NOME E COGNOME:

MATRICOLA:

PROVA SCRITTA DI ALGEBRA E GEOMETRIA, 13/09/2018TEMA 2

QUESITI PRELIMINARI. Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente la risposta:

- (1) Due vettori linearmente indipendenti di \mathbb{R}^2 generano \mathbb{R}^2 . (2) Dato un sottospazio S di \mathbb{R}^3 di dimensione 1 esiste un unico sottospazio T di dimensione 2 tale che

(1) Esercizio 1 Stabilire per quali valori di $k \in \mathbb{R}$ i seguenti sistemi lineari Σ e Σ_k' nelle incognite x, y, z sono equivalenti:

$$\Sigma : \begin{cases} 2x + y - z = 1 \\ x + y + z = 0 \end{cases}$$

$$\Sigma'_k : \begin{cases} 2x + y - z = 1 \\ kx + ky + kz = 0 \\ x - 2z = 1 \end{cases}$$

Per i valori di ktrovati determinare le soluzioni dei sistemi Σ e $\Sigma_k'.$

- (2) **Esercizio 2** Siano $S = \langle (1, -1, 0), (2, 1, 1) \rangle$ e $T = \langle (1, 2, 1) \rangle$.
 - (a) Determinare una base di S+T ed una base di $S\cap T$.
 - (b) Costruire, se possibile, dandone la definizione esplicita, una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $\ker(f) = S$, Im(f) = T.
 - (c) Costruire, se possibile, dandone la definizione esplicita, una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $\ker(g) = T$, Im(g) = S.
 - (d) Determinare $f \circ g \in g \circ f$.
 - (e) Determinare, se possibile, un vettore di T la cui proiezione ortogonale su S sia (1, -1, 0)

- (3) **Esercizio 3** Sia f l'endomorfismo di \mathbb{R}^3 tale che: $f(1,0,0)=(0,0,0),\ f(0,1,1)=(0,-1,-1),\ f(0,1,-1)=(0,-1,1).$
 - (a) Stabilire se l'endomorfismo f è invertibile.
 - (b) Calcolare gli autovalori di f.
 - (c) Stabilire se l'endomorfismo f è diagonalizzabile.
 - (d) Determinare la matrice di f rispetto alla base canonica.
 - (e) Stabilire se esiste una base $\mathcal B$ di $\mathbb R^3$ rispetto alla quale la matrice di f sia:

$$F = \left(\begin{array}{rrr} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

NOME	\mathbf{E}	COGN	OME
TACAIMIA	1.7		I COLVIII.

MATRICOLA:

PROVA SCRITTA DI ALGEBRA E GEOMETRIA, 13/09/2018TEMA 1

QUESITI PRELIMINARI. Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente la risposta:

- . (1) Due vettori di \mathbb{R}^2 che generano \mathbb{R}^2 sono anche linearmente indipendenti. (2) Dato un sottospazio S di \mathbb{R}^3 di dimensione 2 esiste un unico sottospazio T di dimensione 1 tale che $S \oplus T = \mathbb{R}^3$.

(1) Esercizio 1 Stabilire per quali valori di $k \in \mathbb{R}$ i seguenti sistemi lineari Σ e Σ_k' nelle incognite x, y, z sono equivalenti:

$$\Sigma : \left\{ \begin{array}{l} x + 2y + 3z = 0 \\ x + y + z = 6 \end{array} \right.$$

$$\Sigma'_k : \left\{ \begin{array}{l} x + 2y + 3z = 0 \\ kx + ky + kz = 6k \\ y + 2z = -6 \end{array} \right.$$

Per i valori di ktrovati determinare le soluzioni dei sistemi Σ e $\Sigma_k'.$

- (2) **Esercizio 2** Siano $S = \langle (1,1,1), (2,1,0) \rangle$ e $T = \langle (1,0,-1) \rangle$.
 - (a) Determinare una base di S + T ed una base di $S \cap T$.
 - (b) Costruire, se possibile, dandone la definizione esplicita, una funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $\ker(f) = S$, Im(f) = T.
 - (c) Costruire, se possibile, dandone la definizione esplicita, una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $\ker(g) = T$, Im(g) = S.
 - (d) Determinare $f \circ g \in g \circ f$.
 - (e) Determinare, se possibile, un vettore di T la cui proiezione ortogonale su S sia (1,1,1)

- (3) **Esercizio 3** Sia f l'endomorfismo di \mathbb{R}^3 tale che: f(1,0,0)=(2,0,0), f(0,1,1)=(0,2,2), f(0,1,-1)=(0,0,0).
 - (a) Stabilire se l'endomorfismo f è invertibile.
 - (b) Calcolare gli autovalori di f.
 - (c) Stabilire se l'endomorfismo f è diagonalizzabile.
 - (d) Determinare la matrice di f rispetto alla base canonica.
 - (e) Stabilire se esiste una base $\mathcal B$ di $\mathbb R^3$ rispetto alla quale la matrice di f sia:

$$F = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$