COMPITO

Parziale 1, Algebra Lineare, Informatica per il Management (Morigi)

6 Aprile 2011

NOME:			

NUMERO DI MATRICOLA:

COGNOME:

Non sono permessi telefonini, libri o appunti.

Ci sono 3 esercizi per un totale di 28 punti. Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta, siate chiari nei ragionamenti e scrivete tutti i calcoli necessari per rispondere alle domande, motivandoli.

In tutto il compito siano a, b, c le ultime tre cifre non nulle del proprio numero di matricola.

1	
2	
3	
Totale	

Esercizio 1 (11 punti)

- a) Si dica se l'insieme $W=\left\{\begin{pmatrix} r & -bs \\ s & ar \end{pmatrix}| r,s\in\mathbf{R}\right\}\subseteq\mathrm{M}_{2,2}(\mathbf{R})$ è un sottospazio vettoriale di $\mathrm{M}_{2,2}(\mathbf{R})$ e in caso affermativo si determini la dimensione di W.
- b) Sia V uno spazio vettoriale e sia $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}\subseteq V$. Si dia con chiarezza la definizione di Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$. Si determinino, se possibile, 4 vettori linearmente dipendenti di $\mathbf{R}_3[x]$ che generano $\mathbf{R}_3[x]$.

Esercizio 2 (8 punti)

- a) Si stabilisca per quali valori di k i vettori $\mathbf{v}_1 = x^2 + 2x + 2$, $\mathbf{v}_2 = -ax^2 + 2kx + k a$, $\mathbf{v}_3 = kx^2 + (2k + 2b)x + 3k$ sono linearmente indipendenti.
- b) Posto k=0, si determini, se possibile, un vettore ${\bf w}$ di ${\bf R}_2[x]$ che non appartiene a Span $\{{\bf v}_1,{\bf v}_2,{\bf v}_3\}$.

Esercizio 3 (9 punti)

- a) Sia $U = \text{Span}\left\{\begin{pmatrix} b & 0 \\ b & c \end{pmatrix}, \begin{pmatrix} 2b & c \\ b & 0 \end{pmatrix}, \begin{pmatrix} -b & c \\ -2b & -3c \end{pmatrix}\right\}$. Si determini una base \mathcal{B} di U e la si completi ad una base di $M_{2,2}(\mathbf{R})$ senza utilizzare i vettori della base canonica.
- b) Quante basi ha $M_{2,2}(\mathbf{R})$?

CREDITO EXTRA (2 punti) Trovare infiniti sottospazi distinti di ${\bf R}^3$ che contengono il vettore (0,b,0).