Corso di Laurea in Informatica per il Management

Corso di ALGEBRA LINEARE. Docente: Prof.ssa Nicoletta Cantarini Bologna 4 aprile 2012 - Svolgimento della prova parziale simulata

- **1.** (11 punti) Sia $S = \{(x, y, z, t) \in \mathbb{R}^4 \mid x y + z = 0, y + z t = 0\}.$
 - (a) Mostrare che S è un sottospazio vettoriale di \mathbb{R}^4 .
 - (b) Determinare una base di S ed un insieme di generatori di S che non sia una base di S.
 - (c) Sia $L = \{(5a, 2a, -3a, -a) \in \mathbb{R}^4\}$. Determinare una base \mathcal{B} di $L \cap S$ e completare \mathcal{B} in una base di S.
 - (d) Stabilire se $L \cup S$ è un sottospazio vettoriale di \mathbb{R}^4 .

Svolgimento. (a) Usiamo le equazioni che definiscono S per esprimere due delle 4 variabili x, y, z, t rispetto alle altre due. Abbiamo, ad esempio, x = y - z e t = y + z. Dunque $S = \{(y - z, y, z, y + z) \in \mathbb{R}^4\} = \langle (1, 1, 0, 1), (-1, 0, 1, 1) \rangle$. S è perciò un sottospazio vettoriale di \mathbb{R}^4 poiché è l'insieme di tutte e sole le combinazioni lineari dei vettori (1, 1, 0, 1) e (-1, 0, 1, 1).

- (b) Rispondendo alla domanda precedente abbiamo mostrato che i vettori (1,1,0,1) e (-1,0,1,1) generano S. Tali vettori sono anche linearmente indipendenti poiché non sono uno multiplo dell'altro, perciò $\{(1,1,0,1),(-1,0,1,1)\}$ è una base di S. Per ottenere un insieme di generatori di S che non sia una base di S basta aggiungere ai vettori (1,1,0,1) e (-1,0,1,1) un vettore linearmente dipendente da essi, ad esempio (2,2,0,2).
- (c) Per determinare $L \cap S$ cerchiamo tra gli elementi di L, cioè tra i vettori della forma (5a, 2a, -3a, -a), quelli che stanno anche in S cioè quelli che soddisfano le equazioni di S. Sostituendo gli elemen-

ti della forma (5a, 2a, -3a, -a) nelle equazioni di S otteniamo: $\begin{cases} 5a - 2a - 3a = 0 \\ 2a - 3a + a = 0. \end{cases}$ Osserviamo dunque che entrambe le equazioni di S sono soddisfatte da tutti gli elementi di L, quindi $L \subset S$ e $L \cap S = L$. Una base di $L \cap S$ è dunque una base di L, ad esempio $\mathcal{B} = \{(5, 2, -3, -1)\}$. Dal momento che dim S = 2, per completare \mathcal{B} in una base di S basta aggiungere al vettore S e una base di S linearmente indipendente da S. Ad esempio S e una base di S.

- (d) Abbiamo già osservato che $L \subset S$, pertanto $L \cup S = S$ che abbiamo già mostrato essere un sottospazio vettoriale di \mathbb{R}^4 .
- **2.** (9 punti) Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$f(x,y) = (x - y, 2x - 2y, 3x - 3y).$$

- (a) Determinare nucleo e immagine di f. La funzione f è iniettiva? È suriettiva?
- (b) Scrivere la matrice associata ad f rispetto alla base canonica di \mathbb{R}^2 e alla base $\mathcal{B} = \{(1,2,3), (1,2,0), (1,0,0)\}$ di \mathbb{R}^3 .
- (c) Posto $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 0 & 5 \end{pmatrix}$, stabilire se A può essere la matrice associata alla funzione f rispetto ad una base \mathcal{B}_1 di \mathbb{R}^2 e ad una base \mathcal{B}_2 di \mathbb{R}^3 opportunamente scelte.

Svolgimento. (a) Abbiamo: $\ker f = \{(x,y) \in \mathbb{R}^2 \mid (x-y,2x-2y,3x-3y) = (0,0,0)\} = \{(x,y) \in \mathbb{R}^2 \mid x-y=0,2x-2y=0,3x-3y=0\} = \{(x,y) \in \mathbb{R}^2 \mid x-y=0\} = \{(x,y) \in \mathbb{R}^2 \mid x=y\} = \{(x,x) \in \mathbb{R}^2\} = \langle (1,1) \rangle$. Abbiamo dunque $\dim(\ker f) = 1$. Allora, per il Teorema delle dimensioni, $\dim(Imf) = 2-1 = 1$. Sappiamo che $Imf = \langle f(1,0), f(0,1) \rangle = \langle (1,2,3), (-1,-2,-3) \rangle = \langle (1,2,3) \rangle$. La funzione f non è iniettiva perchè il suo nucleo non è banale e non è suriettiva perché $Imf \neq \mathbb{R}^3$ (ricordiamo che, per il Teorema delle dimensioni, nessuna funzione lineare $f: \mathbb{R}^2 \to \mathbb{R}^3$ può essere suriettiva).

