Structured SDA 0 000 Structured CR 00 00 Numerical results

SDA and cyclic reduction for a rank-structured algebraic Riccati equation

D. A. Bini¹ B. Meini¹ <u>F. Poloni^{1,2}</u>

¹Dipartimento di Matematica Università di Pisa

²Scuola Normale Superiore, Pisa

Two-days of Numerical Linear Algebra Bologna, 6–7 March, 2008

Structured SD. 0 000 Structured CR

Numerical results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Introduction to the problem

Motivations Algebraic Riccati equations Cauchy-like matrices

Structured SDA

Outline of SDA Structured SDA

Structured cyclic reduction

Outline of cyclic reduction Structured cyclic reduction

Numerical results

Numerical results Research lines Structured SD/ 0 000 Structured CR 00 00 Numerical results

Motivations

Padua, Two-days of Numerical Linear Algebra 2007

F. Poloni: "Fast Newton method for an algebraic Riccati equation" Research lines

• Fast SDA? The SDA iterates are generalized Cauchy-like as well

This year I am going to fill in the gap: fast $O(n^2)$ versions of two other algorithms for the same equation

Derivation and comparison between the algorithms

Introductio
0
000
00

Structured SDA 0 000 Structured CR

Numerical results

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

XCX - AX - XE + B = 0

(NARE)

 $X \in \mathbb{R}^{m \times n}$, other matrices compatible

Recent interest in the literature e.g. [Guo–Laub '00, Lu '05, Guo–Higham '05, Bini–Iannazzo–Latouche–Meini '06]

Introductio
0
000
00

Structured SDA 0 000 Structured CR 00 00 Numerical results

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

XCX - AX - XE + B = 0

(NARE)

 $X \in \mathbb{R}^{m \times n}$, other matrices compatible

Recent interest in the literature e.g. [Guo–Laub '00, Lu '05, Guo–Higham '05, Bini–Iannazzo–Latouche–Meini '06]

$$\begin{array}{ll} X \text{ solves (NARE)} & \Leftrightarrow & \begin{bmatrix} E & -C \\ B & -A \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} (E - CX) \\ \text{Solutions} & \Leftrightarrow & \text{invariant subspaces of } \mathcal{H} := \begin{bmatrix} E & -C \\ B & -A \end{bmatrix} \end{array}$$

- Explicit calculation of the eigenvectors: numerical problems
- Iterative methods: cost $O(n^3)$ /step, quadratic convergence

Structured SD 0 000 Structured CR 00 00 Numerical results

Rank-structured NAREs

From a physics problem, we get

One-group neutron transport equation

$$\Delta X + XD = (Xq + e)(e^T + q^T X)$$
 (NT)

 D, Δ "positive" diagonal matrices, e, q > 0 vectors

(NT) is a NARE with rank structure:

$$A = \Delta - eq^T$$
, $B = ee^T$, $C = qq^T$, $E = D - qe^T$

Defined by O(n) parameters; we can expect to find faster structured algorithms.

Structured SD 0 000 Structured CR 00 00 Numerical results

Solution algorithms

Brown: $O(n^3)$ per step, Green: $O(n^2)$ per step Generic NARE

- 1. Newton's method [Guo-Laub, '99]
- 2. Cyclic Reduction [Ramaswami '99, Bini–Iannazzo–Latouche–Meini '05]

3. Structured doubling algorithm [Guo-Lin-Xu, '06] Rank structured problem (NT)

- 4. Newton method on Lu's iteration [Lu '05]
- 5. Structured version of 1 and 4 [Bini-lannazzo-P., preprint '06]
- 6. Secular equation [Mehrmann-Xu, preprint '07]
- 7. Structured version of 2 [Bini-Meini-P., preprint '08, this talk]
- 8. Structured version of 3 [Bini-Meini-P., preprint '08, this talk]

Structured SD/ 0 000 Structured CR 00 00 Numerical results

Cauchy-like matrices

Displacement operator

 $\nabla_{s,t}(M) := D_s M - M D_t$

with $D_s = \text{diag}(s)$, $D_t = \text{diag}(t)$ diagonal matrices

M is said Cauchy-like if $\nabla_{s,t}(M)$ has low rank $r \iff$

$$\mathcal{M}_{ij} = rac{(U \cdot V)_{ij}}{s_i - t_j} \quad ext{whenever } s_i
eq t_j$$

U, *V* (*generators*) are $n \times r$, $r \times n$ matrices We only keep in memory the generators, 2nr parameters Usually one requires $s_i \neq t_i$ for all i, j

Instead, we will also need the case s = t (singular operator): nothing is known about the main diagonal of MWe keep in memory generators + diagonal (separately)

Structured SD 0 000 Structured CR 00 00 Numerical results

The GKO algorithm

Solving linear systems with Cauchy-like matrices: GKO algorithm [Gohberg–Kailath–Olshevsky '95]

