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Algorithms for NAREs

NARE

Preliminaries

Nonsymmetric Algebraic Riccati Equations

Given D ∈ Rn×n, A ∈ Rm×m, C ∈ Rn×m, B ∈ Rm×n, find
X ∈ Rm×n such that

NARE

XCX − AX − XD + B = 0 (1)

Remark: Any solution X of (1) is such that[
D −C
B −A

] [
I
X

]
=

[
I
X

]
(D − CX )

The eigenvalues of D − CX are eigenvalues of H =

[
D −C
B −A

]
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NARE

Preliminaries

Important case

Assumption : assume that

M =

[
D −C
−B A

]
is either a nonsingular M-matrix or a singular irreducible M-matrix.

Spectral properties: let σ(H) = {λ1, λ2, . . . , λm+n}, with
Re(λm+n) ≤ . . . ≤Re(λ2) ≤Re(λ1).

I If M is nonsingular then Re(λn+1) < 0 <Re(λn)
I If M is singular, then Re(λn+1) ≤ 0 ≤Re(λn). Moreover, only

one of the following conditions is satisfied:
I λn = 0 and λn+1 ∈ R− (positive recurrent case);
I λn ∈ R+ and λn+1 = 0 (transient case);
I λn = λn+1 = 0 (null recurrent case).
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Location of the eigenvalues: singular case

Positive recurrent Transient Null recurrent
(Critical case)
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NARE

Preliminaries

Interest

Compute the minimal entrywise nonnegative solution S of the
NARE (1)

Invariant subspace property:
The seeked solution S is the unique matrix such that

H

[
I
S

]
=

[
I
S

]
R, R = D − CS ,

and σ(R) = {λ1, . . . , λn}. The solution S is called the extremal
solution.

There are many algorithms for solving AREs based on the invariant
subspace property.
One of the most efficient is the Structure-preserving Doubling
Algorithm (SDA) by [Guo, Lin, Wei, 2006]
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Outline of SDA

I Assume for simplicity that M is a nonsingular M-matrix.
Therefore σ(R) = {λ1, . . . , λn} ∈ C+.

I Apply the Cayley transform z → (z − γ)/(z + γ) with γ > 0
to R and obtain

(H − γI )

[
I
S

]
= (H + γI )

[
I
S

]
Rγ ,

where Rγ = (R + γI )−1(R − γI ).

Key property: ρ(Rγ) < 1
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Outline of SDA

SDA generates the matrix sequences

Lk =

[
Dk 0
−Hk I

]
, Uk =

[
I −Gk

0 Fk

]
such that

Lk

[
I
S

]
= Uk

[
I
S

]
R2k

γ , k = 0, 1, . . .

Since ρ(Rγ) < 1 then Hk quadratically converges to S

Cost: 64
3 n3 ops per step (where we assume m = n).

Remark: The convergence is still quadratic if M is singular
irreducible and λn 6= λn+1. If λn = λn+1 = 0 the convergence is
linear with rate 1/2. The convergence turns to quadratic by
applying a shift technique to the null eigenvalues of H [Guo,
Iannazzo, Meini, 07]
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Cyclic Reduction (CR)

CR is a versatile algorithm invented by G. Golub [Buzbee, Golub,
Nielson 1970] for the f.d. Poisson equation.

I Rediscovered by Latouche and Ramaswami (1993) for QBDs

I Revisited by Bini and Meini (1996ff), applied to UQMEs and
extended to equations of the kind X =

∑+∞
i=0 AiX

i

I Applied to the following matrix equations: X = A± BX−1C
[Meini 2002];
matrix square and pth root (Bini, Higham, Meini 2005);
NARE [Ramaswami 1999].

