Unsupervised Blind Separation and Debbluring of Mixtures of Sources

Ivan Gerace and Francesca Martinelli

Bologna, March 7, 2008

Dipartimento di Matematica e Informatica
Università degli Studi di Perugia

Direct Problem

$$
\mathbf{m}_{i}=H_{i}\left(\sum_{j=1}^{k} a_{i j} \mathbf{s}_{j}\right)+\mathbf{n}_{i} \quad i=1, \ldots, k
$$

where
$\mathbf{s}_{i} \in \mathbb{R}^{N^{2}}, i=1, \ldots, k$, are the map sources, $A=\left\{a_{i j}\right\}_{i, j=1, \ldots, k}$ is the mixing matrix, $H_{i} \in \mathbb{R}^{N^{2} \times N^{2}}, i=1, \ldots, k$, are some linear operators, $\mathbf{n}_{i} \in \mathbb{R}^{N^{2}}, i=1, \ldots, k$, are some white, Gaussian and independent noises, $\mathbf{m}_{i} \in \mathbb{R}^{N^{2}}, i=1, \ldots, k$, are the data mixtures.

Direct Problem

Map sources

Direct Problem

Mixtures
I. Gerace, F. Martinelli (Perugia Univ.)

Direct Problem

Blurred mixtures

Direct Problem

Noisy blurred mixtures=data mixtures

Inverse Problem

The problem of separation and deblurring of mixtures of sources consists of finding an estimation of the original sources $\mathbf{s}_{i}, i=1, \ldots, k$, given the blur matrices $H_{i}, i=1, \ldots, k$, the observed mixtures $\mathbf{m}_{i}, i=1, \ldots, k$ and the mixing matrix A.

Inverse Problem

The problem of separation and deblurring of mixtures of sources consists of finding an estimation of the original sources $\mathbf{s}_{i}, i=1, \ldots, k$, given the blur matrices $H_{i}, i=1, \ldots, k$, the observed mixtures $\mathbf{m}_{i}, i=1, \ldots, k$ and the mixing matrix A.

This problem is ill-posed in the sense of Hadamard.

First Order Cliques

(1) $\quad \begin{array}{ll}S & \bullet \\ t & \bullet\end{array}$
(2)

Associated finite order operator:

$$
\begin{gathered}
D_{c} x=x_{s}-x_{t}, \quad \forall c \text { of kind (1) and (2), } \\
C=\{c \mid c \text { is a first order clique }\} .
\end{gathered}
$$

First Order Cliques

(1) $\quad \begin{array}{ll}s & \bullet \\ t & \bullet\end{array}$
(2)

Associated finite order operator:

$$
\begin{gathered}
D_{c} x=x_{s}-x_{t}, \quad \forall c \text { of kind (1) and (2), } \\
C=\{c \mid c \text { is a first order clique }\} .
\end{gathered}
$$

$b_{c} \in B \subset \mathbb{R}_{0}^{+}$indicates the presence of a discontinuities on the clique c. \mathbf{b} is the set of the variable b_{c}.

REGULARIZATION TECHNIQUE

DEFINITION

An edge-preserving regularized solution of the problem can be defined as the argument of the minimum of one of the following functions:

- primal energy function

$$
E^{A}(\mathbf{s}, \mathbf{b})=\sum_{i=1}^{k}\left\|\mathbf{m}_{i}-H_{i}\left(\sum_{j=1}^{k} a_{i j} \mathbf{s}_{j}\right)\right\|^{2}+\sum_{j=1}^{k} \lambda_{j}^{2} \sum_{c \in C}\left(b_{c}\left(D_{c}\left(\mathbf{s}_{j}\right)\right)^{2}+\beta\left(b_{c}\right)\right),
$$

- dual energy function

$$
E_{d}^{A}(\mathbf{s})=\sum_{i=1}^{k}\left\|\mathbf{m}_{i}-H_{i}\left(\sum_{j=1}^{k} a_{i j} \mathbf{s}_{j}\right)\right\|^{2}+\sum_{j=1}^{k} \lambda_{j}^{2} \sum_{c \in C} g\left(D_{c}\left(\mathbf{s}_{j}\right)\right)
$$

PRIMAL VS. DUAL

A dual energy function can be defined from a primal energy function as follows

$$
E_{d}^{A}(\mathbf{s})=\inf _{\mathbf{b} \in B^{|c|}} E^{A}(\mathbf{s}, \mathbf{b}) .
$$

PRIMAL VS. DUAL

A dual energy function can be defined from a primal energy function as follows

$$
E_{d}^{A}(\mathbf{s})=\inf _{\mathbf{b} \in B^{|c|}} E^{A}(\mathbf{s}, \mathbf{b})
$$

