Geometria 1A - Primo appello

Docenti: N. Cantarini, E. Fatighenti, F. Meazzini, L. Migliorini

8 Gennaio 2024

Giustificare le risposte in modo chiaro e conciso e rispondere alla parte preliminare negli spazi predisposti.	Risposte non
motivate non riceveranno credito. Non saranno accettate brutte copie.	

motivate non riceveranno credito. Non saranno accettate brutte copie.							
NOME		COGNOME			MATRICOLA.		
Domande pr	eliminari Dimos	trare o confutare c	on un controes	empio le seguen	ti affermazioni.		
1) Sia $f: V \longrightarrow V$	un endomorfism	o, e siano W_1 e W	due sottospaz	zi f -invarianti.	Allora $W_1 + W_2$ è	f-invariante.	
	a base duale di un ale della base $\{v_1\}$		uno spazio vett	toriale V (di dir	mensione 2). Allor	$\{\psi_1 + \psi_2, \psi_2\}$	
		-, -,					
3) Sia $f: V \longrightarrow \dim(\operatorname{Ker}(f))$		mo nilpotente (nel	senso che esis	te un intero N	positivo per cui f	$r^{N} = 0$). Allora	

Risolvere tre dei seguenti quattro esercizi.

Esercizio 1 Sia $M_n(\mathbb{C})$ lo spazio vettoriale delle matrici $n \times n$ a coefficienti complessi. Date due matrici $A, B \in M_n(\mathbb{C})$, poniamo

$$[A,B] \coloneqq AB - BA.$$

Fissata una matrice non nulla $B \in M_n(\mathbb{C})$, consideriamo l'endomorfismo

$$f: M_n(\mathbb{C}) \longrightarrow M_n(\mathbb{C})$$

definito da f(X) = [X, B].

- a) Stabilire se f è invertibile.
- b) Indicato con $W \subset M_n(\mathbb{C})$ il sottospazio vettoriale delle matrici a traccia nulla, stabilire se $\mathrm{Im}(f) \subseteq W$.
- c) Siano $A, B \in M_n(\mathbb{C})$. Dimostrare che, se $A \in B$ hanno un autovettore in comune, allora $\det([A, B]) = 0$.
- d) Posti n = 3 e $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, determinare una base di Kerf. In questo caso l'endomorfismo f ha altri autospazi?

Esercizio 2 Siano C, V, \mathcal{H} definiti come segue:

$$C = \{(x, y, z)^T \in \mathbb{K}^3 \mid x^2 + y^2 + z^2 = 0\}; \quad V = \{(x, y, z)^T \in \mathbb{K}^3 \mid x - y - z = x + y + z = 0\};$$
$$\mathcal{H} = \{f \in End(\mathbb{K}^3) \mid f(C) \subseteq V\}.$$

- a) Calcolare la dimensione di \mathcal{H} quando $\mathbb{K} = \mathbb{Q}$.
- **b)** Calcolare la dimensione di \mathcal{H} quando $\mathbb{K} = \mathbb{C}$.
- c) Calcolare la dimensione di \mathcal{H} quando $\mathbb{K} = \mathbb{Z}/2\mathbb{Z}$.
- d) Per ciascuno dei casi precedenti stabilire se \mathcal{H} contiene applicazioni iniettive.

Esercizio 3 Sia $V = (\mathbb{Z}/5\mathbb{Z})^3$, e consideriamo le seguenti triple di vettori di V date da

$$v_1 = \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \ v_3 = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$$

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \ w_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \ w_3 = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}.$$

- a) Determinare l'esistenza (e in caso l'unicità) di $f: V \longrightarrow V$ tale che $f(v_i) = w_i$ per i = 1, 2, 3. Determinare inoltre se una eventuale f è iniettiva.
- b) Determinare l'esistenza (e in caso l'unicità) di $g: V \longrightarrow V$ tale che $g(w_i) = v_i$ per i = 1, 2, 3. Determinare inoltre se una eventuale g è iniettiva.
- c) Sia $\mathcal{H} := \{f : V \longrightarrow V \mid f(v_i) = v_i, i = 1, 2, 3\}$. Determinare la cardinalità di \mathcal{H} , e se \mathcal{H} contiene applicazioni diagonalizzabili.

Esercizio 4 Si considerino le seguenti matrici $A, B_k \in M_3(\mathbb{R})$, al variare di $k \in \mathbb{R}$:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 4 & 7 & -1 \end{pmatrix}; \quad B_k = \begin{pmatrix} k & \frac{k-1}{3} & -2 - 2k \\ 0 & 1 & 6 + 6k \\ 0 & 0 & -k \end{pmatrix}.$$

- a) Stabilire se esistono valori di k per cui le matrici A e B_k sono simili.
- b) Stabilire se esistono valori diversi k_1 e k_2 del parametro k tali che B_{k_1} sia simile a B_{k_2} .
- c) Data la matrice

$$C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

determinare, se possibile, una matrice invertibile H tale che $H^{-1}AH = C$.