Details on this algorithm can be found in the book
D. Bini, G. Latouche, B. Meini, “Numerical Solution of Structured
Markov Chains”, Oxford Univ. Press 2005.
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Few words about CR for UQME
Given: A0,A1,A2 ∈ RN×N such that the
roots of ϕ(λ) = det(A0 + A1λ+ A2λ

2) are

|ξ1| ≤ · · · ≤ |ξN | ≤ 1 < |ξN+1| ≤ · · · ≤ |ξ2N |

(including zeros at ∞ if degϕ(λ) < 2N)

Goal: compute the solution G of the Unilateral Quadratic Matrix
Equation (UQME)

A0 + A1X + A2X
2 = 0,

such that ρ(G ) = |ξN |, provided it exists.
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NARE

Outline of CR

Few words about CR for UQME

CR generates the matrix sequences

A
(k+1)
0 = −A

(k)
0 S (k)A

(k)
0 , S (k) = (A

(k)
1 )−1

A
(k+1)
2 = −A

(k)
2 S (k)A

(k)
2 ,

A
(k+1)
1 = A

(k)
1 − A

(k)
0 S (k)A

(k)
2 − A

(k)
2 S (k)A

(k)
0 ,

Â(k+1) = Â(k) − A
(k)
0 S (k)A

(k)
2 , k ≥ 0

starting from A
(0)
i = Ai , i = 1, 2, 3, Â(0) = A1, such that

A0 + Â(k)G + A
(k)
2 G 2k+1 = 0

Convergence property: the convergence is quadratic, more
specifically:

||(Â(k))−1A0 − G || = O(|ξN/ξN+1|2
k
)
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Outline of CR

Few words about CR for UQME

Cost: 6 matrix products, one PLU factorization: 38
3 N3 ops

Applicability: under mild conditions the matrices A
(k)
0 are invertible

Critical case: If |ξN | = |ξN+1| = 1 convergence turns to linear with
rate 1/2. Quadratic convergence can be recovered by means of the
shift technique [He, Meini, Rhee, 01].
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NARE → UQME

1st transform

New class of algorithms

Idea: To transform the NARE into a UQME of the kind

A0 + A1Y + A2Y
2 = 0, A0,A1,A2 ∈ RN×N

with N ≤ m + n, such that det(A0 + A1λ+ A2λ
2) has roots

|ξ1| ≤ · · · ≤ |ξN | ≤ 1 ≤ |ξN+1| ≤ · · · ≤ |ξ2N |

and apply cyclic reduction.

H.-G. Xu and L.-Z. Lu (1995) reduced an ARE to an equation
Y 2 −M2 = 0 but with no splitting property.
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NARE → UQME

1st transform

Ramaswami’s transform

The linear matrix pencil

H − λI =

[
D −C
B −A

]
− λI

can be transformed into a quadratic matrix polynomial by
multiplying the second block column by λ

A(λ) =

[
D 0
B 0

]
+

[
−I −C
0 −A

]
λ+

[
0 0
0 −I

]
λ2

This matrix polynomial defines a UQME[
D 0
B 0

]
+

[
−I −C
0 −A

]
Y +

[
0 0
0 −I

]
Y 2 = 0 (2)
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NARE → UQME

1st transform

Ramaswami’s transform

Theorem
The roots of the matrix polynomial A(λ) are:

I m equal to 0

I the m + n eigenvalues λ1, . . . , λm+n of H

I n at infinity.

Moreover

V =

[
D − CS 0

S 0

]
,

where S is the extremal solution of (1), is the unique solution of
the UQME (2) with m eigenvalues equal to zero and n eigenvalues
equal to λ1, . . . , λn.
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NARE → UQME

2nd transform

UL based transform

Consider the block UL factorization

H = U−1L, U =

[
I −U1

0 U2

]
, L =

[
L1 0
−L2 I

]
,

and transform the pencil H − λI into the new pencil

L− λU.

Now multiply the second block row by −λ and get

A(λ) =

[
L1 0
0 0

]
+

[
−I U1

L2 −I

]
λ+

[
0 0
0 U2

]
λ2,

which defines the UQME[
L1 0
0 0

]
+

[
−I U1

L2 −I

]
Y +

[
0 0
0 U2

]
Y 2 = 0 (3)
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NARE → UQME

2nd transform
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I n at infinity.

Moreover

V =

[
D − CS 0

S(D − CS) 0

]
,

where S is the extremal solution of (1), is the unique solution of
the UQME (3) with m eigenvalues equal to zero and n eigenvalues
equal to λ1, . . . , λn.



