Foglio di esercizi numero 7

Geometria 1B

Esercizio 1. Siano V e W spazi vettoriali dotati di forme bilineari simmetriche definite positive. Sia $f: V \to W$ un'applicazione lineare e sia $f^{ad}: W \to V$ l'aggiunta di f. Mostrare che:

- 1) f è iniettiva se e solo se $f^{ad} \circ f : V \to V$ è un isomorfismo.
- 2) f è suriettiva se e solo se $f \circ f^{ad}: W \to W$ è un isomorfismo.

Esercizio 2. Siano $S_1 = \{(x, y, z, t)^T \in \mathbb{R}^4 \mid x + 3y + z = 0\}$ e $S_2 = \{(x, y, z, t)^T \in \mathbb{R}^4 \mid 3x - y = 0\}$. Siano p_{S_1} e p_{S_2} , rispettivamente, le proiezioni su S_1 e S_2 rispetto alle decomposizioni $\mathbb{R}^4 = S_1 \oplus S_1^{\perp}$ e $\mathbb{R}^4 = S_2 \oplus S_2^{\perp}$.

- 1) Determinare una base del sottospazio $W = \{v \in \mathbb{R}^4 \mid p_{S_1}(p_{S_2}(v)) = 0\}.$
- 2) Determinare tutti i vettori $z \in \mathbb{R}^4$ tali che $p_{S_1}(p_{S_2}(z)) = z$.

Esercizio 3. Sia $\beta: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$ la forma bilineare definita da:

$$\beta(A, B) = tr(AB).$$

Sia $\mathcal{S}_n(\mathbb{R})$ il sottospazio di $M_n(\mathbb{R})$ delle matrici simmetriche e sia $\mathcal{A}_n(\mathbb{R})$ il sottospazio di $M_n(\mathbb{R})$ delle matrici antisimmetriche.

- 1) Mostrare che $S_n(\mathbb{R})^{\perp} = A_n(\mathbb{R})$;
- 2) determinare la segnatura di β .

Esercizio 4. Calcolare la segnatura della forma quadratica

$$q(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + x_3^2 + 8x_1x_3 + 4x_2x_3.$$

Esercizio 5. Sia

$$A = \left(\begin{array}{ccc} 4 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 3 \end{array}\right).$$

Stabilire se esiste una matrice invertibile W a coefficienti reali tale che $A=W^TW$. In caso affermativo determinare W.

Esercizio 6. Sia

$$B = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{array}\right)$$

e sia $q(X) = X^T B X$. Determinare una base ortonormale che diagonalizzi q.

Esercizio 7. Siano:

$$A = \left(\begin{array}{cc} 3 & 2 \\ 2 & 5 \end{array}\right), \quad B = \left(\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array}\right).$$

Stabilire se esiste una matrice invertibile $M \in M_2(\mathbb{Q})$ tale che $M^TAM = B$.

Esercizio 8. Siano $f,g:\mathbb{C}\times\mathbb{C}\to\mathbb{R}$ le applicazioni definite da

$$f(w,z) = Re(w\bar{z}), \quad g(w,z) = Im(w\bar{z}).$$

Verificare che f, g sono forme bilineari su \mathbb{C} considerato come \mathbb{R} -spazio vettoriale. Verificare che fe g sono non degeneri. Stabilire se sono simmetriche.

1