In this case we have that

$$
g(t)=\inf _{b \in B}\left\{t^{2} b+\beta(b)\right\} .
$$

DUALITY THEOREM

THEOREM [G.,MARTinELLI AND PuCCI,'08]

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ such that
I) $g(0)=0, g \not \equiv 0, g$ is a even and continuous function, non decresing in \mathbb{R}_{0}^{+};
II) the function $f(t)=\left\{\begin{array}{ll}g(\sqrt{t}), & \text { if } t \geq 0 \\ -\infty, & \text { otherwise }\end{array}\right.$ is concave and

$$
\lim _{t \rightarrow+\infty} \frac{f(t)}{t}=0
$$

DUALITY THEOREM

THEOREM [G.,MARTinELLI AND PuCCI,'08]

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ such that
I) $g(0)=0, g \not \equiv 0, g$ is a even and continuous function, non decresing in \mathbb{R}_{0}^{+};
II) the function $f(t)=\left\{\begin{array}{ll}g(\sqrt{t}), & \text { if } t \geq 0 \\ -\infty, & \text { otherwise }\end{array}\right.$ is concave and

$$
\lim _{t \rightarrow+\infty} \frac{f(t)}{t}=0
$$

Let $\beta: \mathbb{R} \rightarrow \mathbb{R}_{0}^{+} \cup+\infty$ such that
III) $g(t)=\inf _{b \in \mathbb{R}}\left\{b t^{2}+\beta(b)\right\} \quad \forall t \in \mathbb{R}$.
IV) $\beta \not \equiv 0, \beta(b) \geq 0 \quad \forall b \in \mathbb{R}, \beta$ is a non incresing and convex function;
v) if $b \neq 0, \beta(b)<+\infty$ if and only if $b>0$;
VI) $\lim _{b \rightarrow+\infty} \beta(b)=0, \lim _{b \rightarrow 0^{+}} \beta(b)=\beta(0)>0$.

DUALITY THEOREM

THEOREM [G.,MARTINELLI AND PUCCI,'08]

III)

CONVEX ANALYSIS

DEFINITION [Rockafellar, 1970]

Let f be a function on \mathbb{R}, the function

$$
f^{*}(y)=\sup _{x \in \mathbb{R}}\{x y-f(x)\} \forall y \in \mathbb{R}
$$

is called the conjugate function of f.

CONVEX ANALYSIS

DEFINITION [Rockafellar, 1970]

Let f be a function on \mathbb{R}, the function

$$
f^{*}(y)=\sup _{x \in \mathbb{R}}\{x y-f(x)\} \forall y \in \mathbb{R}
$$

is called the conjugate function of f.

PROPERTIES

Let f be a proper closed convex function on \mathbb{R}. f^{*} is a proper closed convex function and the conjugate $f^{* *}$ di f^{*} coincides with f.

Parallel Lines Inhibition

Observed image

Observed image

Parallel Lines Inhibition

Reconstructed image

Reconstructed image

Parallel Lines Inhibition

Line elements

Line elements

Blind Problem

The problem of blind separation and deblurring of mixtures of sources consists of finding an estimation of the original sources $\mathbf{s}_{i}, i=1, \ldots, k$, and

Blind Problem

The problem of blind separation and deblurring of mixtures of sources consists of finding an estimation of the original sources $\mathbf{s}_{i}, i=1, \ldots, k$, and the mixing matrix A, given the blur matrices $H_{i}, i=1, \ldots, k$, and the observed mixtures $\mathbf{m}_{i}, i=1, \ldots, k$.

Blind Problem

The problem of blind separation and deblurring of mixtures of sources consists of finding an estimation of the original sources $\mathbf{s}_{i}, i=1, \ldots, k$, and the mixing matrix A, given the blur matrices $H_{i}, i=1, \ldots, k$, and the observed mixtures $\mathbf{m}_{i}, i=1, \ldots, k$.

Obviously, this problem is again ill-posed in the sense of Hadamard.

