Definizione. Sia V un sottinsieme non vuoto dello spzio vettoriale \mathbb{R}^n . Diciamo che V e' un sottospazio di \mathbb{R}^n se e solo se

- comunque si prendano due vettori in V, anche la loro somma sta in V :
 v

 ₁, v

 ₂ ∈ V ⇒ v

 ₁ + v

 ₂ ∈ V;
- comunque si prendano uno scalare in R ed un vettore in V, anche il prodotto dello scalare per il vettore sta in V:

$$r \in R, \ v \in V \Rightarrow rv \in V.$$

Nello spazio vettoriale R^3 , identificato con lo spazio ordinario mediante la scelta di un sistema di riferimento, si hanno i seguenti sottospazi:

- l'insieme costituito dall'origine 0 del sistema di riferimento
- le rette passanti per 0;
- i piani passanti per 0;
- l'intero spazio.

Verifichiamo, intuitivamente, la terza affermazione.

Sia V un piano passante per $\underline{0}$. Comunque siano dati due vettori \underline{v}_1 , \underline{v}_2 di V, si ha che $\underline{v}_1 + \underline{v}_2$ si puo' ottenere costruendo il parallelogramma sui lati \underline{v}_1 , \underline{v}_2 e prendendone la diagonale uscente da $\underline{0}$; ora, l'intero parallelogramma, e con esso anche il vettore $\underline{v}_1 + \underline{v}_2$, giace nel piano V. Comunque si prendano uno scalare r in R ed un vettore \underline{v} in V, si ha che $r\underline{v}$ giace sulla retta individuata da \underline{v} , che a sua volta giace nel piano V.

Non ci sono altri sottospazi di R^3 oltre a quelli sopra elencati. Lo si puo' verificare, ancora intutivamente, come segue.

Sia V un sottospazio di \mathbb{R}^3 .

Se V contiene solo $\underline{0}$, allora compare nell'elenco.

Se V contiene un vettore \underline{v}_1 diverso da $\underline{0}$, allora V contiene tutti i multipli scalari di \underline{v}_1 che formano una retta passante per $\underline{0}$; se V coincide con questa retta, allora V compare nell'elenco.

Se V contiene un vettore \underline{v}_2 che non giace sulla retta individuata da \underline{v}_1 , allora V contiene tutte le combinazioni lineari di $\underline{v}_1,\underline{v}_2$, che formano un piano passante per $\underline{0}$; se V coincide con questo piano, allora V compare nell'elenco.

Se V contiene un vettore \underline{v}_3 che non giace sul piano individuato da $\underline{v}_1, \underline{v}_2$, allora V contiene tutte le combinazioni lineari di $\underline{v}_1, \underline{v}_2, \underline{v}_3$, che formano l'intero spazio; allora V compare nell'elenco.

Esercizio L'insieme

$$V = {\underline{v} = (x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0}$$

e' un sottospazio di \mathbb{R}^3 ?

Dobbiamo chiederci

- $\underline{v}_1, \ \underline{v}_2 \in V \Rightarrow \underline{v}_1 + \underline{v}_2 \in V$?
- $r \in R$, $\underline{v} \in V \Rightarrow r\underline{v} \in V$?

Partiamo dalla prima domanda ponendo

$$\underline{v}_1 = (x_1, y_1, z_1), \ \underline{v}_2 = (x_2, y_2, z_2).$$

L'assunzione $\underline{v}_1=(x_1,y_1,z_1)\in V$ significa che $x_1+2y_1+3z_1=0$; analogamente, l'assunzione $\underline{v}_2=(x_2,y_2,z_2)\in V$ significa che $x_2+2y_2+3z_2=0$. Ora chiedersi se $\underline{v}_1+\underline{v}_2=(x_1+x_2,y_1+y_2,z_1+z_2)$ appartiene a V significa chiedersi se

$$x_1 + x_2 + 2(y_1 + y_2) + 3(z_1 + z_2) = 0.$$

Questa uguaglianza, sotto le assunzioni fatte, e' vera in quanto

$$x_1 + x_2 + 2(y_1 + y_2) + 3(z_1 + z_2) = x_1 + 2y_1 + 3z_1 + x_2 + 2y_2 + 3z_2 = 0 + 0 = 0.$$

Dunque la risposta alla prima domanda e' affermativa.

Passiamo alla seconda domanda. L'assunzione $\underline{v}=(x,y,z)\in V$ significa che x+2y+3z=0. Ora chiedersi se $r\underline{v}=(rx,ry,rz)$ appartiene a V significa chiedersi se

$$rx + 2ry + 3rz = 0.$$

Questa uguaglianza, sotto le assunzioni fatte, e' vera in quanto

$$rx + 2ry + 3rz = r(x + 2y + 3z) = r0 = 0.$$

Dunque la risposta alla seconda domanda e' affermativa.