Theorem (Gohberg–Kailath–Olshevsky)

During each step of Gaussian elimination $M \longrightarrow \begin{bmatrix} * & * \\ 0 & S \end{bmatrix}$, S (the

Schur complement) is Cauchy-like

Instead of computing the elements of $S O(n^3)$, compute its generators $O(n^2)$

Singular operator case: hybrid strategy

- Update the diagonal of M as in the traditional Gaussian elimination $O(n^2)$
- Update the other elements as in GKO $O(n^2)$

Structured SDA

Structured CR 00 00 Numerical results

Structured doubling algorithm (SDA)

$$E_{k+1} = E_k (I - G_k H_k)^{-1} E_k$$

$$F_{k+1} = F_k (I - H_k G_k)^{-1} F_k$$

$$G_{k+1} = G_k + E_k (I - G_k H_k)^{-1} G_k F_k$$

$$H_{k+1} = H_k + F_k (I - H_k G_k)^{-1} H_k E_k$$

(SDA)

1. Spectral transformation:

$$\mathcal{H} = \begin{bmatrix} \mathsf{E} & -\mathsf{C} \\ \mathsf{B} & -\mathsf{A} \end{bmatrix} \mapsto \mathcal{H}_{\gamma} := (\mathcal{H} + \gamma \mathsf{I})^{-1} (\mathcal{H} - \gamma \mathsf{I})$$

2. Block *UL* factorization: $\mathcal{H}_{\gamma} = \mathcal{U}_0^{-1} \mathcal{L}_0$ with

$$\mathcal{U}_0 = \begin{bmatrix} I & -G_0 \\ 0 & F_0 \end{bmatrix}, \quad \mathcal{L}_0 = \begin{bmatrix} E_0 & 0 \\ -H_0 & I \end{bmatrix}$$

3. Implicit update $\mathcal{H}_{\gamma}^{2^{k}} = \mathcal{U}_{k}^{-1}\mathcal{L}_{k}$

・ロト・日本・モート モー うへぐ

Structured SDA 0 000 Structured CR 00 00 Numerical results

The structured case

In the problem (NT), $\mathcal{H} = \mathcal{D} + uv$ (diagonal plus rank 1) $\mathcal{H}_{\gamma}^{2^{k}}$ and \mathcal{H} commute \iff

$$\mathcal{D}\mathcal{H}_{\gamma}^{2^{k}} - \mathcal{H}_{\gamma}^{2^{k}}\mathcal{D} = \mathcal{H}_{\gamma}^{2^{k}}uv - uv\mathcal{H}_{\gamma}^{2^{k}}$$
(1)

SDA preserves the Cauchy-like structure.

Need to compute explicit block generators? e.g. F_k : pre- and post-multiply (1) by $\begin{bmatrix} 0 & F_k \end{bmatrix}$ and $\begin{bmatrix} 0 \\ F_k \end{bmatrix}$ to get

$$\Delta F_k - F_k \Delta = (H_k u_1 + u_2) v_2 F_k - F_k u_2 (v_1 + v_2 G_k)$$

Introduction
0
000
00

Structured	SD
0	
000	

Structured CR 00 00 Numerical results

Cauchy-like structure of SDA

In the same way,

$$DE_{k} - E_{k}D = (u_{1} + G_{k}u_{2})v_{1}E_{k} - E_{k}u_{1}(v_{1} + v_{2}H_{k})$$

$$\Delta F_{k} - F_{k}\Delta = (H_{k}u_{1} + u_{2})v_{2}F_{k} - F_{k}u_{2}(v_{1} + v_{2}G_{k})$$

$$DG_{k} + G_{k}\Delta = (u_{1} + G_{k}u_{2})(v_{1} + v_{2}G_{k}) - E_{k}u_{1}v_{2}F_{k}$$

$$\Delta H_{k} + H_{k}D = (H_{k}u_{1} + u_{2})(v_{1} + v_{2}H_{k}) - F_{k}u_{2}v_{1}E_{k}$$
(GEN'S)

We can reconstruct the iterates from the eight vectors in blue/green (generators).

Instead of updating the matrices $O(n^3)$, update the generators $O(n^2)$

e.g.

$$F_{k+1}u_2 = F_k(I - H_kG_k)^{-1}F_ku_2$$

everything in the RHS can be computed using (GEN'S) and the generators at step k. GKO for the inversion $O(n^2)$

Structured	SDA
0	
000	

Structured CR 00 00 Numerical results

Updating the diagonals

Problem: some of the operators are singular:

 $DE_k - E_k D = \dots$ $\Delta F_k - F_k \Delta = \dots$ (GEN'S)

We need to compute the diagonals of E_{k+1} and F_{k+1} as well. Idea: after the generators update, we know:

- The off-diagonal elements of E_{k+1} and F_{k+1} (via the generators)
- $E_{k+1}u_1$ and $F_{k+1}u_2$ (two of the generators)

Easy to recover them:

$$(E_{k+1})_{jj} = rac{(E_{k+1}u_1 - \text{off-diag}(E_{k+1})u_1)_j}{(u_1)_j}$$

Issue: stability?

