Geometria 1A - Quarto appello

Docenti: N. Cantarini, E. Fatighenti, L. Migliorini 4 Luglio 2024

Giustificare le risposte in modo chiaro e conciso e rispondere alla parte preliminare negli spazi predisposti. Risposte non motivate non riceveranno credito. **Non saranno accettate brutte copie.**

N	OME	COGNOME		MATRICOLA	••••
	Domande preliminari Dimost	rare o confutare con u	n controesempio le segue	nti affermazioni.	
1)	Sia $\{v_1, v_2, v_3\}$ una base di uno s $i = 1, 2, 3.$	spazio vettoriale $V.\ { m A}$	llora esiste un unico $f \in E$	$\operatorname{End}(V)$ tale che $f(v_i) = 0$ per o	ogni
2)	Sia V un \mathbb{K} -spazio vettoriale e si	ano $f, g \in End(V)$. A	$\operatorname{lora\ min}\{rg(f),rg(g)\}\leq$	rg(f+g).	
3)	Sia $\mathbb{K} = \mathbb{Z}/11$ e sia $f : \mathbb{K}^8 \to \mathbb{K}^6$ u	n'applicazione lineare	tale che ker f abbia 121 ϵ	elementi. Allora f è suriettiva.	

Risolvere tre dei seguenti quattro esercizi.

Esercizio 1 Siano $V = \mathbb{R}^4$ e $W = \{(x, y, z, t)^T \in V | x + 2y - z = 0, 3y - t = 0\}$. Sia

$$A = \left(\begin{array}{rrrr} 1 & -1 & 0 & 0 \\ -3 & 1 & 3 & -2 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

e si consideri l'endomorfismo L_A di \mathbb{R}^4 .

- a) Mostrare che W è L_A -invariante.
- b) Calcolare autovalori e autospazi di L_A .
- c) Determinare una bandiera di sottospazi $V_1 \subseteq V_2 \subseteq V_3 \subseteq V_4$ di \mathbb{R}^4 costituita da sottospazi L_A -invarianti tali che $V_i = W$ per qualche $j = 1, \ldots, 4$.

Esercizio 2 Sia $n \in \mathbb{N}$, n > 2. Siano W un sottospazio vettoriale di \mathbb{R}^n di dimensione n-1 e g un endomorfismo di \mathbb{R}^n tale che la restrizione di g a W sia iniettiva. Stabilire se esiste un endomorfismo f di \mathbb{R}^n tale che $f^2 = 0$ e $\mathbb{R}^n = Im(f) \oplus \ker(g)$.

Esercizio 3 Sia V uno spazio di dimensione finita 2k su \mathbb{Q} e $f \in End(V)$. Supponiamo che V sia somma diretta di k sottospazi vettoriali $\{V_1, \dots, V_k\}$. di dimensione 2, f-invarianti, tali che l'endomorfismo indotto $f_i : V_i \to V_i$ abbia polinomio caratteristico $X^2 - 3X + 2$ per ogni i.

- a) Stabilire se f è diagonalizzabile.
- b) Calcolare gli autovalori di f e le loro molteplicità geometriche e algebriche.
- c) Mostrare che $f^2 3f + 2I = 0$.
- d) Determinare il numero di proiezioni contenute in $Span\{I,f\}$ e descrivere tali proiezioni.

Esercizio 4 Si considerino i seguenti sottospazi di $V = \mathbb{Q}^3$:

$$V_1 = Span\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\3 \end{pmatrix} \right\}, \ V_2^b = Span\left\{ \begin{pmatrix} 1\\-1\\4 \end{pmatrix}, \begin{pmatrix} 2\\1\\b \end{pmatrix} \right\}$$

e il sottospazio

$$\mathcal{H}_b = \{ f \in Hom(V, V^*) \mid f(V_1) \subseteq Ann(V_1), f(V_2^b) \subseteq Ann(V_2^b) \}$$

di End(V). Calcolare la dimensione di \mathcal{H}_b al variare di b.