In conclusione, V e' un sottospazio di \mathbb{R}^3 . Si puo' verificare che V e' un piano passante per $\underline{0}$.

Esercizio L'insieme

$$W = \{w = (x, y) \in \mathbb{R}^2 : x + y = 1\}$$

e' un sottospazio di \mathbb{R}^2 ?

Dobbiamo chiederci

- $\underline{v}_1, \ \underline{v}_2 \in W \Rightarrow \underline{v}_1 + \underline{v}_2 \in W$?
- $r \in R$, $v \in W \Rightarrow rv \in W$?

Si puo' verificare geometricamente che ci sono due vettori aventi la punta su W la cui somma e' un vettore avente la punta fuori da W. Dunque la risposta alla prima domanda e' negativa. Concludiamo che W non e' un sottospazio di \mathbb{R}^2 . Algebricamente, si puo' procedere come di seguito.

Partiamo dalla prima domanda ponendo $\underline{v}_1=(x_1,y_1),\ \underline{v}_2=(x_2,y_2),$ dove $x_1+y_1=1$ e $x_2+y_2=1.$ Ora, per il vettore somma $\underline{v}_1+\underline{v}_2=(x_1+x_2,y_1+y_2)$ si ha

$$x_1 + x_2 + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) = 1 + 1 \neq 1,;$$

dunque la risposta alla prima domanda e' negativa. Concludiamo che W non e' un sottospazio di \mathbb{R}^2 .

Nel primo esercizio abbiamo mostrato che l'insieme delle soluzioni della equazione lineare omogenea x + 2y + 3z = 0 e' un sottospazio di R^3 ; allo stesso modo si puo' mostrare che l'insieme delle soluzioni di una qualsiasi equazione lineare omogenea in n incognite e' un sottospazio di R^n . Vale un risultato ancora piu' generale, che puo' essere verificato agevolmente usando il formalismo matriciale:

Proposizione L'insieme delle soluzioni di un sistema lineare omogeneo $A\underline{x} = \underline{0}$ di m equazioni in n incognite e' un sottospazio di R^n .

Verifica Dobbiamo mostrare che la somma di due soluzioni qualunque del sistema e' ancora una soluzione del sistema, e che il prodotto di uno scalare qualunque per una soluzione qualunque del sistema e' ancora una soluzione del sistema; in altri termini dobbiamo verificare che sussistono le implicazioni

$$\begin{array}{l} A\underline{v}_1 = \underline{0}, \ A\underline{v}_2 = \underline{0} \ \Rightarrow A(\underline{v}_1 + \underline{v}_2) = \underline{0} \\ A\underline{v} = \underline{0}, \ r \in R \Rightarrow A(r\underline{v}) = \underline{0} \end{array}$$

Per la prima, basta osservare che

$$A(\underline{v}_1 + \underline{v}_2) = A\underline{v}_1 + A\underline{v}_2 = \underline{0} + \underline{0} = \underline{0}.$$

Per la seconda, basta osservare che

$$A(r\underline{v}) = r(A\underline{v}) = r\underline{0} = \underline{0}.$$

Problema Si determini "il piu' piccolo" sottospazio di \mathbb{R}^3 che contiene i vettori

$$\underline{v}_1 = (1, 2, 3), \ \underline{v}_2 = (4, 5, 6), \ \underline{v}_3 = (7, 8, 9).$$

Osserviamo innanzitutto che se un sottospazio contiene \underline{v}_1 , \underline{v}_2 , \underline{v}_3 , allora deve contenere anche i multipli scalari di ciascuno dei tre vettori, ed anche le somme

di tali multipli ... cioe' deve contenere tutte le loro combinazioni lineari

$$r_1\underline{v}_1 + r_2\underline{v}_2 + r_3\underline{v}_3, \qquad r_1, r_2, r_3 \in R.$$

Fra tali combinazioni lineari compaiono anche \underline{v}_1 , \underline{v}_2 , \underline{v}_3 ; ad esempio, \underline{v}_1 si ottiene per $r_1=1, r_2=0, r_3=0$.