Proposed Estimation

DEFINITION

We define the solution $(\tilde{\mathbf{s}}, \tilde{A})$ of the blind problem as

$$
\begin{aligned}
\tilde{A} & =\arg \min _{A} F(A, \mathbf{s}(A)), \\
\tilde{\mathbf{s}} & =\mathbf{s}(\tilde{A}),
\end{aligned}
$$

where

Proposed Estimation

DEFINITION

We define the solution $(\tilde{\mathbf{s}}, \tilde{A})$ of the blind problem as

$$
\begin{aligned}
\tilde{A} & =\arg \min _{A} F(A, \mathbf{s}(A)), \\
\tilde{\mathbf{s}} & =\mathbf{s}(\tilde{A}),
\end{aligned}
$$

where
$\mathbf{s}(A)=\arg \min _{\mathbf{s}} E^{A}(\mathbf{s})$,

Proposed Estimation

DEFINITION

We define the solution $(\tilde{\mathbf{s}}, \tilde{A})$ of the blind problem as

$$
\begin{aligned}
\tilde{A} & =\arg \min _{A} F(A, \mathbf{s}(A)), \\
\tilde{\mathbf{s}} & =\mathbf{s}(\tilde{A}),
\end{aligned}
$$

where
$\mathbf{s}(A)=\arg \min _{\mathbf{s}} E^{A}(\mathbf{s})$,
F is the target function that is constructed in order to find the solution which best fits to the a priori knowledge we have about it.

Proposed Estimation

DEFINITION

We define the solution $(\tilde{\mathbf{s}}, \tilde{A})$ of the blind problem as

$$
\begin{aligned}
\tilde{A} & =\arg \min _{A} F(A, \mathbf{s}(A)), \\
\tilde{\mathbf{s}} & =\mathbf{s}(\tilde{A}),
\end{aligned}
$$

where
$\mathbf{s}(A)=\arg \min _{\mathbf{s}} E^{A}(\mathbf{s})$,
F is the target function that is constructed in order to find the solution which best fits to the a priori knowledge we have about it.
Namely,

$$
F(A, \mathbf{s}(A))=\sum_{i=1}^{k}\left\|\mathbf{m}_{i}-H_{i}\left(\sum_{j=1}^{k} a_{i j} \mathbf{s}_{j}(A)\right)\right\|^{2}+K(\mathbf{s}(A))
$$

Gaussianity and Non-Gaussianity Constraints

Gaussianity and Non-Gaussianity Constraints

DEFINITION

We define $G\left(\mathbf{s}_{j}(A)\right)$ and $N G\left(\mathbf{s}_{j}(A)\right)$ as follows:

Gaussianity and Non-Gaussianity Constraints

DEFINITION

We define $G\left(\mathbf{s}_{j}(A)\right)$ and $N G\left(\mathbf{s}_{j}(A)\right)$ as follows:

$$
\begin{aligned}
G\left(\mathbf{s}_{j}(A)\right) & =\sum_{i=0}^{255}\left(f_{\mathbf{s}_{j}(A)}(i)-\varphi_{\left(\mu, \sigma^{2}\right)}(i)\right)^{2}, \\
N G\left(\mathbf{s}_{j}(A)\right) & =\nu\left(G\left(\mathbf{s}_{j}(A)\right)\right)
\end{aligned}
$$

Gaussianity and Non-Gaussianity Constraints

DEFINITION

We define $G\left(\mathbf{s}_{j}(A)\right)$ and $N G\left(\mathbf{s}_{j}(A)\right)$ as follows:

$$
\begin{aligned}
G\left(\mathbf{s}_{j}(A)\right) & =\sum_{i=0}^{255}\left(f_{\mathbf{s}_{j}(A)}(i)-\varphi_{\left(\mu, \sigma^{2}\right)}(i)\right)^{2}, \\
N G\left(\mathbf{s}_{j}(A)\right) & =\nu\left(G\left(\mathbf{s}_{j}(A)\right)\right)
\end{aligned}
$$

where
$\varphi_{\left(\mu, \sigma^{2}\right)}$ is the best Gaussian that approximates our data,

Gaussianity and Non-Gaussianity Constraints

DEFINITION

We define $G\left(\mathbf{s}_{j}(A)\right)$ and $N G\left(\mathbf{s}_{j}(A)\right)$ as follows:

$$
\begin{aligned}
G\left(\mathbf{s}_{j}(A)\right) & =\sum_{i=0}^{255}\left(f_{\mathbf{s}_{j}(A)}(i)-\varphi_{\left(\mu, \sigma^{2}\right)}(i)\right)^{2} \\
N G\left(\mathbf{s}_{j}(A)\right) & =\nu\left(G\left(\mathbf{s}_{j}(A)\right)\right)
\end{aligned}
$$

where
$\varphi_{\left(\mu, \sigma^{2}\right)}$ is the best Gaussian that approximates our data, ν is a decreasing function.

