Foglio di esercizi numero 4

Corso di Geometria e Algebra Ingegneria Gestionale Canale L-Z Prof.ssa Nicoletta Cantarini

Esercizio 1. In $\mathbb{A}^2(\mathbb{R})$ determinare la retta per P=(4,-3) parallela al vettore v=(-1,2).

Esercizio 2. Dati i punti A = (k, -2k + 1), B = (-1, 2), C = (2, 3), determinare il valore di k per il quale i tre punti sono allineati.

Esercizio 3. Si consideri il piano affine. Determinare k in modo tale che la retta t di equazione kx - 2y + 2k = 0 appartenga al fascio individuato dalle rette r: x + y - 1 = 0 e $s: \begin{cases} x = -h - 1 \\ y = 2h + 2. \end{cases}$

Esercizio 4. In $\mathbb{A}^2(\mathbb{R})$ siano r e r' le rette di equazioni rispettivamente x + ky - 2 = 0 e (k-2)x + y + 1 = 0; determinare, se possibile, i valori di k per cui le due rette sono parallele e disgiunte e quelli per cui coincidono.

Esercizio 5. Siano r, s, t le rette in $\mathbb{A}^3(\mathbb{R})$ di equazioni:

$$r: \left\{ \begin{array}{ll} y=1 \\ z=1 \end{array} \right. \quad s: \left\{ \begin{array}{ll} x=1 \\ z=0 \end{array} \right. \quad t: \left\{ \begin{array}{ll} x=-\frac{2}{3}y+1 \\ z=-1. \end{array} \right.$$

Studiare la posizione reciproca delle rette r, s, t e determinare, se esistono, le rette incidenti simultaneamente le suddette rette.

Esercizio 6. In $\mathbb{A}^3(\mathbb{R})$:

- 1. Determinare l'equazione del piano α passante per i punti A=(1,5,-2), B=(3,1,6) e C=(2,-4,1).
- 2. Determinare le equazioni parametriche della retta r passante per i punti P = (1, 2, 0) e Q = (-1, 1, 1).
- 3. Determinare $\alpha \cap r$.
- 4. Determinare il piano passante per il punto S=(1,1,2) e parallelo al piano α .

Esercizio 7. Nel piano π di equazione x-y+z=0 siano fissati i punti P=(0,1,1) e Q=(1,1,0). Si determinino le equazioni cartesiane della retta r, parallela alla retta passante per P e Q, e contenente il punto R=(1,-1,1).

Esercizio 8. Verificare se sono complanari i punti P = (1, 2, 1), Q = (2, 1, 0), R = (-1, 0, -1) e S = (0, 0, -1) e, in caso affermativo, determinare l'equazione del piano che li contiene.

Esercizio 9. Sia π il piano di equazione x+y+z=0 e siano r ed s le rette di equazioni:

$$r: \left\{ \begin{array}{l} y=0 \\ x-z=0 \end{array} \right. \quad s: \left\{ \begin{array}{l} x=0 \\ 2y-z-1=0. \end{array} \right.$$

Determinare il piano π' contenente r e parallelo ad s ed il piano π'' contenente s e parallelo ad r. Determinare infine la retta t di π incidente r ed s.

Esercizio 10.

1. Verificare se sono sghembe le rette

$$r: \left\{ \begin{array}{l} 3x + y - 2z - 2 = 0 \\ x - 3y + 2 = 0 \end{array} \right.$$
 ed $s: \left\{ \begin{array}{l} x = 1 - t \\ y = t \\ z = t. \end{array} \right.$

2. Determinare, se possibile, una retta parallela alla retta t di equazioni: $\begin{cases} x-5=0 \\ y-z-4=0 \end{cases}$ ed incidente le rette r ed s.

Soluzioni

- 1. Si tratta della retta di equazione cartesiana 2x + y = 5.
- 2. $k = -\frac{4}{7}$.
- 3. k = 4.
- 4. Le rette r e r' sono parallele e disgiunte per $k=1\pm\sqrt{2}$. Non esistono valori di k per cui esse coincidono.
- 5. Le rette r, s e t sono a due a due sghembe. Le rette incidenti simultaneamente r, s e t sono le rette di equazioni cartesiane $\begin{cases} 3x 2\beta z = 3 \\ 2y = 1 + \beta + (1 \beta)z \end{cases}$ al variare di $\beta \in \mathbb{R}$.

6.
$$\alpha: 30x + y - 7z - 49 = 0$$
; $r: \begin{cases} x = 1 + 2\lambda \\ y = 2 + \lambda \\ z = -\lambda; \end{cases}$ $\alpha \cap r = \{(\frac{3}{2}, \frac{9}{4}, -\frac{1}{4})\}$; il

piano passante per S e parallelo ad α ha equazione 30x + y - 7z = 17.

$$7. r: \begin{cases} x+z=2\\ y=-1 \end{cases}$$

8. I punti P, Q, R e S sono complanari. Il piano che li contiene ha equazione y-z=1.

9.
$$\pi': 2y + x - z = 0; \ \pi'': x + 2y - z - 1 = 0; \ t: \begin{cases} x = 0 \\ x + y + z = 0. \end{cases}$$

10. Le rette r e s sono sghembe. La retta t ha equazioni cartesiane: $t: \ \left\{ \begin{array}{l} x=1\\ y-z=0. \end{array} \right.$