SDA and cyclic reduction for a rank-structured algebraic Riccati equation

D. A. Bini ${ }^{1} \quad$ B. Meini ${ }^{1} \quad$ F. Poloni ${ }^{1,2}$
${ }^{1}$ Dipartimento di Matematica Università di Pisa
${ }^{2}$ Scuola Normale Superiore, Pisa
Two-days of Numerical Linear Algebra Bologna, 6-7 March, 2008

Outline

Introduction to the problem
Motivations
Algebraic Riccati equations
Cauchy-like matrices
Structured SDA
Outline of SDA
Structured SDA
Structured cyclic reduction
Outline of cyclic reduction Structured cyclic reduction

Numerical results
Numerical results
Research lines

Motivations

Padua, Two-days of Numerical Linear Algebra 2007
F. Poloni: "Fast Newton method for an algebraic Riccati equation"

Research lines

- Fast SDA? The SDA iterates are generalized Cauchy-like as well

This year I am going to fill in the gap: fast $O\left(n^{2}\right)$ versions of two other algorithms for the same equation

Derivation and comparison between the algorithms

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

$$
\begin{gathered}
X C X-A X-X E+B=0 \\
X \in \mathbb{R}^{m \times n} \text {, other matrices compatible }
\end{gathered}
$$

Recent interest in the literature e.g. [Guo-Laub '00, Lu '05,
Guo-Higham '05, Bini-lannazzo-Latouche-Meini '06]

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

$$
\begin{gathered}
X C X-A X-X E+B=0 \\
X \in \mathbb{R}^{m \times n}, \text { other matrices compatible }
\end{gathered}
$$

Recent interest in the literature e.g. [Guo-Laub '00, Lu '05,
Guo-Higham '05, Bini-lannazzo-Latouche-Meini '06]
X solves (NARE) $\Leftrightarrow\left[\begin{array}{ll}E & -C \\ B & -A\end{array}\right]\left[\begin{array}{l}I \\ X\end{array}\right]=\left[\begin{array}{l}I \\ X\end{array}\right](E-C X)$

$$
\text { Solutions } \Leftrightarrow \quad \text { invariant subspaces of } \mathcal{H}:=\left[\begin{array}{ll}
E & -C \\
B & -A
\end{array}\right]
$$

- Explicit calculation of the eigenvectors: numerical problems
- Iterative methods: cost $O\left(n^{3}\right) /$ step, quadratic convergence

Rank-structured NAREs

From a physics problem, we get
One-group neutron transport equation

$$
\begin{equation*}
\Delta X+X D=(X q+e)\left(e^{T}+q^{T} X\right) \tag{NT}
\end{equation*}
$$

D, Δ "positive" diagonal matrices, $e, q>0$ vectors
(NT) is a NARE with rank structure:

$$
A=\Delta-e q^{T}, B=e e^{T}, C=q q^{T}, E=D-q e^{T}
$$

Defined by $O(n)$ parameters; we can expect to find faster structured algorithms.

Solution algorithms

Brown: $O\left(n^{3}\right)$ per step, Green: $O\left(n^{2}\right)$ per step Generic NARE

1. Newton's method [Guo-Laub, '99]
2. Cyclic Reduction [Ramaswami '99, Bini-lannazzo-Latouche-Meini '05]
3. Structured doubling algorithm [Guo-Lin-Xu, '06]

Rank structured problem (NT)
4. Newton method on Lu's iteration [Lu '05]
5. Structured version of 1 and 4 [Bini-lannazzo-P., preprint '06]
6. Secular equation [Mehrmann-Xu, preprint '07]
7. Structured version of 2 [Bini-Meini-P., preprint '08, this talk]
8. Structured version of 3 [Bini-Meini-P., preprint '08, this talk]

Cauchy-like matrices

Displacement operator

$$
\nabla_{s, t}(M):=D_{s} M-M D_{t}
$$

with $D_{s}=\operatorname{diag}(s), D_{t}=\operatorname{diag}(t)$ diagonal matrices
M is said Cauchy-like if $\nabla_{s, t}(M)$ has low rank r

$$
M_{i j}=\frac{(U \cdot V)_{i j}}{s_{i}-t_{j}} \quad \text { whenever } s_{i} \neq t_{j}
$$

U, V (generators) are $n \times r, r \times n$ matrices
We only keep in memory the generators, $2 n r$ parameters
Usually one requires $s_{i} \neq t_{j}$ for all i, j
Instead, we will also need the case $s=t$ (singular operator): nothing is known about the main diagonal of M
We keep in memory generators + diagonal (separately)

The GKO algorithm

Solving linear systems with Cauchy-like matrices: GKO algorithm [Gohberg-Kailath-Olshevsky '95]

