Σ1 + Z1 · W
T
1 )x = λ(Σ2 + Z2 · W

T
2 )x

–generalized rank-k change
1. iterative diagonalization of a sequence of matrix

pencils obtained by successive rank one updates
2. computation of eigenvectors → numerical

difficulties
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A Numerical Example

t(z) =
−z−1 + 2 + z

(z − 2)(z − 3)(z−1 − 2)(z−1 − 3)
.
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For each submatrix T100(k + 2: 100, 1: k), 1 ≤ k ≤ 99, the third singular
value returned by the Matlab function svd is plotted.
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The Rank Structure of Tn

Theorem : The symmetric Toeplitz matrix Tn, n = m · q,

can be partitioned in a block form Tn = (T
(n)
i,j )mi,j=1, where

T
(n)
i,j ∈ R

q×q and

Ti,j = A−1
0 · F

q(i−j−1)
a · Γ1 if i − j ≥ 1,

where Fa is the companion matrix associated with a(z)
and A0 and Γ1 are suitable q × q matrices. Moreover, if

Bn =




Iq

−Σ Iq

. . .
. . .


 , Σ = A−1

0
F q

a A0

then Pn = Bn · Tn · BT
n is symmetric block tridiagonal
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A Fast Tridiagonalization Procedure

Exploit the representation Tn = B−1
n · Pn · B−T

n . Let
Rm = Σ. For k = m : −1 : 2 repeat
1. Determine U ∈ R

2q×2q orthogonal such that

UT

[
Iq

Rk

]
=

[
Rk−1

0

]
, Rk1

triangular

2. Perform the similarity transformation driven by U ;
3. Chase the possible bulge in the transformed

matrix

Overall cost O(n2) flops.

Numerical results soon !!!
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Some Subspace Iteration Problems

The matrix eigenvalue tracking algorithm used by my
students in engineering
For t=1,2, . . . , for each time step compute:


D(t) = A(t)Q(t − 1)

D(t) = Q(t)R(t)

H(t) = QT (t)A(t)Q(t)

It follows from the simultaneous orthogonal iteration:
For t=1,2, . . . , for each time step compute:[

D(t) = AQ(t − 1)

D(t) = Q(t)R(t)

Complexity: It depends on Q(0) and on the structure
of A(t)

Subspace Iterations for Rank-Structured Matrices 17/18



More on Subspace Iteration Problems

Continuation of Invariant Subspaces
1. A(t) companion matrix associated with a time

varying polynomial;

2. A(t0) = Q(t0)
TR(t0)Q(T0) Schur form at time t0;

3. R(t0) =

[
R11(t0) R12(t0)

0 R22(t0)

]
,

spec(R11(t0)) ∩ spec(R22(t0)) = ∅

4. B(t) = Q(t0)A(t)Q(t0)
T =

[
B11(t) B12(t)

B21(t) B22(t)

]

5. Rank-Structured Riccati Equation

XB11(t) − B22(t)X − XB12(t)X + B21(t) = 0
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