L'insieme di tutte queste combinazioni lineari e' un sottospazio di \mathbb{R}^3 . Infatti, la somma di due qualsiasi combinazioni lineari dei vettori dati e' ancora una combinazione lineare di tali vettori:

$$r_1\underline{v}_1 + r_2\underline{v}_2 + r_3\underline{v}_3 + s_1\underline{v}_1 + s_2\underline{v}_2 + s_3\underline{v}_3 = (r_1 + s_1)\underline{v}_1 + (r_2 + s_2)\underline{v}_2 + (r_3 + s_3)\underline{v}_3;$$

il prodotto di un qualsiasi scalare $r \in R$ per una qualsiasi combinazione lineare dei vettori dati e' ancora una combinazione lineare di tali vettori:

$$r(r_1\underline{v}_1 + r_2\underline{v}_2 + r_3\underline{v}_3) = (rr_1)\underline{v}_1 + (rr_2)\underline{v}_2 + (rr_3)\underline{v}_3.$$

Possiamo dunque afffermare che "il piu' piccolo" sottospazio di R^3 che contiene i vettori $\underline{v}_1, \ \underline{v}_2, \ \underline{v}_3$ e' l'insieme delle loro combinazioni lineari.

Ora, si puo' osservare che

$$\underline{v}_3 = -\underline{v}_1 + 2\underline{v}_2,$$

e dunque ogni combinazione lineare dei tre vettori si puo' riscrivere come combinazione lineare dei primi due:

$$r_1\underline{v}_1 + r_2\underline{v}_2 + r_3\underline{v}_3 = r_1\underline{v}_1 + r_2\underline{v}_2 + r_3(-\underline{v}_1 + 2\underline{v}_2) = (r_1 - r_3)\underline{v}_1 + (r_2 + 2r_3)\underline{v}_2.$$

Cio' ci porta a dire che il piu' piccolo sottospazio di \mathbb{R}^3 contenente i tre vettori dati puo' essere descritto come l'insieme delle combinazioni lineari dei primi due:

$$r_1\underline{v}_1 + r_2\underline{v}_2, \qquad r_1, r_2 \in R.$$

Ora, i due vettori $\underline{v}_1=(1,2,3), \underline{v}_2=(4,5,6)$ individuano rette distinte, dunque le loro combinazioni lineari formano un piano V passante per l'origine, e ogni vettore di V si potra' scrivere in uno ed un solo modo come loro combinazione lineare.

In generale, vale la seguente proposizione, la cui dimostrazione si basa su considerazioni simili a quelle svolte sopra.

Proposizione Siano \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_p , vettori di \mathbb{R}^n . L'insieme delle combinazioni lineari

$$r_1\underline{v}_1 + r_2\underline{v}_2 + \ldots + r_p\underline{v}_p, \qquad r_1, r_2, \ldots, r_p \in R$$

e' il piu' piccolo sottospazio di R^n contenente i vettori $\underline{v}_1, \ \underline{v}_2, \ \ldots, \ \underline{v}_p$. Esso viene detto sottospazio generato dai vettori $\underline{v}_1, \ \underline{v}_2, \ \ldots, \ \underline{v}_p$, e viene indicato col simbolo $\mathcal{L}[\underline{v}_1, \ \underline{v}_2, \ \ldots, \ \underline{v}_p]$.

La definizione di base di \mathbb{R}^n si estende tale e quale ai sottospazi di \mathbb{R}^n .

Definizione Diciamo che i vettori $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_p$ formano una base per un sottospazio V di \mathbb{R}^n se e solo se ogni vettore \underline{v} di V si puo' scrivere in uno ed un solo modo come combinazione lineare

$$\underline{v} = r_1\underline{v}_1 + r_2\underline{v}_2 + \ldots + r_p\underline{v}_p, \qquad r_1, r_2, \ldots, r_p \in R$$

dei vettori $\underline{v}_1, \ \underline{v}_2, \ \dots, \ \underline{v}_p$. Il peso r_i viene detta coordinata del vettore \underline{v} rispetto all'i-mo vettore della base.

Lo spazio vettoriale \mathbb{R}^n possiede una base privilegiata, la base canonica; accanto ad essa, ne possiede infinite altre, tutte pero' formate da n vettori. Questi risultati si estendono ai sottospazi:

Teorema Ogni sottospazio di R^n possiede almeno una base. Tutte le basi di uno stesso sottospazio V di R^n sono formate dallo stesso numero di vettori; questo numero viene detto dimensione del sottospazio V.

La dimostrazione di questo teorema non viene riportata.

Con riferimento al problema discusso sopra, possiamo allora dire che i vettori \underline{v}_1 , \underline{v}_2 formano una base per il sottospazio $\mathcal{L}[\underline{v}_1, \ \underline{v}_2, \ \underline{v}_3]$ generato dai vettori \underline{v}_1 , \underline{v}_2 , \underline{v}_3 , il quale ha percio' dimensione 2.