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This talk concerns the spectral properties of matrices associated with linear

filters for the estimation of the underlying trend of a time series.

These matrices are finite approximations of infinite symmetric banded Toeplitz

(SBT) operators subject to boundary conditions.

The interest lies in the fact that the eigenvectors can be interpreted as the latent

components of a time series that the filter smooths through the eigenvalues.

In this study, analytical results on the eigenvalues and eigenvectors of matrices

associated with trend filters are derived by interpreting the latter as perturbations of

matrices belonging to algebras with known spectral properties, such as the

circulant and the reflecting τ11.

The results allow to design new estimators based on cut off eigenvalues, which

are less variable and almost equally biased as the original estimators.



Signal extraction of a time series

Time series additive models

yt = µt + εt, t = 1, . . . , n

yt observed time series

µt trend component or signal, smooth function of time

εt irregulars or noise, zero mean stationary stochastic process.

The aim is to estimate µt using the available observations.

Smoothing methods like local polynomial regression may serve to this purpose.



Local polynomial regression methods

The basic assumption is that µt locally approximated by a p-degree polynomial

function of the time distance j between yt and neighboring yt+j

µt+j ≈ mt+j

with

mt+j = β0 + β1j + · · ·+ βpj
p, j = 0,±1, . . . ,±h.

The parameters β0, ..., βp are usually estimated by ordinary or weighted least

squares. Our interest lies on β̂0 = m̂t.

Once fixed (i) degree of fitting polynomial, (ii) shape of kernel weighting function, (iii)

bandwidth, all the estimators become linear combinations of the input data and are

called filters or smoothers.



Weighted least squares estimation

Provided that y2h+1 = [yt−h, · · · , yt, · · · , yt+h]′, 2h ≥ d,

β̂ = (X′KX)−1X′Ky2h+1

where X design matrix and K diagonal weighting matrix.

The trend estimate at time t is

m̂t = β̂0 = e′1β̂ = e′1(X
′KX)−1X′Ky = w′y =

h∑

j=−h

wjyt−j ,

where e′1 = [1, 0, . . . , 0]



Specifically:

• In the interior, i.e. for t = h + 1, ..., n− h + 1, the trend estimate at time t is

m̂t =
h∑

j=−h

wjyt−j .

• At the boundaries, asymmetric filters are obtained. For the end of the sample,

t = n− h, ..., n, crucial in current analysis,

m̂t =
h∑

j=−q

wjyt−j ,

where q = 0, 1, ...h− 1.



Though the resulting trend estimate is local since it depends only on the subset of

the observations that belong to the neighborhood of time t, it can be represented for

all t = 1, ..., n as

m̂t =
n∑

j=1

wtjyj .

In matrix form, any linear smoother can be represented by a square matrix

S : Rn → Rn

y 7−→ m̂ = Sy.

S can be interpreted as a finite approximation of a symmetric banded Toeplitz

operator (SBT) subject to boundary conditions. In general, S is centrosymmetric

but not symmetric.

The analysis of the properties of S provides useful information on the local

polynomial regression estimator applied to the data to get the smoothed trend.



Spectral analysis

For n →∞,S → T∞, SBT, with real eigenvalues and eigenvectors. In order to

understand, let us suppose that the spectrum of S → T∞ is discrete so that

λ1 ≥ λ2 ≥ ... ≥ λn ≥ ...

then the eigenvectors x1,x2, ...,xn, ..., are time series that the filter expands,

λi > 1, leaves unchanged, λi = 1, shrinks, λi < 1, or suppresses, λi = 0.

The eigenvectors can be viewed as latent component of any time series that the

filter smooths through the eigenvalues.

In fact, let

y = α1x1 + α2x2 + ... + αnxn + ...

then

Sy =
k∑

i=1

λiαixi +
∞∑

i=k+1

λiαixi.



