Corso di Laurea in Astronomia

Algebra Lineare e Geometria Esercitazione Docente: Nicoletta Cantarini Bologna, 16 novembre 2020

Risolvere alcuni tra i seguenti esercizi:

Esercizio 1. Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'endomorfismo associato, rispetto alla base canonica, alla matrice:

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right).$$

- 1. Stabilire se f è invertibile.
- 2. Stabilire se f è diagonalizzabile.
- 3. Determinare gli autospazi di f.
- 4. Scrivere una matrice B simile ad A ($B \neq A$).

Esercizio 2. Discutere, al variare di $h \in \mathbb{R}$, la risolubilità del seguente sistema lineare nelle incognite x, y, z:

$$\begin{cases}
-x + hy + z = h \\
hx - y + 3z = 0 \\
5hx - 5y + 3z = -3 \\
2hx - 2y - 6z = -3
\end{cases}$$

e, quando è possibile, determinarne le soluzioni.

Esercizio 3. Sia $f: V \to W$ un'applicazione lineare. Siano $\dim(V) = n$, $\dim(W) = m$ e $\dim(Imf) = k \le m$. Mostrare che esistono una base \mathcal{B}_V di V ed una base \mathcal{B}_W di W tali che

$$M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) = \left(\begin{array}{cc} I_k & 0 \\ 0 & 0 \end{array} \right).$$

Esercizio 4. Stabilire quali tra le seguenti matrici in $M_3(\mathbb{Q})$ sono simili:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$