Algorithms for NAREs

NARE → UQME

3rd transform

“Small size” transform

The matrix pencil H − λI is transformed into[
I 0
−U I

]
H

[
I 0
−U I

]−1

− λI . (4)

If det C 6= 0, by choosing U = C−1D, (4) becomes[
0 I

R(C−1D) A− C−1DC

]
− λI ,

where R(U) = UCU − AU − UD + B, which defines the UQME

(B − AC−1D)C + (C−1DC − A)Y + Y 2 = 0
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NARE → UQME

3rd transform

“Small size” transform

Theorem
The roots of

A(λ) = (B − AC−1D)C + (C−1DC − A)λ+ Iλ2

are the eigenvalues of H.
Moreover, Y = C−1(D − CS)C is the unique solution of the
UQME

(B − AC−1D)C + (C−1DC − A)Y + Y 2 = 0

with eigenvalues λ1, . . . , λn.
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NARE → UQME

3rd transform

“Small size” transform

Remark: The condition det C 6= 0 is not restrictive. Indeed, X
solves (1) if and only if X̃ = X (I −MX )−1 solves

Y C̃Y − ÃY − Y D̃ + B̃ = 0,

where M is any matrix such that det(I −MX ) 6= 0, and

Ã = A− BM, B̃ = B,

C̃ = R̃(M), D̃ = D −MB,

R̃(M) = MBM − DM −MA + C .

Open issue: Find M such that R̃(M) is well-conditioned.
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NARE → UQME

3rd transform

A few remarks

I The UQMEs of size m + n are associated with matrix
polynomials of the kind

A(λ) =


[
∗ 0
∗ 0

]
+

[
−I ∗
0 ∗

]
λ+

[
0 0
0 −I

]
λ2[

∗ 0
0 0

]
+

[
−I ∗
∗ I

]
λ+

[
0 0
0 ∗

]
λ2

I The eigenvalues of H are roots of det A(λ).

I The nonzero roots of det A(λ) have a splitting w.r.t. the
imaginary axis

I The solution of the UQME associated with the eigenvalues
with the largest real part is the one to be computed
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Eigenvalues transform

Algorithms for UQME reach the highest efficiency for eigenvalues
split w.r.t. the unit circle where the solution with eigenvalues of
modulus less than 1 is seeked.

Three approaches to transform a splitting w.r.t the imaginary axis
into a splitting w.r.t. the unit circle:

I shrink and shift (Ramaswami 1999)

I Cayley transform applied to the pencil (Guo, Lin, Wei, 2006)

I Cayley transform applied to the UQME (Bini, Latouche,
Meini, 2006)
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Eigenvalues transform

Shrink and shift

Shrink and shift

Multiply the Riccati equation by t,

tXCX − tAX − tXD + tB = 0,

add I to −tA and subtract I from −tD and get:

tXCX − (tA− I )X − X (tD + I ) + tB = 0 (5)

The associated matrix is

Ht =

[
I + tD −tC

tB I − tA

]

If 0 < t < 1/max(ai ,i , di ,i ) the eigenvalues of Ht have a splitting
w.r.t. the unit circle
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Eigenvalues transform

Shrink and shift

Transformation of the eigenvalues

Original eigenvalues

Shrink by t Shift by 1
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Eigenvalues transform

Cayley transform

Cayley transform applied to the pencil

I The Cayley transform z → (z − γ)/(z + γ) applied to the
pencil H − λI yields the pencil

Hγ − λI , Hγ = (H + γI )−1(H − γI ).

I Since µ = γ−λ
γ+λ is eigenvalue of Hγ iff λ is eigenvalue of H, the

eigenvalues of Hγ are split w.r.t. the unit circle.

I Three UQMEs can be obtained from the pencil Hγ − λI . The
UL-based transform yields

A(λ) =

[
−Dγ 0

0 0

]
+

[
I −Gγ

−Hγ I

]
λ+

[
0 0
0 −Fγ

]
λ2
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Eigenvalues transform

Cayley transform

SDA is CR!

Theorem
Cyclic Reduction applied to[

−Dγ 0
0 0

]
+

[
I −Gγ

−Hγ I

]
Y +

[
0 0
0 −Fγ

]
Y 2 = 0 (6)

coincides with SDA. Moreover, the spectral minimal solution of (6)

is

[
Rγ 0
SRγ 0

]
, where Rγ = (R + γI )−1(R − γI ).
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Eigenvalues transform

Cayley transform

Some theoretical results

Theorem
Assume that M is nonsingular and let Q(λ) = λ−1A(λ). Then:

I The matrix function Q(λ) is analytic for |ξ| < |z | < |η|, where
ξ = (λn − γ)/(λn + γ), η = (λn+1 − γ)/(λn+1 + γ).