Infinite dimension

The non null elements of the SBT operator T∞ are the Fourier coefficients of the

trigonometric polynomial (the symbol of the matrix, Grenander and Szegö, 1958)

H(ν) =
h∑

d=−h

wde
ıνd

and

lim
n→∞

1
n

n∑

i=1

λi =
1
2π

∫ 2π

0

H(ν)dν

with

λ1 ≤ maxH(ν), λn ≥ min H(ν).

H(ν) is the transfer function of the filter evaluated at the frequency ν, radians.



Finite dimension

In finite dimension, the analytical form of eigenvalues and eigenvectors is known

only for few classes of matrices, that are the tridiagonal SBT and matrices

belonging to the Circulant, the Hartley and the generalised Tau algebras.

Interpreting a smoothing matrix as the sum of a matrix belonging to one of these

algebras plus a perturbation occurring at the boundaries, approximate results

on eigenvalues and eigenvectors of S can be obtained.

The size of the perturbation depends on the (a) matrix algebra and on the (b)

boundary conditions.

We have considered (a) the circulant and the reflecting τ11 algebras as well as (b)

asymmetric filters that approximate a given two sided symmetric (Henderson) filter

according to a minimum mean square revision error criterion subject to constraints.



Reflecting boundary conditions

The hypothesis is that the first missing observation is replaced by the last available

observation, the second missing observation is replaced by the previous to the last

observation and so on, that for a two-sided 2h + 1-term filter corresponds to the

real time filter, last row of a matrix H ∈ τ11 cosines algebra,

{0, 0, ..., 0, wh, wh−1 + wh, ..., w1 + w2, w0 + w1}.

Additive decomposition

S = H + ∆H =




Ha
(h×2h) + ∆H O(h×n−2h)

Hs
(n−2h×n)

O(h×n−2h) Ha∗
(h×2h) + ∆H






On the matrix H (Bini and Capovani, 1983, Proposition 2.2).

H =
n∑

j=1

cjT
j−1
ψϕ

where

Tψϕ =




ψ 1 0 · · · 0

1 0 1
. . . 0

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . 0 1 ϕ




with ψ,ϕ = 0,1,−1, and c is the solution of the upper triangular system Qc = h
where h′ is the first row of H and Q is the matrix whose j-th column equals the

first column of Tj−1
ψϕ .



Eigenvalues

Theorem Let S be an n× n smoothing matrix associated with the symmetric filter

{w−h, ..., w0, ..., wh}, and let H be the corresponding matrix in τ11. Hence,

∀λ ∈ σ(S), ∃i ∈ {1, 2, .., n} such that

|λ− ξi| ≤ δH

where

ξi =
h+1∑

j=1

(
2 cos

(i− 1)π
n

)j−1


wj−1 +

bh−j−1
2 c∑

q=0

(−1)q+1(j)q

(q + 1)!
(j + 2q + 1)wj+2q+1




and δH = ‖S−H‖2.

Note that ‖A‖2 =
√

ρ(A′A) and ρ(A) is the spectral radius of A.



Figure 1: Transfer function of the symmetric Henderson filter, h = 6, ν ∈ [0, π]
(line) and eigenvalues of the associated reflecting matrix H (crosses), n = 51.
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Figure 2: Absolute eigenvalue distributions of H (crosses) with asymmetric

Musgrave-LC (squares), QL (circles), CQ (stars), DAF (pluses) filters.
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On the size of the perturbation

The quantity δH provides an upper bound to the size of the perturbation and

measures how much the (absolute) eigenvalue distribution of any S moves away

from that of the corresponding reflecting (gain function).

The size of the perturbation does not depend on n, in that the n− 2h central rows

of the matrix ∆H are all null.

On the other hand, it is highly influenced by the real time filter (last row of S),

applied to estimate the trend at time t using the available observations up to and

including t.

Another factor that highly affects the size of the perturbation and the overall

variance of the trend estimates is the algebraic multiplicity of the eigenvalue

λ = 1, that we have shown to be equal to the degree of the polynomial that the filter

is capable to reproduce.



On reflecting versus circulant algebras

All the operators belonging to a τ algebras have real eigenvalues and eigenvectors.