Structured SD/ 0 000 Structured CR

Numerical results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline of cyclic reduction (CR)

- 1. Spectral transformation (as in SDA)
- 2. Transform (NARE) to the unilateral equation

$$\begin{bmatrix} E & 0 \\ B & 0 \end{bmatrix} + \begin{bmatrix} -I & -C \\ 0 & -A \end{bmatrix} \mathbf{Y} + \begin{bmatrix} 0 & 0 \\ 0 & -I \end{bmatrix} \mathbf{Y}^2 = 0$$
 (UNI)

3. Solve (UNI) via cyclic reduction.

Introduction	Structured SDA	Structured CR	Numerical results
0	0	0.	
000	000	00	00
00			

Cyclic reduction [Buzbee–Golub–Nielson, '69]

$$S_{k+1} = S_k - R_k S_k^{-1} T_k - T_k S_k^{-1} R_k$$

$$R_{k+1} = -R_k S_k^{-1} R_k$$

$$T_{k+1} = -T_k S_k^{-1} T_k$$

$$\widehat{S}_{k+1} = \widehat{S}_k - T_k S_k^{-1} R_k, \quad \widehat{S}_0 = S_0$$
(CR)

Converges quadratically to the spectral minimal solution of $R_0 + S_0 Y + T_0 Y^2 = 0$

Interpretation of CR [Bini–Latouche–Meini '05]:

- Let $\varphi^{(k)}(z) = R_k z^{-1} + S_k + T_k z$
- Let $\psi^{(k)}(z) = \varphi^{(k)}(z)^{-1}$
- (CR) can be seen as the update $\psi^{(k+1)} = \operatorname{even}\left(\psi^{(k)}
 ight)$

$$even(\psi) = \dots + \psi_{-4}z^{-2} + \psi_{-2}z^{-1} + \psi_0 + \psi_2 z + \psi_4 z^2 + \dots$$

Structured SDA 0 000 Structured CR

Numerical results

The structured case

For the low-rank problem (NT),

$$\varphi^{(0)} = D(z) + uv(z)$$

is diagonal plus rank 1

... some computations lead to...

$$\nabla_{\mathcal{D},\mathcal{D}}\psi^{(0)} = u_1v_1(z) + u_2v_2(z) + u_3(z)v_3$$

This structure is preserved under even(·) $\Rightarrow \nabla_{D,D} \psi^{(k)}$ has rank 3 for all k

... even more computations lead to...

Structured SD/ 0 000 Structured CR $\circ \circ$

Numerical results

Cauchy-like structure of CR

Cauchy-like structure

$$\nabla_{\mathcal{D},\mathcal{D}} R_{k} = R_{k} u_{1} s_{0}^{(k)} + S_{k} u_{2} t_{-1}^{(k)} + u_{0} v_{3} R_{k},$$

$$\nabla_{\mathcal{D},\mathcal{D}} S_{k} = R_{k} u_{1} s_{1}^{(k)} + S_{k} u_{1} s_{0}^{(k)} + S_{k} u_{2} t_{0}^{(k)} + T_{k} u_{2} t_{-1}^{(k)} + u_{0} v_{3} S_{k},$$

$$\nabla_{\mathcal{D},\mathcal{D}} T_{k} = S_{k} u_{1} s_{1}^{(k)} + T_{k} u_{2} t_{0}^{(k)} + u_{0} v_{3} T_{k},$$

 R_k , S_k , T_k have size n + m, but there are some zero or known blocks we can skip

We can reconstruct the iterates from

- 8 vectors of length *n* or *m*
- 2 diagonals

Proceed as in SDA: update vectors and diagonals

Structured SD. 0 000 Structured CR 00 00 Numerical results

Numerical results - noncritical case

Structured SDA

Structured CR 00 00 Numerical results

Numerical results – quasi-critical case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Structured SD 0 000 Structured CR 00 00 Numerical results $\circ\circ$ $\circ\circ$

To sum up...

- Structural analysis (for Cauchy-like input) of SDA and CR
 - Better understanding of the algorithms
- Developed structured versions of SDA and CR
- Faster than nonstructured algorithms
- Not as fast as structured Lu/Newton
- Loss of precision in near-to-critical cases
 - Stabler ways to recover diagonal of iterates?
- Can be generalized to diag+rank r; scales as $O(n^2r)$
 - Lu/Newton would scale as $O(n^2r^2)$
 - Needed in applications? Solution "looking for a problem"

Structured SDA 0 000 Structured CR 00 00 Numerical results $\circ\circ$ $\circ\bullet$

Another kind of fast SDA

(Thanks to Antonio for the joke)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで