Corso di Laurea in ARCHITETTURA

(Alberto PARMEGGIANI)

A.A. 2002/2003: 23 Giugno 2003

COGNOME e NOME (Stampatello):
FIRMA (per esteso):
MATRICOLA:
N.B. Ogni risposta esatta vale 2 punti, ogni errata $-1/2$. Barrare una sola casella. SCRIVERE NOME, COGNOME, NUMERO DI MATRICOLA. Ammissione con punteggio ≥ 7 . Durata della prova: 3 ore. ORALE immediatamente successivo.
(1). Trovare tutti gli $\alpha \in \mathbb{R}$ per i quali la serie
$\sum_{n=1}^{\infty} \frac{e^{1/n} - 1}{n^{\alpha}} \sin\left(\frac{n+1}{n^3 + 2}\right)$
converge. $\square \alpha > -2$ $\square \alpha > -1$ $\square \alpha > -3$ $\square \text{ Nessuno dei precedenti}$
(2). Si consideri il sistema $\begin{cases} x+y+2z &= 2\\ 2x+2y+4z &= 4\\ x-4y-3z &= 1. \end{cases}$ \square Il sistema non ammette soluzioni \square Il sistema ammette un'unica soluzione \square Il sistema ammette ∞^1 soluzioni
□ Nessuno dei precedenti
(3). Si calcoli il rango della matrice
$\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 7 \end{array}\right]$
$\square \operatorname{rg}(A) = 3$

 $\Box \operatorname{rg}(A) = 2$ $\Box \operatorname{rg}(A) = 1$

□ Nessuno dei precedenti

(4). Si consideri la matrice

$$\left[\begin{array}{cccc}
1 & 1 & 1 \\
2 & 3 & 1 \\
1 & 4 & 2
\end{array}\right]$$

e sia A^{-1} la matrice inversa. Allora si ha che

- $\Box \operatorname{Tr}(A^{-1}) = 2$
- $\square \operatorname{Tr}(A^{-1}) = 1$
- $\Box \operatorname{Tr}(A^{-1}) = -1$
- □ Nessuno dei precedenti
- (5). Si consideri la matrice

$$\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array} \right]$$

e si indichino con $\lambda_1, \lambda_2, \lambda_3$ i suoi autovalori ordinati in ordine crescente. Sia $L = \lambda_1^2 + \lambda_2 + \lambda_3$. Allora:

- $\square \ L = 0$
- $\square L = 9$
- $\square L = 7$
- □ Nessuno dei precedenti
- (6). Siano u = (2, 1, 2), v = (3, 0, 2), w = (1, 1, 0). Si calcoli $\langle u, v \times w \rangle$.
 - $\square \langle u, v \times w \rangle = 4$
 - $\square \langle u, v \times w \rangle = 5/2$
 - $\square \langle u, v \times w \rangle = 8$
 - □ Nessuno dei precedenti
- (7). Si consideri la conica

$$C = \{(x, y) \in \mathbb{R}^2; \ x^2 + 2xy + 2y^2 + x - 5 = 0\}.$$

Allora:

- \square C è una ellisse
- \square Cè una parabola
- $\square C = \emptyset$
- □ Nessuno dei precedenti
- (8). Si consideri in \mathbb{R}^3 il piano

$$\pi: x + 3y + z = 1.$$

Sia r la retta passante per (2,0,-2) ed ortogonale a π . Calcolare la distanza dist(P,r) del punto P=(5,2,-1) dalla retta r.

- $\Box \operatorname{dist}(P, r) = 2\sqrt{6/11}$
- $\Box \operatorname{dist}(P, r) = 3\sqrt{6/11}$
- $\Box \operatorname{dist}(P, r) = 4\sqrt{6/11}$
- □ Nessuno dei precedenti

Corso di Laurea in ARCHITETTURA

(Alberto PARMEGGIANI)

A.A. 2002/2003: 23 Giugno 2003

COGNOME e NOME (Stampatello):
FIRMA (per esteso):
MATRICOLA:
N.B. Ogni risposta esatta vale 2 punti, ogni errata $-1/2$. Barrare una sola casella SCRIVERE NOME, COGNOME, NUMERO DI MATRICOLA. Ammission con punteggio ≥ 7 . Durata della prova: 3 ore. ORALE immediatamente successivo.
(1). Si consideri la conica
$C = \{(x, y) \in \mathbb{R}^2; \ x^2 + 2xy + 2y^2 + x - 4 = 0\}.$
Allora: $\Box C = \emptyset$ $\Box C \text{ è una parabola}$ $\Box C \text{ è una ellisse}$ $\Box \text{ Nessuno dei precedenti}$
(2). Si consideri in \mathbb{R}^3 il piano
$\pi: x + 3y + z = 1.$
Sia r la retta passante per $(3,0,-1)$ ed ortogonale a π . Calcolare la distanza dist (P,r) del punto $P=(5,2,-1)$ dalla retta r . $\square \operatorname{dist}(P,r)=2\sqrt{6/11}$ $\square \operatorname{dist}(P,r)=3\sqrt{6/11}$ $\square \operatorname{dist}(P,r)=4\sqrt{6/11}$ $\square \operatorname{Nessuno}$ Nessuno dei precedenti
(3). Trovare tutti gli $\alpha \in \mathbb{R}$ per i quali la serie
$\sum_{n=1}^{\infty} \frac{e^{1/(n^3+1)}-1}{n^{\alpha}} \ln\left(1+\frac{1}{n}\right)$
converge.

