Foglio 5

Corso di Algebra e Geometria Corso di Laurea in Ingegneria e Scienze Informatiche

Esercizio 1. Sia

$$F = \left(\begin{array}{cc} 2 & 1\\ 0 & 1\\ 0 & 3 \end{array}\right)$$

la matrice di una applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^3$ rispetto alla base $\mathcal{B} = \{(1,1),(1,-1)\}$ di \mathbb{R}^2 e alla base canonica di \mathbb{R}^3 .

- (a) Calcolare la matrice $M_{\mathcal{C}}^{\mathcal{B}}$ del cambiamento di base dalla base canonica \mathcal{C} di \mathbb{R}^2 alla base \mathcal{B} .
- (b) Determinare la matrice associata ad f rispetto alla base canonica di \mathbb{R}^2 e alla base canonica di \mathbb{R}^3 .

Esercizio 2. Sia

$$M = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right)$$

la matrice del cambiamento di base da una base \mathcal{B} di \mathbb{R}^3 alla base $\{(1,2,2), (0,1,-1), (1,2,1)\}$. Determinare i vettori della base \mathcal{B} .

Esercizio 3. Si consideri la matrice

$$A_a = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & a \\ a & 0 & -1 \end{array} \right).$$

Stabilire per quali valori di a la matrice A_a può essere letta come la matrice del cambiamento di base da una base \mathcal{B} alla base canonica. Per uno dei valori trovati determinare la matrice del cambiamento di base dalla base canonica alla base \mathcal{B} .

Esercizio 4. Sia f un endomorfismo di \mathbb{R}^3 tale che f(2,1,2)=(0,0,0), f(1,-2,0)=(1,-2,0), f(0,0,1)=(0,0,0). Determinare la matrice di f rispetto alla base canonica di \mathbb{R}^3 .