I Q(λ) has the canonical factorization

Q(λ) =

„
I − λ

»
0 0
W WS

–« »
I −Gγ

−S I

– „
I − λ−1

»
Rγ 0
SRγ 0

–«
I The series ψ(λ) = Q(λ)−1, ψ(λ) =

∑+∞
k=−∞ λkψk is such that

ψ−1
0 =

[
I −T
−S I

]
where T is the solution of the dual NARE of (1).
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»
Rγ 0
SRγ 0

–«
I The series ψ(λ) = Q(λ)−1, ψ(λ) =

∑+∞
k=−∞ λkψk is such that

ψ−1
0 =

[
I −T
−S I

]
where T is the solution of the dual NARE of (1).
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Different combinations → different algorithms

We may combine the different strategies, for instance:

I “Shrink and shift” + “Ramaswami transform” lead to an
algorithm similar to that of Ramaswami (1999) of cost
(68/3)n3 ops per step (ss-ram).

I “Cayley transform” + “UL-based reduction” lead to SDA,
having a cost (64/3)n3 per step (sda).

I “Shrink and shift” + “UL-based reduction” lead to a new
algorithm with the same cost of SDA. Formally, this algorithm
differs from SDA only for the initial values, which are simpler
(ss-ul).

I “Cayley transform” + “Small-size transform” lead to a new
algorithm, having a cost (38/3)n3 (nodoub).
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NARE deriving from a problem in neutron transport theory

A = ∆̂− eqT , B = eeT , C = qqT , D = ∆− qeT

with

∆ = diag(δ1, . . . , δn), ∆̂ = diag(δ̂1, . . . , δ̂n),

δi =
1

cxi (1− α)
, δ̂i =

1

cxi (1 + α)
, i = 1, . . . , n,

e =
[
1 1 · · · 1

]T
, qi =

wi

2xi
, i = 1, . . . , n,

(xi )
n
i=1 and (wi )

n
i=1 being the nodes and weights of a Gaussian

discretization. Here we have chosen α = 10−8, c = 1− 10−6,
which yields a close-to-null-recurrent Riccati equation.
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Running time in seconds

n sda ss-ul ss-ram nodoub
8 0.045209 0.02735 0.030078 0.027061
16 0.039896 0.041282 0.046027 0.03845
32 0.14559 0.14666 0.18047 0.13432
64 0.92806 0.93415 1.1707 0.8448
128 7.2632 7.3491 9.1974 6.6499
256 60.841 61.926 76.835 55.03
512 499.95 504.37 625.06 448.46



Algorithms for NAREs

Numerical results and conclusions

Residual errors

n sda ss-ul ss-ram nodoub
8 1.654e-13 5.8367e-14 6.6482e-14 1.4294e-11
16 1.328e-12 2.4418e-13 2.7769e-13 1.6405e-10
32 3.4631e-12 1.964e-12 1.7786e-12 7.8717e-10
64 2.2679e-11 1.3598e-11 8.2769e-12 7.8282e-09
128 1.3316e-10 8.1521e-11 6.4269e-11 5.4047e-08
256 1.0096e-09 5.6852e-10 3.7115e-10 4.5315e-07
512 6.7923e-09 4.2861e-09 1.7767e-09 5.4083e-06



Algorithms for NAREs

Numerical results and conclusions

Conclusions and open issues

I The interpretation provided in this talk casts new light on the
SDA algorithm and on the relationship between UQMEs and
NAREs.

I Several other approaches to the solution of the NARE can be
developed with this new setting. Among the possible ideas:

I using numerical integration and the Cauchy integral theorem
for computing the matrix ψ0;

I using functional iterations borrowed from stochastic processes
(QBD) for solving the UQME;

I using Newton’s iteration applied to the UQME trying to
exploit the specific matrix structure.

I It would be important to find for more general transformations
which map a Hamiltonian matrix H to a new one H̃ where the
block H̃1,2 is not only nonsingular but numerically well
conditioned.
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