 $\begin{array}{c} \square \ \alpha > -2 \\ \square \ \alpha > -3 \\ \square \ \alpha > -1 \end{array}$

 \square Nessuno dei precedenti

(4). Si consideri il sistema

$$\begin{cases} x + y + 2z &= 2 \\ x - 4y - 3z &= 1 \\ 2x + 2y + 4z &= 4. \end{cases}$$

- ☐ Il sistema non ammette soluzioni
- \square Il sistema ammette ∞^1 soluzioni
- \Box Il sistema ammette un'unica soluzione
- □ Nessuno dei precedenti
- (5). Si calcoli il rango della matrice

$$\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 3 \\
1 & 2 & 7
\end{array}\right]$$

- $\square \operatorname{rg}(A) = 2$
- $\square \operatorname{rg}(A) = 3$
- $\square \operatorname{rg}(A) = 1$
- □ Nessuno dei precedenti
- (6). Si consideri la matrice

$$\left[\begin{array}{cccc}
1 & 1 & 1 \\
2 & 3 & 1 \\
1 & 4 & 2
\end{array}\right]$$

- e sia A^{-1} la matrice inversa. Allora si ha che
 - $\Box \operatorname{Tr}(A^{-1}) = 2$
 - $\Box \operatorname{Tr}(A^{-1}) = -1$
 - $\Box \operatorname{Tr}(A^{-1}) = 1$
 - □ Nessuno dei precedenti
- (7). Si consideri la matrice

$$\left[\begin{array}{cccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right]$$

- e si indichino con $\lambda_1, \lambda_2, \lambda_3$ i suoi autovalori ordinati in ordine crescente. Sia $L = \lambda_1 + \lambda_2^2 + \lambda_3$. Allora:
 - $\Box L = 0$
 - \square L=7
 - $\Box L = 9$
 - \Box Nessuno dei precedenti
- (8). Siano u = (1, 2, 2), v = (3, 0, 2), w = (1, 1, 0). Si calcoli $\langle u, v \times w \rangle$.
 - $\Box \langle u, v \times w \rangle = 5/2$
 - $\Box \langle u, v \times w \rangle = 8$
 - $\Box \langle u, v \times w \rangle = 4$
 - □ Nessuno dei precedenti

Corso di Laurea in ARCHITETTURA

(Alberto PARMEGGIANI)

A.A. 2002/2003: 14 Luglio 2003

COGNOME e NOME	(Stampatello)	:
----------------	---------------	---

FIRMA (per esteso):

MATRICOLA:

N.B. Ogni risposta esatta vale 2 punti, ogni errata -1/2. Barrare una sola casella. SCRIVERE NOME, COGNOME, NUMERO DI MATRICOLA. Ammissione con punteggio ≥ 7 . Durata della prova: 3 ore. ORALE immediatamente successivo.

(1). Trovare tutti gli $\alpha \in \mathbb{R}$ per i quali la serie

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n^2+2} \right)^{\alpha} \ln \left(1 + \frac{n+1}{n^2+2} \right)$$

converge.

- $\square \alpha > -1$
- $\square \alpha > -1/2$
- $\square \alpha > 0$
- □ Nessuno dei precedenti

(2). Si consideri il sistema

$$\begin{cases} x + 3y + 2z &= -1 \\ 2x + 6y + 4z &= -2 \\ -x - 3y - 2z &= 2. \end{cases}$$

- \square Il sistema ammette ∞^1 soluzioni
- \square Il sistema ammette un'unica soluzione
- □ Il sistema non ammette soluzioni
- □ Nessuno dei precedenti

(3). Si calcoli il rango della matrice

$$\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 3 & 4
\end{array}\right]$$

- $\square \operatorname{rg}(A) = 3$
- $\square \operatorname{rg}(A) = 2$
- $\square \operatorname{rg}(A) = 1$
- □ Nessuno dei precedenti

- (4). Si trovi la matrice M del cambiamento di base, nell'ordine, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} \longrightarrow$
- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Allora:
 - \Box Tr(M) = 5/2
 - $\square \operatorname{Tr}(M) = 5$
 - $\Box \operatorname{Tr}(M) = -1/2$
 - □ Nessuno dei precedenti
- (5). Si consideri la matrice

$$\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right]$$

e si indichino con $\lambda_1, \lambda_2, \lambda_3$ i suoi autovalori ordinati in ordine crescente. Sia $L = \lambda_1^2 + \lambda_2 + 2\lambda_3$. Allora:

- $\square L = 10$
- $\Box L = 11$
- $\Box L = 13$
- □ Nessuno dei precedenti
- **(6).** Siano u = (3, 1, 2), v = (1, 1, 1), w = (-1, 0, 3). Si calcoli $\langle u, v \times w \rangle$.
 - $\square \langle u, v \times w \rangle = 7$
 - $\square \langle u, v \times w \rangle = -7$
 - $\square \langle u, v \times w \rangle = 3$
 - □ Nessuno dei precedenti
- (7). Si consideri la quadrica

$$Q = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 - 2xy + 2yz + 1 = 0\}.$$

Allora:

- \square Q è un iperboloide a due falde
- $\square Q$ è un iperboloide ad una falda
- $\square \stackrel{\circ}{Q} = \emptyset$
- \square Nessuno dei precedenti
- (8). Si consideri in \mathbb{R}^3 il piano

$$\pi: x + y - z = 1.$$

Sia r la retta passante per (1,5,-4) ed ortogonale a π . Calcolare la distanza dist(P,r) del punto P=(2,0,2) dalla retta r.

- \square dist $(P,r) = \sqrt{38/3}$
- $\Box \operatorname{dist}(P, r) = \sqrt{86/3}$
- $\square \operatorname{dist}(P,r) = \sqrt{24/31}$
- □ Nessuno dei precedenti

Corso di Laurea in ARCHITETTURA

(Alberto PARMEGGIANI)

A.A. 2002/2003: 14 Luglio 2003

COGNOME e NOME (Stampatello):
FIRMA (per esteso):
MATRICOLA:
N.B. Ogni risposta esatta vale 2 punti, ogni errata $-1/2$. Barrare una sola casella. SCRIVERE NOME, COGNOME, NUMERO DI MATRICOLA. Ammissione con punteggio ≥ 7 . Durata della prova: 3 ore. ORALE immediatamente successivo.
(1). Si consideri la quadrica
$Q = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 - 2xy + 2yz + 1 = 0\}.$
Allora:
(2). Si consideri in \mathbb{R}^3 il piano
$\pi: x+y-z=1.$
Sia r la retta passante per $(5,1,-4)$ ed ortogonale a π . Calcolare la distanza dist (P,r) del punto $P=(2,0,2)$ dalla retta r . \square dist $(P,r)=\sqrt{38/3}$ \square dist $(P,r)=\sqrt{86/3}$ \square dist $(P,r)=\sqrt{24/31}$ \square Nessuno dei precedenti
(3). Trovare tutti gli $\alpha \in \mathbb{R}$ per i quali la serie
$\sum_{n=1}^{\infty} \arctan\left(\frac{1}{n^2}\right) \left(\frac{e^{1/n} - 1}{n}\right)^{\alpha}$

converge.

 $\Box \alpha > -1/2$ $\Box \alpha > 0$ $\Box \alpha > 1/2$

 \square Nessuno dei precedenti

(4). Si consideri il sistema

$$\left\{ \begin{array}{rcl} 2x + 6y + 4z & = & -2 \\ x + 3y + 2z & = & -1 \\ -x - 3y - 2z & = & 2. \end{array} \right.$$

- \Box Il sistema ammette un'unica soluzione
- \square Il sistema non ammette soluzioni
- \square Il sistema ammette ∞^1 soluzioni
- \square Nessuno dei precedenti
- (5). Si calcoli il rango della matrice

$$\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 3 \\
1 & 2 & 4
\end{array}\right]$$

- $\square \operatorname{rg}(A) = 1$
- $\square \operatorname{rg}(A) = 3$
- $\square \operatorname{rg}(A) = 2$
- \square Nessuno dei precedenti
- (6). Si trovi la matrice M del cambiamento di base, nell'ordine, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} \longrightarrow$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
. Allora:

- $\Box \operatorname{Tr}(M) = 5$
- $\Box \operatorname{Tr}(M) = -1/2$
- $\square \operatorname{Tr}(M) = 5/2$
- □ Nessuno dei precedenti
- (7). Si consideri la matrice

$$\left[
\begin{array}{cccc}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}
\right]$$

e si indichino con $\lambda_1, \lambda_2, \lambda_3$ i suoi autovalori ordinati in ordine crescente. Sia $L = \lambda_1 + 2\lambda_2^2 + \lambda_3$. Allora:

- $\square \ L = 10$
- \square L = 11
- $\square L = 13$
- □ Nessuno dei precedenti
- (8). Siano u = (1, 3, 2), v = (1, 1, 1), w = (-1, 0, 3). Si calcoli $\langle u, v \times w \rangle$.
 - $\square \langle u, v \times w \rangle = -7$
 - $\square \langle u, v \times w \rangle = 7$
 - $\square \langle u, v \times w \rangle = 4$
 - □ Nessuno dei precedenti