Theorem (Gohberg-Kailath-Olshevsky)
During each step of Gaussian elimination $M \longrightarrow\left[\begin{array}{ll}* & * \\ 0 & S\end{array}\right], S$ (the Schur complement) is Cauchy-like

Instead of computing the elements of $S O\left(n^{3}\right)$, compute its generators $O\left(n^{2}\right)$

Singular operator case: hybrid strategy

- Update the diagonal of M as in the traditional Gaussian elimination $O\left(n^{2}\right)$
- Update the other elements as in GKO $O\left(n^{2}\right)$

Structured doubling algorithm (SDA)

$$
\begin{align*}
E_{k+1} & =E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} \\
F_{k+1} & =F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k} \\
G_{k+1} & =G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} G_{k} F_{k} \tag{SDA}\\
H_{k+1} & =H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k}
\end{align*}
$$

1. Spectral transformation:

$$
\mathcal{H}=\left[\begin{array}{ll}
E & -C \\
B & -A
\end{array}\right] \mapsto \mathcal{H}_{\gamma}:=(\mathcal{H}+\gamma I)^{-1}(\mathcal{H}-\gamma I)
$$

2. Block $U L$ factorization: $\mathcal{H}_{\gamma}=\mathcal{U}_{0}^{-1} \mathcal{L}_{0}$ with

$$
\mathcal{U}_{0}=\left[\begin{array}{cc}
I & -G_{0} \\
0 & F_{0}
\end{array}\right], \quad \mathcal{L}_{0}=\left[\begin{array}{cc}
E_{0} & 0 \\
-H_{0} & I
\end{array}\right]
$$

3. Implicit update $\mathcal{H}_{\gamma}^{2^{k}}=\mathcal{U}_{k}^{-1} \mathcal{L}_{k}$

The structured case

In the problem (NT), $\mathcal{H}=\mathcal{D}+u v$ (diagonal plus rank 1) $\mathcal{H}_{\gamma}^{2^{k}}$ and \mathcal{H} commute

$$
\begin{equation*}
\mathcal{D} \mathcal{H}_{\gamma}^{2^{k}}-\mathcal{H}_{\gamma}^{2^{k}} \mathcal{D}=\mathcal{H}_{\gamma}^{2^{k}} u v-u v \mathcal{H}_{\gamma}^{2^{k}} \tag{1}
\end{equation*}
$$

SDA preserves the Cauchy-like structure.
Need to compute explicit block generators? e.g. F_{k} :
pre- and post-multiply (1) by $\left[\begin{array}{ll}0 & F_{k}\end{array}\right]$ and $\left[\begin{array}{c}0 \\ F_{k}\end{array}\right]$ to get

$$
\Delta F_{k}-F_{k} \Delta=\left(H_{k} u_{1}+u_{2}\right) v_{2} F_{k}-F_{k} u_{2}\left(v_{1}+v_{2} G_{k}\right)
$$

Cauchy-like structure of SDA

In the same way,

$$
\begin{align*}
D E_{k}-E_{k} D & =\left(u_{1}+G_{k} u_{2}\right) v_{1} E_{k}-E_{k} u_{1}\left(v_{1}+v_{2} H_{k}\right) \\
\Delta F_{k}-F_{k} \Delta & =\left(H_{k} u_{1}+u_{2}\right) v_{2} F_{k}-F_{k} u_{2}\left(v_{1}+v_{2} G_{k}\right) \\
D G_{k}+G_{k} \Delta & =\left(u_{1}+G_{k} u_{2}\right)\left(v_{1}+v_{2} G_{k}\right)-E_{k} u_{1} v_{2} F_{k} \tag{GEN'S}\\
\Delta H_{k}+H_{k} D & =\left(H_{k} u_{1}+u_{2}\right)\left(v_{1}+v_{2} H_{k}\right)-F_{k} u_{2} v_{1} E_{k}
\end{align*}
$$

We can reconstruct the iterates from the eight vectors in blue/green (generators).
Instead of updating the matrices $O\left(n^{3}\right)$, update the generators $O\left(n^{2}\right)$
e.g.

$$
F_{k+1} u_{2}=F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k} u_{2}
$$

everything in the RHS can be computed using (GEN'S) and the generators at step k.
GKO for the inversion $O\left(n^{2}\right)$

Updating the diagonals

Problem: some of the operators are singular:

$$
\begin{align*}
D E_{k}-E_{k} D & =\ldots \\
\Delta F_{k}-F_{k} \Delta & =\ldots \tag{GEN'S}
\end{align*}
$$

We need to compute the diagonals of E_{k+1} and F_{k+1} as well. Idea: after the generators update, we know:

- The off-diagonal elements of E_{k+1} and F_{k+1} (via the generators)
- $E_{k+1} u_{1}$ and $F_{k+1} u_{2}$ (two of the generators)

Easy to recover them:

$$
\left(E_{k+1}\right)_{j j}=\frac{\left(E_{k+1} u_{1}-\text { off-diag }\left(E_{k+1}\right) u_{1}\right)_{j}}{\left(u_{1}\right)_{j}}
$$

Issue: stability?

