Corso di Laurea in Astronomia

Algebra Lineare e Geometria - I appello Docente: Nicoletta Cantarini Bologna, 21 dicembre 2020

Risolvere tre dei seguenti sei esercizi:

Esercizio 1. Determinare la segnatura della forma bilineare β_A su \mathbb{R}^3 di matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 0 & 0 \\ -1 & 0 & -1 \end{array}\right)$$

rispetto alla base canonica. Stabilire se A è congruente alla matrice

$$B = \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Determinare una base di \mathbb{R}^3 ortogonale rispetto a β_A .

Esercizio 2. Si consideri la matrice

$$A = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 0 & 0 \\ -3 & 0 & 9 \end{pmatrix} \in M_3(\mathbb{R})$$

e sia β_A la forma bilineare su \mathbb{R}^3 associata alla matrice A rispetto alla base canonica.

- a) Determinare il radicale di β_A .
- b) Determinare l'insieme dei vettori isotropi rispetto a β_A e stabilire se esso è un sottospazio vettoriale di \mathbb{R}^3 .
- c) Sia $U = Span\{(0,1,0)^T, (1,2,1)^T\}$. Calcolare una base di U^{\perp} (rispetto a β_A) e stabilire se è vero che $\mathbb{R}^3 = U \oplus U^{\perp}$.

Esercizio 3. Sia π la rotazione di \mathbb{R}^3 in senso antiorario di un angolo di $\frac{\pi}{4}$ intorno alla retta r passante per O=(0,0,0) di direzione $(1,1,-1)^T$. Scrivere la matrice di π rispetto alla base canonica di \mathbb{R}^3 . Scrivere, inoltre, equazioni cartesiane per la retta r.

Esercizio 4. Costruire, se possibile, una funzione lineare suriettiva $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che:

$$f(1,1,0) = (0,1), f(2,0,0) = (2,2), f(1,-1,0) = (2,1).$$

Calcolare la controimmagine del vettore (1,1) mediante la funzione f costruita.

Esercizio 5. Sia V uno spazio vettoriale di dimensione finita n su \mathbb{Q} , siano $U, W \subset V$ due sottospazi, di dimensione m e p rispettivamente, tali che $V = U \oplus W$. Siano $\pi_U, \pi_W \in End(V)$ le proiezioni su U e W associate alla scomposizione in somma diretta. Sia F l'endomorfismo $F = \pi_U - \pi_W$.

- 1. Calcolare F^2 .
- 2. Chi sono gli autovalori e gli autovettori di F? F è diagonalizzabile?

Esercizio 6. Sia $a \in \mathbb{R}$ e sia

$$A_a = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & a \end{array}\right).$$

- 1. Per quali valori di $a \in \mathbb{R}$ la matrice A_a è diagonalizzabile (su \mathbb{R})?
- 2. Considerare, per $a \in \mathbb{Q}$, la stessa matrice in $M_3(\mathbb{Q})$. Esistono valori di a per cui essa è diagonalizzabile su \mathbb{Q} ?