Corso di Laurea in Matematica GEOMETRIA 1B -

Docenti: Luca Migliorini, Nicoletta Cantarini Bologna, 27 Gennaio 2020

Risolvere tre dei seguenti quattro esercizi.

Esercizio 1. Dato $a \in \mathbb{Q}$ sia β_a la forma bilineare su \mathbb{Q}^4 associata alla matrice

$$S = \left(\begin{array}{cccc} 1 & a & 0 & 0 \\ a & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & a & 1 \end{array}\right).$$

- a) Determinare per quali valori di a la forma β_a è degenere.
- b) Determinare per quali valori di a esistono sottospazi isotropi di dimensione due per β_a .
- c) Esistono valori di a per i quali esistono sottospazi isotropi di dimensione maggiore di due?

Esercizio 2. Sia k un intero positivo e sia $A \in M_n(\mathbb{C})$ tale che $A^k = I$.

- a) Mostrare che se A ha un solo autovalore allora A è un multiplo di una matrice scalare.
- b) Dare un esempio di una matrice $A \in M_n(\mathbb{C})$ che soddisfi $A^k = I$ e che abbia più autovalori. Esistono $A \in M_n(\mathbb{C})$ non diagonalizzabili con tale proprietá?

Esercizio 3. Siano $A, B \in M_4(\mathbb{Q})$ due matrici nilpotenti, tali che

$$\dim \ker A^2 > \dim \ker A + 1$$
, $\dim \ker B^2 > \dim \ker B + 1$.

Mostrare che A e B sono simili.

Esercizio 4. Sia $F: M_n(\mathbb{Q}) \to M_n(\mathbb{Q})$ definita da $F(X) = 2X + 3X^T$.

- a) Determinare autovalori e autovettori di F;
- b) Determinare il polinomio minimo e il polinomio caratteristico di F.
- c) F è diagonalizzabile?
- d) Le risposte alle domande precedenti sono vere se i coefficienti della matrici, invece che nel campo \mathbb{Q} , sono in un campo di caratteristica 2? E se il campo ha caratteristica 3?