Outline of cyclic reduction (CR)

1. Spectral transformation (as in SDA)
2. Transform (NARE) to the unilateral equation

$$
\left[\begin{array}{ll}
E & 0 \tag{UNI}\\
B & 0
\end{array}\right]+\left[\begin{array}{cc}
-I & -C \\
0 & -A
\end{array}\right] Y+\left[\begin{array}{cc}
0 & 0 \\
0 & -I
\end{array}\right] Y^{2}=0
$$

3. Solve (UNI) via cyclic reduction.

Cyclic reduction [Buzbee-Golub-Nielson, '69]

$$
\begin{align*}
& S_{k+1}=S_{k}-R_{k} S_{k}^{-1} T_{k}-T_{k} S_{k}^{-1} R_{k} \\
& R_{k+1}=-R_{k} S_{k}^{-1} R_{k} \\
& T_{k+1}=-T_{k} S_{k}^{-1} T_{k} \tag{CR}\\
& \widehat{S}_{k+1}=\widehat{S}_{k}-T_{k} S_{k}^{-1} R_{k}, \quad \widehat{S}_{0}=S_{0}
\end{align*}
$$

Converges quadratically to the spectral minimal solution of $R_{0}+S_{0} Y+T_{0} Y^{2}=0$
Interpretation of CR [Bini-Latouche-Meini '05]:

- Let $\varphi^{(k)}(z)=R_{k} z^{-1}+S_{k}+T_{k} z$
- Let $\psi^{(k)}(z)=\varphi^{(k)}(z)^{-1}$
- (CR) can be seen as the update $\psi^{(k+1)}=\operatorname{even}\left(\psi^{(k)}\right)$

$$
\operatorname{even}(\psi)=\cdots+\psi_{-4} z^{-2}+\psi_{-2} z^{-1}+\psi_{0}+\psi_{2} z+\psi_{4} z^{2}+\cdots
$$

The structured case

For the low-rank problem (NT),

$$
\varphi^{(0)}=D(z)+u v(z)
$$

is diagonal plus rank 1
... some computations lead to...

$$
\nabla_{\mathcal{D}, \mathcal{D}} \psi^{(0)}=u_{1} v_{1}(z)+u_{2} v_{2}(z)+u_{3}(z) v_{3}
$$

This structure is preserved under even $(\cdot) \Rightarrow \nabla_{\mathcal{D}, \mathcal{D}} \psi^{(k)}$ has rank 3 for all k
...even more computations lead to...

Cauchy-like structure of CR

Cauchy-like structure

$$
\begin{aligned}
& \nabla_{\mathcal{D}, \mathcal{D}} R_{k}=R_{k} u_{1} s_{0}^{(k)}+S_{k} u_{2} t_{-1}^{(k)}+u_{0} v_{3} R_{k}, \\
& \nabla_{\mathcal{D}, \mathcal{D}} S_{k}=R_{k} u_{1} s_{1}^{(k)}+S_{k} u_{1} s_{0}^{(k)}+S_{k} u_{2} t_{0}^{(k)}+T_{k} u_{2} t_{-1}^{(k)}+u_{0} v_{3} S_{k}, \\
& \nabla_{\mathcal{D}, \mathcal{D}} T_{k}=S_{k} u_{1} s_{1}^{(k)}+T_{k} u_{2} t_{0}^{(k)}+u_{0} v_{3} T_{k},
\end{aligned}
$$

R_{k}, S_{k}, T_{k} have size $n+m$, but there are some zero or known blocks we can skip
We can reconstruct the iterates from

- 8 vectors of length n or m
- 2 diagonals

Proceed as in SDA: update vectors and diagonals

Numerical results - noncritical case

Total time, alpha=0.5, $\mathrm{c}=0.5$

Relative residual

Numerical results - quasi-critical case

Total time, alpha=1.E-8, $c=1-1 . E-6$

Relative residual

To sum up...

- Structural analysis (for Cauchy-like input) of SDA and CR
- Better understanding of the algorithms
- Developed structured versions of SDA and CR
- Faster than nonstructured algorithms
- Not as fast as structured Lu/Newton
- Loss of precision in near-to-critical cases
- Stabler ways to recover diagonal of iterates?
- Can be generalized to diag+rank r; scales as $O\left(n^{2} r\right)$
- Lu/Newton would scale as $O\left(n^{2} r^{2}\right)$
- Needed in applications? Solution "looking for a problem"

Another kind of fast SDA

(Thanks to Antonio for the joke)