(b) La matrice richiesta è una matrice 3×2 che ha sulle colonne le immagini dei vettori (1,0) e (0,1) scritte in coordinate rispetto alla base \mathcal{B} . Abbiamo: $f(1,0) = (1,2,3) = (1,0,0)_{\mathcal{B}}$ e $f(0,1) = (-1,-2,-3) = (-1,0,0)_{\mathcal{B}}$. La matrice richiesta è dunque:

$$F = \left(\begin{array}{cc} 1 & -1 \\ 0 & 0 \\ 0 & 0 \end{array}\right).$$

- (c) La matrice A ha rango 2 pertanto non può essere la matrice associata alla funzione f rispetto ad alcuna base di \mathbb{R}^2 e \mathbb{R}^3 : sappiamo infatti che l'immagine di f ha dimensione 1.
- **3.** (10 punti) Al variare del parametro reale s sia

$$A_s = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & -1 & 1 \\ s & 0 & 1 \end{array}\right)$$

la matrice dell'applicazione lineare $f_s : \mathbb{R}^3 \to \mathbb{R}^3$ rispetto alla base canonica di \mathbb{R}^3 (sia nel dominio che nel codominio di f_s).

- (a) Stabilire per quali valori di s la funzione f_s è iniettiva e/o suriettiva.
- (b) Determinare una base di ker f_s ed una base di $Im f_s$ al variare di $s \in \mathbb{R}$.
- (c) Stabilire per quali valori di s il vettore (2, 1, -1) appartiene ad $Im f_s$.

Svolgimento. (a) Un endomorfismo di uno spazio vettoriale è iniettivo se e solo se è suriettivo. Dobbiamo dunque stabilire per quali valori di s si ha $rgA_s=3$. Il rango della matrice A_s è infatti la dimensione dell'immagine di f_s .

$$rgA_s = rg \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ s & 0 & 1 \end{pmatrix} = rg \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & s & 1 \end{pmatrix} = rg \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 + s \end{pmatrix}.$$

Ne deduciamo che per ogni $s \neq -1$, $rgA_s = 3$. In tal caso $\dim(Imf_s) = 3$, perciò $Imf_s = \mathbb{R}^3$. La funzione f_s è quindi suriettiva e, per il Teorema delle dimensioni, anche iniettiva.

- (b) Abbiamo appena mostrato che per ogni $s \neq -1$, $Imf_s = \mathbb{R}^3$ e $\ker f_s = \{0_{\mathbb{R}^3}\}$. In tal caso una base di ImF_s è $\{(1,0,0),(0,1,0),(0,0,1)\}$. Se s=-1, invece, $rgA_{-1}=2$, quindi $\dim(Imf_{-1})=2$. L'immagine di f_{-1} è generata dalle colonne della matrice A_{-1} . Di queste, solo due colonne sono linearmente indipendenti. Una base di Imf_{-1} è dunque $\{(1,0,-1),(-1,-1,0)\}$. Per il Teorema delle dimensioni, $\dim(\ker f_{-1})=1$. Per calcolare il nucleo di f_{-1} occorre risolvere il sistema lineare omogeneo associato alla matrice A_{-1} o, equivalentemente, alla matrice ridotta in forma a scala. Abbiamo quindi $\ker f_{-1}=\{(x,y,z)\mid x-y=0,-y+z=0\}=\{(x,x,x)\}=\langle (1,1,1)\rangle$.
- (c) Per ogni $s \neq -1$, $Im f_s = \mathbb{R}^3$ pertanto certamente $Im f_s$ contiene il vettore (2, 1, -1). Se s = -1, $Im f_{-1} = \langle (1, 0, -1), (-1, -1, 0) \rangle$. Notiamo che (2, 1, -1) = (1, 0, -1) (-1, -1, 0), pertanto anche in questo caso $(2, 1, -1) \in Im f_{-1}$. In conclusione $(2, 1, -1) \in Im f_s$ per ogni $s \in \mathbb{R}$.