Corso di Laurea in Astronomia

Algebra Lineare e Geometria - II appello Docente: Nicoletta Cantarini Bologna, 27 gennaio 2021

Risolvere tre dei seguenti quattro esercizi:

Esercizio 1. Sia β la forma bilineare su \mathbb{R}^3 associata alla matrice

$$S = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & -1 & 0\\ 1 & 0 & 0 \end{array}\right).$$

- a) Calcolare la segnatura di β .
- b) Determinare i vettori isotropi rispetto a β e stabilire se essi costituiscono un sottospazio vettoriale di \mathbb{R}^3 .
- c) Determinare, se possibile, un sottospazio vettoriale W di \mathbb{R}^3 di dimensione due tale che la restrizione di β a W sia definita negativa.

Esercizio 2. Sia σ la riflessione di \mathbb{R}^3 rispetto al piano π di equazione x-y+z=0. Scrivere la matrice di σ rispetto alla base canonica di \mathbb{R}^3 .

Esercizio 3. Sia $V = \mathbb{Q}^4$ e siano

$$W_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{Q}^4 \, | \, x_1 + x_2 + x_3 + x_4 = 0 \right\} \in W_2 = Span \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Siano $f: W_1 \to \mathbb{Q}^2$ la restrizione a W_1 della moltiplicazione per la matrice $A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{pmatrix}$,

e
$$g_a: W_2 \to \mathbb{Q}^2$$
 l'applicazione tale che $g_a\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 3\\0\\0 \end{pmatrix}$ e $g_a\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\a\\ \end{pmatrix}$.

- a) Determinare una base di $W_1 \cap W_2$.
- b) Dire per quali $a \in \mathbb{Q}$ esiste $F : \mathbb{Q}^4 \to \mathbb{Q}^2$ la cui restrizione a W_1 sia f e la cui restrizione a W_2 sia g_a . Per tali a, calcolare la matrice di F rispetto alle basi canoniche di \mathbb{Q}^4 e \mathbb{Q}^2 .

Esercizio 4. Sia $A_a \in M_3(\mathbb{Q})$ la matrice

$$A_a = \left(\begin{array}{ccc} a & 0 & 0\\ 2a - 2 & 1 & 0\\ 3a - 1 & 1 & 0 \end{array}\right).$$

- a) Per quali $a \in \mathbb{Q}$ la matrice A_a è diagonalizzabile?
- b) Esistono valori di $a \in \mathbb{Q}$ tali che la matrice A_a abbia un insieme infinito di sottospazi invarianti?