Corso di Laurea in Matematica

GEOMETRIA 1A - IV appello

Docenti: Luca Migliorini, Nicoletta Cantarini Bologna, 6 luglio 2021

Quesiti preliminari. Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente la risposta.

- 1. Siano $f, g: V \to W$ applicazioni lineari. Se ker $f = \ker g$ e Im f = Im g allora f = g.
- 2. Siano V uno spazio vettoriale e $f \in End(V)$. Siano \mathcal{B} , \mathcal{B}' due basi di V tali che $M_{\mathcal{B}}(f) = M_{\mathcal{B}'}(f)$. Allora $\mathcal{B} = \mathcal{B}'$.
- 3. Sia $f: V \to W$ un'applicazione lineare. Se esistono \mathcal{B}_V e \mathcal{B}_W basi di V e W tali che $M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) = I$ allora f è un isomorfismo.

Esercizi. Risolvere tre dei seguenti quattro esercizi.

Esercizio 1. Sia $A \in M_n(\mathbb{K})$ una matrice di rango 1. Mostrare che A è simile ad una delle due seguenti matrici:

$$B = \begin{pmatrix} tr(A) & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{pmatrix}.$$

Esercizio 2. Sia
$$V = \mathbb{K}^4$$
 e siano $U = \operatorname{Span}\left\{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\1 \end{pmatrix}\right\}, \ W = \operatorname{Span}\left\{\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}\right\}.$

Calcolare una base di $Ann(U) + Ann(W) \subseteq (\mathbb{K}^4)^*$.

Esercizio 3. Sia
$$I = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \, | \, (x_1 - 1)^2 + x_2^2 = 1, x_3 = 0 \}.$$

- a) Dire se I è un sottospazio vettoriale di \mathbb{R}^3 .
- b) Determinare una base di Span I.

rispetto alla base canonica.

c) Mostrare che $\{\varphi \in (\mathbb{R}^3)^* | \varphi|_I = 0\}$ è un sottospazio vettoriale di $(\mathbb{R}^3)^*$ e calcolarne la dimensione.

Esercizio 4.

- a) Siano $U = \operatorname{Span}\left\{\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}\right\}$ e $W = \left\{\begin{pmatrix} x_1\\x_2\\x_3\\x_4 \end{pmatrix} \in \mathbb{Q}^4 \,|\, x_1 + x_2 = 0, x_3 + x_4 = 0\right\}$. Costruire un endomorfismo f di \mathbb{Q}^4 tale che $f|_U = 2Id_U$ e $f|_W = Id_W$. Determinare la matrice di f
- b) Dati due sottospazi vettoriali W_1 e W_2 di \mathbb{Q}^4 , di dimensione 2, determinare le condizioni su W_1 e W_2 che assicurano che esista $f \in End(\mathbb{Q}^4)$ tale che $f|_{W_1} = 2Id_{W_1}$ e $f|_{W_2} = Id_{W_2}$.