Matematica II, 2010-2011; errata/corrige

- 17.11.10, p. 6, in alto
 - errata: possiamo ricavare in modo univoco a partire dall'ultima equazione via via le le incognite $x_n, x_{n-1}, \ldots, x_1$ in funzione delle incognite x_{n+1}, \ldots, x_m .
 - corrige: possiamo ricavare in modo univoco a partire dall'ultima equazione via via le le incognite $x_m, x_{m-1}, \ldots, x_1$ in funzione delle incognite x_{m+1}, \ldots, x_n .
- 19.11.10, p. 6, dimostrazione della proposizione 1, ultimo paragrafo
 - errata: Ora, nel nostro caso si ha che p < n, in quanto $p \le m$ (per definizione di pivot), e $m \le n$ (per ipotesi).
 - corrige: Ora, nel nostro caso si ha che p < n, in quanto $p \leq m$ (per definizione di pivot), e m < n (per ipotesi).
- 07.12.10, p. 4, fine primo esempio
 - errata: che ha soluzioni

$$\begin{cases} x_1 = -x_3 \\ x_2 = 2x_3 \\ x_3 = qualsiasi \end{cases}$$

e in particolare ha la soluzione (-1, 2, 1). Dunque si ha

$$-v_1 + 2v_2 + v_3 = 0.$$

- corrige: che ha soluzioni

$$\begin{cases} x_1 = x_3 \\ x_2 = -2x_3 \\ x_3 = qualsiasi \end{cases}$$

e in particolare ha la soluzione (1, -2, 1). Dunque si ha

$$v_1 - 2v_2 + v_3 = 0.$$

- 15.12.10, p. 4, in alto
 - errata: Possiamo pensare che il sottospazio V sia il sottospazio $V = \operatorname{span}\{a_1, \dots, a_m\}$ generato da ...
 - corrige: Possiamo pensare che il sottospazio V sia il sottospazio $V = \langle a_1, \dots, a_m \rangle$ generato da ...