Orthogonality Constraints

Orthogonality Constraints

$a b c$ $\Sigma Y X$

$\measuredangle>$

$a b c$

Orthogonality Constraints

Determination of the background:

$$
\begin{aligned}
& \gamma_{1}=\arg \max _{i \in\{0, \ldots, 255\}}\left\{f_{\mathbf{s}_{1}(A)}(i)\right\}, \\
& \gamma_{2}=\arg \max _{i \in\{0, \ldots, 255\}}\left\{f_{\mathbf{s}_{2}(A)}(i)\right\} .
\end{aligned}
$$

Orthogonality Constraints

Determination of the background:

$$
\begin{aligned}
& \gamma_{1}=\arg \max _{i \in\{0, \ldots, 255\}}\left\{f_{\mathbf{s}_{1}(A)}(i)\right\}, \\
& \gamma_{2}=\arg \max _{i \in\{0, \ldots, 255\}}\left\{f_{\mathbf{s}_{2}(A)}(i)\right\} .
\end{aligned}
$$

Orthogonality constraint:

$$
\Omega\left(\mathbf{s}_{1}(A), \mathbf{s}_{2}(A)\right)=\sum_{i, j}\left|\left[s_{1}(A)\right]_{(i, j)}-\gamma_{1}\right|\left|\left[s_{2}(A)\right]_{(i, j)}-\gamma_{2}\right| .
$$

Entropy Constraints

Entropy Constraints

Number of states:

$$
\tau_{j}=\left|\left\{i \in\{0, \ldots, 255\}: f_{\mathrm{s}_{j}(A)}(i) \neq 0\right\}\right| .
$$

Entropy Constraints

Number of states:

$$
\tau_{j}=\left|\left\{i \in\{0, \ldots, 255\}: f_{\mathrm{s}_{j}(A)}(i) \neq 0\right\}\right| .
$$

Entropy constraint:

$$
\Lambda\left(\mathbf{s}_{j}(A)\right)=k_{B} \log \tau_{j}
$$

where
k_{B} is Boltzmann's constant.

Minimization Algorithms

- the target function $F(A, \mathbf{s}(A))$ is minimized by a simulated annealing,

Minimization Algorithms

- the target function $F(A, \mathbf{s}(A))$ is minimized by a simulated annealing,
- the energy function $E_{d}^{A}(\mathbf{s})$ is minimized by Graduated Non-Convexity Algorithm (GNC).

GNC Algorithm (Gradueted Non-Convexity)

A family of approximating functions $\left\{E_{d}^{(p)}\right\}_{p}$ is determinated in such a way that the first one is convex and the last one coincides with the dual energy function E_{d}^{A}.

GNC Algorithm (Gradueted Non-Convexity)

A family of approximating functions $\left\{E_{d}^{(p)}\right\}_{p}$ is determinated in such a way that the first one is convex and the last one coincides with the dual energy function E_{d}^{A}.
Then, the following algorithm is executed:
initialize p and $\mathbf{s}^{(\operatorname{prec}(p))}$;
while $E_{d}^{(p)} \neq E_{d}^{A}$ do
find the minimum of the function $E_{d}^{(p)}$ starting from the initial point
$\mathbf{s}^{(\text {prec }(p))}$;
$\mathbf{s}^{(p)}=\arg \min E_{d}^{(p)}(\mathbf{s}) ;$
$p=\operatorname{succ}(p)$;

Orthogonality Constraints in The Energy Function

$$
\begin{aligned}
\Omega^{(p)}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)= & \frac{1}{2} \sum_{i, j}\left|s_{1}(i, j)-\gamma_{1}^{(\operatorname{prec}(p))}\right|\left|s_{2}^{(\operatorname{prec}(p))}(i, j)-\gamma_{2}^{(\operatorname{prec}(p))}\right|+ \\
& \frac{1}{2} \sum_{i, j}\left|s_{1}^{(\operatorname{prec}(p))}(i, j)-\gamma_{1}^{(\operatorname{prec}(p))}\right|\left|s_{2}(i, j)-\gamma_{2}^{(\operatorname{prec}(p))}\right|
\end{aligned}
$$

Cosmic Microwave Background

EXPERIMENTAL RESULTS

Ideal sources

EXPERIMENTAL RESULTS

Data mixtures

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

	MSE		
	medium pixel value	non-blind problem	blind problem
CMB	0.068050	0.0000000001	0.0000322429
Syn	0.018726	0.0000364836	0.0004320682
Dust	0.028039	0.0000000843	0.0000021202

EXPERIMENTAL RESULTS

RGB image

EXPERIMENTAL RESULTS

RGB components

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

$\operatorname{iny}_{\text {itti }}^{\text {su in }}$
 Blind estimated sources

EXPERIMENTAL RESULTS

Data mixtures

EXPERIMENTAL RESULTS

Blind estimated sources

EXPERIMENTAL RESULTS

Data mixtures

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

Data mixtures

EXPERIMENTAL RESULTS

endl $\frac{\text { тэппоว }}{}$ IJAMI 1 Пルム
 Blind estimated sources

THE END

