Corso di Laurea in Matematica

GEOMETRIA 1A

Prova di autovalutazione Docenti: Luca Migliorini, Nicoletta Cantarini Bologna, 9 novembre 2018

Esercizio 1. Sia $S = \{(x, y) \in \mathbb{K}^2 \mid x^2 - 3y^2 = 0\}$. Stabilire se S è un sottospazio vettoriale di \mathbb{K}^2 nei seguenti casi:

- a) $\mathbb{K} = \mathbb{Q}$;
- b) $\mathbb{K} = \mathbb{R}$;
- c) $\mathbb{K} = \mathbb{Z}/3\mathbb{Z}$;
- d) $\mathbb{K} = \mathbb{Z}/5\mathbb{Z}$.

Esercizio 2. Costruire, se possibile, una funzione lineare suriettiva $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che:

$$f(1,0,1) = (1,1), f(1,0,-1) = (1,1), f(2,0,3) = (2,2).$$

Calcolare la controimmagine del vettore (-1,-1) mediante la funzione f costruita.

Esercizio 3. Siano $U = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}, V = span\{(2, 1, 2), (1, 1, 1)\} \in T = span\{(1, 0, 0)\}.$

- a) Determinare una base di $U \cap V$;
- b) Mostrare che $T \oplus U = \mathbb{R}^3 = T \oplus V$;
- c) Indicate rispettivamente con π_T e π_T' le proiezioni su T rispetto alle decomposizioni $\mathbb{R}^3 = T \oplus U$ e $\mathbb{R}^3 = T \oplus V$, determinare tutti i vettori v di \mathbb{R}^3 tali che $\pi_T(v) = \pi_T'(v) = (1,0,0)$.