All the computations related to this class can be therefore done in real arithmetic.

Circulant-to-Toeplitz corrections produce perturbations that are not smaller than

Tau-to-Toeplitz corrections.

The reflecting matrices have n distinct eigenvalues contra the at most n−1
2 + 1 of

the circulant.

On reflecting versus circular boundary conditions

The reflecting hypothesis is more appropriate than that of a circular process when

the signal is a non stationary function of time.



Eigenvectors

In general, the analytical expression of the eigenvectors of a smoothing matrix

cannot be derived using the perturbation theory. Exact result: there exist up to

p + 1 polynomial eigenvectors. Otherwise,

y = θ1z1 + θ2z2 + ... + θnzn

where θ = [θ1, ..., θn]′ and zi are the real and orthogonal eigenvectors of H,

zi = ki

[
cos

(2j − 1)(i− 1)π
2n

]

j

, j = 1, 2, ..., n

associated with the eigenvalues ξi. Then

Sy =
n∑

i=1

θiξizi +
n∑

i=1

θi∆Hzi

where ∆Hzi is a null vector except but for the first and last h coordinates.



Filter design

Reverting to matrix notation, decomposing S = H + ∆H and H = ZXZ′,
where X = diag{ξ1, ξ2, ..., ξn}, and writing y = Zθ,

Sy = ZXθ + ∆HZθ

≈ ZXkθ + ∆HZθ

where Xk is the diagonal matrix obtained by replacing by zeros the eigenvalues

of H that are smaller than a cut-off eigenvalue ξk.

Turning to the original coordinate system and arranging the boundaries, we get

the new estimator

Sk = Hk + ∆H

where Hk is the matrix with boundaries equal to those of H and interior equal to

that of ZXkZ′.



In practice:

• given a symmetric filter {w−h, w−h+1, ..., w0, ..., wh}
• construct H ∈ τ11, reflecting

• obtain the spectral decomposition of H→ possible because of analytically

known real eigenvalues orthogonal eigenvectors

• replace H = ZXZ′ by H(k) = ZXkZ′

• adjust the boundaries of H(k) with suitable asymmetric filters to obtain Sk.

Properties

It is proved that the new estimator Sk so obtained has smaller variance in the

interior and almost equal bias than the original S.



Choice of k

Further balancing of the trade-off between bias and variance of the filter. The trend

in the interior is made smoother without sensibly increasing the bias. Alternatives:

Minimum distance of the eigenvalue distribution of H with that of the ideal low

pass filter having first k eigenvalues equal to one and and last n− k equal to zero.

Minimum distance between the transfer functions of the symmetric filter and of the

ideal low-pass filter. If the cut-off frequency is ν = νk, then the cut-off time is

k =
νkn

π
.

Graphical analysis. Having plotted the eigenvalue distribution, a suitable cut-off

eigenvalue may be directly viewed.



Illustrations

We have chosen k such that

‖i(k) − ξ‖ is minimum

where i(k) = [1, 1, ..., 1, 0, 0, ...0]′ and ξ = [ξ1, ξ2, ..., ξn]′.

For the symmetric 13 term Henderson filter,

ξk = 0.5 and k =
⌊

n + 1
4

⌋



Figure 3: Index of Italian production y (green), m̂ (red) and m̂k (blue).
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Figure 4: Euro Area Industry, Retail of Ea4 y (green), m̂ (red) and m̂k (blue).
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Conclusions

Analytical results on the eigenvalues and eigenvectors of matrices associated with

trend filters have been derived based on reflecting boundary conditions imposed to

infinite symmetric Toeplitz banded operators.

Knowledge of the analytical form of the eigenvectors allows to represent in the time

domain the periodic latent components of any time series that the filter smooths by

means of the associated eigenvalues.

Inferential eigenvalue-based procedures can be developed, among the others, a

strategy for a filter design in the time domain where further balancing of the trade-off

between variance and bias is obtained by selecting a cut-off time or eigenvalue after

which noisy components will be zero weighted.


