Foglio di esercizi numero 3

Geometria 1A

Esercizio 1. Determinare per quali valori del parametro reale k il seguente sistema nelle variabili x, y, z ammette infinite soluzioni:

$$\begin{cases} x - ky + z = 1 \\ x + ky - z = 0 \\ 3x - y + z = 2. \end{cases}$$

[Soluzione: k = 1.]

Esercizio 2. Discutere, al variare di $k \in \mathbb{R}$, la risolubilità del sistema:

$$\begin{cases} z + ky = 2 \\ x + y = -1 \\ x + z = 0 \end{cases}$$

nelle variabili x, y, z.

[Soluzione: se $k \neq -1$ una sola soluzione $\left(-\frac{k+2}{k+1}, \frac{1}{k+1}, \frac{k+2}{k+1}\right)$; se k = -1 nessuna soluzione.]

Esercizio 3. Discutere, al variare di $k \in \mathbb{R}$, la risolubilità del seguente sistema omogeneo nelle variabili x, y, z:

$$\begin{cases} x + (k-2)y + z = 0 \\ -kx + y - z = 0 \\ x - y + kz = 0 \end{cases}$$

[Soluzione: se $k \neq 0$ e $k \neq 1$ soluzione nulla; se k = 0 l'insieme delle soluzioni è $span\{(1,1,1)\}$; se k = 1 l'insieme delle soluzioni è $span\{(1,1,0),(0,1,1)\}$.]

Esercizio 4. Risolvere, se possibile, il seguente sistema lineare nelle variabili x, y, z:

$$\begin{cases} 2x + y - z = 2 \\ x - y + 2z = 2 \\ 2x - 2y + 4z = 4 \end{cases}$$

[Soluzione: $span\{(-1,5,3)\}+(\frac{4}{3},-\frac{2}{3},0)$.]

Esercizio 5. Risolvere, se possibile, il seguente sistema lineare nelle incognite x_1, x_2, x_3 :

$$\begin{cases} 2x_1 - x_2 + x_3 = 1\\ x_2 + x_3 = 3\\ x_1 + x_3 = 2 \end{cases}$$

Esercizio 6. Risolvere, se possibile, il seguente sistema lineare nelle incognite x_1, x_2, x_3, x_4 :

$$\begin{cases} 2x_1 - x_2 + 4x_3 + x_4 = -2 \\ -2x_1 + x_2 - 7x_3 + x_4 = -1 \\ 4x_1 - 2x_2 + 5x_3 + 4x_4 = -7 \end{cases}$$

Esercizio 7. Discutere la risolubilità dei seguenti sistemi lineari nelle variabili x, y, z, al variare del parametro in \mathbb{R} :

1

(i)
$$\begin{cases} x + y + z = 1 \\ hx - hy + z = 0 \\ h^2x + h^2y + z = 0. \end{cases}$$

(ii)
$$\begin{cases} x + 2y + 3z = 6 \\ x - 2y - z = k - 2 \\ x + ky + z = k + 2. \end{cases}$$

(iii)
$$\begin{cases} x + hz = -h \\ -x + y + z = h \\ x + hy + hz = 1. \end{cases}$$

Soluzioni: (i) Per $h=\pm 1$ il sistema non ha soluzioni; per h=0 l'insieme delle soluzioni è $S=span\{(-1,1,0)\}+(1,0,0)$; per $h\neq \pm 1,0$ il sistema ha l'unica soluzione $(\frac{1}{2(1-h)},\frac{1}{2(h+1)},\frac{h^2}{h^2-1})$. (ii) Se k=0 l'insieme delle soluzioni è $T=span\{(1,1,-1)\}+(2,2,0)$; se $k\neq 0$ il sistema ha l'unica soluzione $(\frac{1}{2}+\frac{3}{4}k,\frac{1}{2},\frac{6-k}{4})$. (iii) Se h=0 il sistema non ha soluzioni; se h=-1 l'insieme delle soluzioni è $R=span\{(1,0,1)\}+(1,0,0)$; se $h\neq 0,-1$ il sistema ha l'unica soluzione $(1-h,\frac{1+h}{h},-\frac{1}{h})$.

Esercizio 8. Al variare di $t \in \mathbb{R}$ si determinino le soluzioni del seguente sistema lineare nelle incognite x, y, z:

$$\begin{cases} x + ty + z = 1 \\ tx + y + z = t^2 \\ x + y + tz = t. \end{cases}$$

Esercizio 9. Sia S l'insieme delle soluzioni del seguente sistema nelle incognite x, y, z:

$$\begin{cases} x + 2y + z = 1 \\ 2x + 3y + 3z = 4. \end{cases}$$

- 1. Determinare S.
- 2. Esiste una terna $(a, b, c) \in \mathbb{R}^3$ tale che (a, b, c) + S sia un sottospazio vettoriale di \mathbb{R}^3 ? In caso affermativo determinarla.

Esercizio 10. Sia dato il sistema nelle variabili x_1, x_2, x_3, x_4 :

$$\begin{cases} x_1 - x_2 + 2x_4 = 1\\ ax_1 + ax_2 - 2x_4 = 0\\ ax_1 + (a - 1)x_4 = a. \end{cases}$$

Si discuta il sistema al variare di $a \in \mathbb{R}$.

Esercizio 11. Sia S_t , al variare del parametro reale t, l'insieme delle soluzioni del seguente sistema lineare nelle incognite x, y, z:

$$\begin{cases} 6x + ty + 6z = 0 \\ tx - ty = 0 \\ tx + 2z = 0. \end{cases}$$

- 1. Determinare S_t . S_t è un sottospazio vettoriale di \mathbb{R}^3 ?
- 2. Sia $T_s = span\{(1,1,s),(0,0,1)\}$. Stabilire se esistono valori dei parametri reali t ed s tali che $S_t \subset T_s$.

2